
Automating Reinforcement Learning with Example-based Resets

Jigang Kim1,2, J. hyeon Park1,2, Daesol Cho1,2 and H. Jin Kim1,2

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Deep reinforcement learning has enabled robots
to learn motor skills from environmental interactions with
minimal to no prior knowledge. However, existing reinforcement
learning algorithms assume an episodic setting, in which the
agent resets to a fixed initial state distribution at the end of each
episode, to successfully train the agents from repeated trials.
Such reset mechanism, while trivial for simulated tasks, can
be challenging to provide for real-world robotics tasks. Resets
in robotic systems often require extensive human supervision
and task-specific workarounds, which contradicts the goal of
autonomous robot learning. In this paper, we propose an ex-
tension to conventional reinforcement learning towards greater
autonomy by introducing an additional agent that learns to
reset in a self-supervised manner. The reset agent preemptively
triggers a reset to prevent manual resets and implicitly imposes
a curriculum for the forward agent. We apply our method
to learn from scratch on a suite of simulated and real-world
continuous control tasks and demonstrate that the reset agent
successfully learns to reduce manual resets whilst also allowing
the forward policy to improve gradually over time.

I. INTRODUCTION

Deep reinforcement learning (RL) methods have shown
much promise in learning complex skills in the absence
of prior knowledge both in simulation [1] and in the real
world [2]. Recent advances in large-scale RL applications
such as playing real-time strategy games [3][4] and dexterous
manipulation of objects [5] demonstrate the potential of RL
methods. However, most RL algorithms are not specifically
designed with learning in the real world in mind, mak-
ing assumptions that present a challenge for autonomous
robot learning. One major hurdle to autonomy is the often
overlooked reset mechanism. Conventional RL algorithms
assume the ability to sample from the initial state distribution
which does not hold for real environments.

Previous attempts to apply RL to real robots have relied
on some combination of human intervention, scripted ac-
tions, and task-specific experiment setups to implement a
reset mechanism [6][7][8]. Some prior works even design
mechanical rigs with actuators and sensors to minimize
human interventions during resets [9]. For tasks such as
goal reaching or trajectory tracking, scripted actions may
be enough to prevent most human interventions but still
require human oversight to handle edge cases. Tasks in-
volving manipulation may require additional environmental
setup to prevent out-of-reach objects and human intervention
to manually reconfigure objects. However, these tailored
reset mechanisms based on prior knowledge of the task are

1Department of Mechanical and Aerospace Engineering, Seoul National
University, Seoul, Korea

2Automation and Systems Research Institute (ASRI), Seoul, Korea

Fig. 1: We consider a reset agent for autonomous and continuous
training. Resets are triggered to prevent manual resets and impose
an implicit curriculum on the forward agent.

workarounds to apply RL to real robots and do not address
the incompatibility between RL algorithms and autonomous
robot learning.

We incorporate resets as part of the learning process
to address the issue of autonomy and provide a natural
extension to existing RL methods. In addition to the con-
ventional RL agent (forward agent) that learns a given task,
a reset agent can be trained to return to the initial state
distribution (Fig. 1). This enables continuous training on real
robots by learning from both forward and reset episodes, as
opposed to conventional RL where training is halted during
resets. Furthermore, allowing the reset agent to preemptively
trigger resets instead of waiting for the forward episode to
terminate has additional benefits. Value-based reset trigger
can prevent the forward policy from leading the system
into states from which the reset policy cannot reset. It also
implicitly generates a curriculum for the forward agent by
confining it to the vicinity of the initial state in the early
stages of training when the reset agent is not yet capable
and gradually allowing the forward agent to explore further
as the reset agent improves.

In this paper, we train the reset agent from examples of
initial states instead of rewards. Designing a reset reward
function depends on the given task, similar to how tailored
reset mechanisms rely on prior knowledge. In contrast,
examples of initial states can simply be collected at the
beginning of every forward episode, which is a task-agnostic
process. Also, learning to reset from examples allows for a
better extension to conventional RL algorithms since the reset
agent works under the hood without additional design effort
by the end-user. We take advantage of recent advances in
example-based control to train the reset agent.

The main contribution of our work is in extending the
RL framework for robot learning towards greater autonomy
by learning a reset agent in a self-supervised manner with

ar
X

iv
:2

20
4.

02
04

1v
2

 [
cs

.L
G

]
 6

 A
pr

 2
02

2

examples of initial states. We apply our method to learn from
scratch on a suite of simulated and real-world continuous
control tasks to demonstrate that the reset agent successfully
learns to reset from examples of initial states and triggers
resets to reduce manual resets and prevent irrecoverable
states whilst also allowing the forward policy to improve
gradually over time. We highlight our contribution of real
robot deployment of the proposed autonomous RL frame-
work and claim that it is a step towards fully autonomous
robot learning.

II. RELATED WORK

As RL is increasingly applied to robotic applications,
there has been a growing interest in automating the training
process and minimizing the human factor [9][10]. Recent
literature from multi-task and goal-conditioned RL that re-
formulate resets [11][12][13][14][15] and works on multi-
stage task methods that sequentially roll out forward and
reset policies [16][17][18] are closely related to our work.
Works on value-based implicit curriculum [14][19][20] and
reversibility in RL [21][22] are also relevant to our work.

Concerns of autonomy in RL due to the assumption of
a reset mechanism have been raised previously. Examples
include learning diverse primitives [11] or using a perturba-
tion controller [12] in order to “reset” to a broad set of initial
states and reformulating resets into goal-conditioned RL by
leveraging a sub-goal generator [14]. These works assume
a reversible environment to circumvent the need for a reset
in the traditional sense—as in returning to some fixed initial
state—allowing agents to learn from various states without
the danger of getting stuck. In contrast, our method makes
no such assumption on the environment by preventing the
agent from irrecoverable states with reset triggers.

Value-based trigger has been featured in prior works
involving multiple agents. For example, it has been applied
to safe RL where a recovery policy is executed if the pre-
trained safety critic deems the action of the forward policy
to be unsafe [19]. Similarly, our method triggers resets
based on the reset critic to prevent the forward agent from
manual resets, but it is learned along with the forward agent
and not pre-trained. Implicit curriculum imposed on the
forward agent by the learned reset trigger resembles reverse
curriculum [23][24], but our method differs in allowing such
behavior to emerge as a result of joint training of the forward
and reset agents.

We build upon prior work [17] which required additional
handcrafted reward function to specify the reset objective.
Our method eliminates the need for such reset reward by
adopting example-based control that learns from examples
of initial states. Thus, unlike prior work which relied on
environment-dependent reset Q-function threshold to trigger
resets, example-based control methods enable learning of a
reset critic that estimates the probability of returning to the
initial state, an environment-agnostic metric, to trigger resets
and train the policy.

III. PRELIMINARIES

Typical RL setting involves a sequential decision making
problem represented by a Markov decision process (MDP).
MDP is defined by the tuple (S, A, P , r, p(s0)), where
S is the state space, A is the action space, P is the
transition dynamics P (s′|s, a), r(s, a) is the scalar reward
function, and p(s0) is the initial state distribution. The
objective of RL algorithms is to find the optimal policy
π∗(a|s) that maximizes the expected γ-discounted return
Eπ[
∑∞
t=0 γ

tr(st, at)].

A. Event framework for the reset agent
We adopt the event framework [25][26] that casts control

as a probabilistic inference problem to learn to reset from
examples of initial states S∗ = {s∗ ∼ p(s0)} without
external rewards. The event variable defined by the binary
random variable et ∈ {0, 1} indicates whether the desired
outcome of reaching the initial state has been achieved at
time t and p(et = 1|st) is the probability of achieving the
desired outcome. The objective is to find the optimal policy
that maximizes the probability of achieving the desired
outcome in the future pπ(et:∞ = 1). The problem setting
of the event framework resembles that of goal-conditioned
RL with sparse reward. However, unlike goal-conditioned RL
which relies on goal-relabeling to diverse goals (hindsight),
the event framework directly recovers a dense reward from
a small set of desired outcomes and is rooted in probability.
Thus, it is better suited for the reset agent that learns to reach
a small subset of the state space (initial state) and allows
for a more intuitive reset trigger based on the probability
of returning to the initial state. We adopt RCE [26], which
directly learns the value function from desired outcomes and
transitions without the explicit use of learned rewards by
deriving an update rule based on first principles.

B. Recursive Classification of Examples (RCE)
RCE defines a future success classifier Cπθ (st, at) that

discriminates between state-action pairs from the conditional
distribution pπ(st, at|et:∞ = 1) and the marginal distribution
p(st, at) with respective weights p(et:∞ = 1) and 1,

Cπθ (st, at) :=
pπ(st, at|et:∞ = 1)p(et:∞ = 1)

pπ(st, at|et:∞ = 1)p(et:∞ = 1) + p(st, at)

such that the probability of achieving the desired outcome in
the future given current state and action pπ(et:∞ = 1|st, at)
can be recovered with a simple classifier ratio:

pπ(et:∞ = 1|st, at) =
Cπθ (st, at)

1− Cπθ (st, at)
(1)

The loss for the future success classifier involves two
cross-entropy loss terms, the first term assigning a label of 1
for desired outcomes and the second term assigning a label
of γω(t)

γω(t)+1
for transitions from the replay buffer,

min
θ

(1− γ)E p(st|et=1),
at∼π(at|st)

[CE(Cπθ (st, at); 1)] (2)

+ (1 + γω(t))Ep(st,at,st+1)

[
CE
(
Cπθ (st, at);

γω(t)

γω(t) + 1

)]

where ω(t) is the classifier ratio at the next time step,

ω(t) = Ep(at+1|st+1)

[
Cπθ (st+1, at+1)

1− Cπθ (st+1, at+1)

]
(3)

This replaces the MSE TD loss typical of critic update in
standard actor-critic RL algorithms. We refer the reader to
Section 3.2 of [26] for derivation details. Actor update is
performed by gradient ascent on the policy network using
action gradients with respect to the future success classifier.

IV. METHODS

Our method simultaneously learns a forward agent and a
reset agent. The forward agent consists of a policy πf (s) and
a Q-function Qπf (s, a). Likewise, the reset agent includes
πr(s) but instead of a Q-function includes a reset success
classifier Cπr (s, a) which is a proxy for the probability of
returning to the initial state pπr (et:∞ = 1|st, at) defined by
the classifier ratio (Equation 1). The forward agent performs
a task defined by the reward signal from the environment
following the existing RL setting. The reset agent, which
acts as a safety layer between the forward policy and
the environment, directly learns the reset success classifier
without rewards (Equation 2). We adopt DDPG [27] for
both agents but other off-policy actor-critic variants are also
applicable.

During training, forward and reset agents run in an al-
ternating fashion. The forward agent rolls out the forward
policy until it reaches the maximum step limit and requests
a reset or until the reset agent preemptively triggers a reset.
For every forward policy action at, the reset agent evaluates
pπr (et:∞ = 1|st, at) and triggers a reset if its value is less
than some threshold pthresh. When a reset is either requested
or triggered, the reset agent then runs the reset policy instead
of immediately resetting to the initial state with a manual
reset. The reset policy is rolled out until the system reaches
the initial state distribution. If it fails to do so within the
maximum step limit, a manual reset is inevitable. In either
case, the reset agent ends up at the initial state and can
collect an example of the initial state at the beginning of
every forward episode. The collected examples along with
transitions from Br are used to train the reset agent in a self-
supervised manner (Equation 2). This is a general overview
of the training scheme and further details are provided in
Algorithm 1.

Note that under this training scheme the forward agent is
not directly penalized for triggering resets. However, if the
forward policy triggers a reset without achieving the task,
the corresponding value for the policy would remain low and
the forward policy, which is continually updated to increase
the value, will eventually learn to achieve the task without
triggering resets. This makes sense, especially if we consider
the mechanics of the reset agent to be part of the environment
with which the forward agent interacts. Also, this setting
allows for a seamless extension to conventional RL as it
does not modify the forward agent.

We make the following assumptions similar to [17]. The
initial state distribution is assumed to be unimodal to prevent

Algorithm 1 Automating RL with example-based resets

1: Initialize networks πf (s), Qπf (s, a), πr(s)
2: Initialize network ensemble Cπri (s, a) (i = 1, . . . ,K)
3: Initialize initial state buffer S∗, replay buffers Bf , Br
4: Initialize environment with env.reset()
5: while not total steps reached do
6: save an example of initial state to S∗
7: while not reset do . forward episode
8: at ← πf (st)
9: evaluate pπri (et:∞ = 1|st, at) from Cπri (st, at)

10: if pπr (et:∞ = 1|st, at) < pthresh then
11: trigger reset
12: else if reached max forward episode steps then
13: request reset
14: else
15: (st+1, rt)← env.step(at)
16: save transition to Bf and update πf , Qπf

17: while not at initial state do . reset episode
18: at ← πr(st)
19: if under max reset episode steps then
20: st+1 ← env.step(at)
21: save transition to Br and update πr, Cπri
22: else . initial state not reached until max step
23: manual reset with env.reset()

multiple objectives for the reset agent and it is assumed to
be possible to accomplish the forward task without falling
into irrecoverable states. We additionally assume that the
reset agent is not given feedback (i.e. rewards) from the
environment on how to reset but is notified when it has
successfully reset. Note that classifying initial states is much
easier than assigning a proper credit on how to reset.

A. Reset trigger mechanism

Our goal is to reduce manual resets with the reset agent.
The reset agent should trigger a reset by evaluating whether
the action of the forward policy will lead to irrecoverable
states. Note that the reset trigger should not only prevent
states from which it cannot physically return (e.g. falling
into a ditch, spilling the contents of a cup) but also states
from which the reset policy is not yet capable of returning.
For example, resets should be triggered almost immediately
during the early stages of training when the reset policy
is not yet capable. As the reset agent gathers examples of
the initial state at the end of every reset episode, it should
gain confidence and trigger fewer resets allowing the forward
policy to explore even further.

Triggering resets by thresholding the output of a single
network can lead to overestimation in not yet trained regions
and fail to trigger resets. Thus, we use network ensembles
Cπri (st, at) for the reset success classifier in order to estimate
the epistemic uncertainty and trigger resets by evaluating
the ensemble average of the probability of successful reset
pπr (et:∞ = 1|st, at). This combination encourages the reset
agent to trigger resets under uncertainty from a lack of

data, which is especially the case during the early stages
of training. Naive ensembles are not varied enough so
we incorporate a simple yet effective technique known as
randomized prior functions (RPFs) [28] which represents the
function approximator as a sum of two networks of the same
structure where one learns the posterior (trainable part) and
the other acts as the prior (untrainable part).

We provide justification for using the probability of suc-
cessful resets to trigger resets by making a connection be-
tween pπr (et:∞ = 1|st, at) and the expected time steps T to
reach the initial state distribution. The discounted probability
of successful reset at some future time given the reset policy
πr is defined as,

pπr (et:∞ = 1|st, at) = Epπr (s|st,at)[p(e = 1|s)]

where pπr (s|st, at) is the discounted future state distribution,

pπr (s|st, at) := (1− γ)
∞∑

∆=0

γ∆pπr (st+∆ = s|st, at)

Consider the following where states can be perfectly par-
titioned into initial states and non-initial states with corre-
sponding p(e = 1|s) values of 1 and 0, respectively. If
the reset policy πr reaches the initial state after T steps
and remains there indefinitely, then pπr (et:∞ = 1|st, at)
becomes γT :

pπr (et:∞ = 1|st, at) = (1− γ)
∞∑

∆=0

γ∆pπr (et+∆ = 1|st+∆)

= (1− γ)

[
T−1∑
∆=0

0 +

∞∑
∆=T

γ∆

]
= γT

B. Implementation details

Reset success classifier network ensemble presents a
choice for updating the critic and the actor. The straightfor-
ward approach is to independently update each critic network
Cπri with its bootstrapped label and update the actor network
πr by evaluating the action gradient with respect to the
ensemble average. Instead, we take the ensemble minimum
for both critic and actor update to tackle the issue of
overestimation, which not only is important for training the
reset policy but also critical for the reset trigger mentioned
previously. It has been shown that using n-step returns for the
critic update improves the stability and performance of RCE.
Thus, we also adopt n-step returns (n = 10) and replace the
label for the replay buffer transitions with the following:

y =
1

2

(
γω(t)

γω(t) + 1
+

γnω(t+n−1)

γnω(t+n−1) + 1

)
Note that setting n = 1 recovers the original label from
Equation 2. The reset success classifier Cπr should be in
range [0, 0.5] due to the classifier ratio relation (Equation
1) and the fact that probabilities are in range [0, 1]. We use
the sigmoid parameterization for Cπr and clip the values
when necessary, such as deriving the label for the RCE loss
(Equation 2) or evaluating the probability of successful reset
for reset trigger.

V. EXPERIMENTS

We present empirical evidence to demonstrate that the
reset agent reduces manual resets and learns to successfully
reset with examples of initial states. To do so, we apply our
method to various simulated continuous control tasks and
compare it against prior work across several performance
metrics. We also apply our method to learn from scratch
on a real robot (robotic manipulator) to demonstrate the
potential of the method. In the following sections, we provide
hyperparameter details, describe the simulated and real-world
tasks used for evaluation, and analyze the results.

A. Hyperparameters

The following settings were set as the default for all
experiments unless otherwise specified. pthresh for the reset
trigger was set to 0.1 and the reset agent was allowed
up to double the number of maximum steps allowed for
the forward agent before resorting to a manual reset. All
networks were configured with two fully-connected hidden
layers of dimensions 400 and 300 with ReLU activations.
Policy networks additionally have tanh activations on the
output layer to bound the action. For Q-function and reset
success classifier networks, only the states are fed into the
input layer and the actions are later concatenated into the
first hidden layer. Network ensembles were used for the reset
agent with an ensemble of K = 5 networks and an RPF scale
factor of 3 for Cπri . ADAM optimizer with a learning rate
of 1e-4 was used for πf and πr, and a learning rate of 1e-3
was used for Qπf and Cπri . Other hyperparameters include
τ =1e-3 for updating the target networks and a buffer size
of 500k for both forward and reset agents.

B. Simulated tasks

The simulated environments are based on OpenAI Gym
[29] and DeepMind Control Suite [30] environments. We
evaluated on four environments and a variety of manipulation
and locomotion tasks for a total of six tasks. ball-in-cup
is a standard environment from the Control Suite and its
forward task was either to catch the ball (catch task) or
to throw the ball as far as possible (throw task). The other
three environments are based on OpenAI Gym. peg-insertion
involves a 7DoF manipulator holding a peg and its forward
task was either to insert the peg into the hole (insert task) or
to remove the peg from the hole (remove task). cliff-cheetah
and cliff-walker are modified versions of the Gym MuJoCo
environments HalfCheetah and Walker2d with the addition
of a steep cliff at x = 14 and x = 6, respectively. The
forward task of the cliff environments was to maintain some
positive velocity. The dense forward task reward functions
were normalized to [0, 1] which, combined with the discount
factor γ of 0.99, bounds the forward return to [0, 100). The
maximum steps per episode were set to 100, except for the
cliff environments which were set to 500 and their reset
trigger threshold was adjusted accordingly to pthresh = 0.05.

(a) ball-in-cup (catch) (b) peg-insertion (insert) (c) cliff-cheetah (move forward)

(d) ball-in-cup (throw) (e) peg-insertion (remove) (f) cliff-walker (move forward)

Fig. 2: Forward episodic return (blue solid line) and the number of manual resets (black dashed line) for six simulated tasks.

C. Simulation results

We take a snapshot of the forward and reset agents at
regular intervals during training, and roll out a pair of
forward and backward episodes in a separate evaluation
loop to evaluate the forward episodic return. Note that the
action noise typical of DDPG to aid exploration was turned
off for the evaluation loop. Performance metrics other than
the forward episodic return were derived from the training
loop. All of the simulation results were averaged across five
random seeds.

1) Overview of our method: We applied our method to six
simulated tasks and plot the forward episodic return and the
number of manual resets, or in other words, the number of
failed reset attempts by the reset agent (Fig. 2). Multiple
tasks are available for the ball-in-cup and peg-insertion
environments, which allows us to observe the effect of task
difficulty on learning. For ball-in-cup, the throwing task is
easier than the catch task and for peg-insertion, the remove
task is easier than the insert task. This is somewhat reflected
in the episodic return, as the forward agent achieves slightly
higher returns for the easier tasks in ball-in-cup and peg-
insertion environments. The task difficulty for the reset agent
is opposite to that of the forward agent since the reset agent
has to “undo” the forward task. Case in point, the number
of manual resets for the peg-insertion remove task is 10
times higher than that of the insert task since the remove
task requires the reset agent to learn how to insert the peg.
Such trends are also evident in ball-in-cup but to a lesser
degree.

One notable trend is that environments without irrecover-
able states saw the number of manual resets mostly plateau
(Fig. 2a,2b,2d,2e), whereas environments with irrecoverable

states did not (Fig. 2c,2f). Cliff environments have a cliff at
the end of the map where the reset agent is physically unable
to reset from. The assumption that the forward agent can
achieve the forward task without falling into irrecoverable
states technically holds for these environments since the
agent can learn to stop just before the fall. However, the
dynamics of the forward agent encouraging risky behavior
(inching closer to the cliff) while the reset agent is trying
to prevent irrecoverable states can be an unstable one. In
practice, the forward agent sometimes slips past the reset
trigger and falls off the cliff.

2) Comparison against the oracle/baseline: We compare
our method against LNT introduced in prior work [17]. We
set the oracle (LNT) as the original algorithm with full access
to handcrafted reset rewards and set the baseline (LNT-
sparse) as LNT but with access to sparse (0 or 1) reset
rewards. LNT represents a best-case scenario where the reset
agent receives a rich learning signal from the environment.
The reset reward for the oracle was shaped in a similar
fashion to the forward reward. LNT-sparse is under the same
constraint as our method and is only notified when it has
successfully reset. However, unlike our method, LNT-sparse
does not have the benefit of example-based resets and should
represent the worst-case scenario. For LNT and LNT-sparse,
ensemble minimum was used to trigger resets and Qthresh
was set to 20 and 0.1 for LNT and LNT-sparse, respectively.
Ensemble size of K = 20 was used for the reset Q-function
of LNT and LNT-sparse following the default settings in
[17], giving a slight advantage over our method which used
K = 5 for the reset success classifier.

Overall, our method outperformed LNT-sparse and in
some instances performed as well or better than LNT, in
terms of the average forward episodic return (higher is better)

TABLE I: Comparison of our method against LNT (oracle) and LNT-sparse (baseline).

Algo.
Env. ball-in-cup peg-insertion cliff-cheetah

(forward task: catch ball) (forward task: insert peg) (forward task: move forward)
average manual forward success average manual forward success average manual forward success
return resets share rate return resets share rate return resets share rate

LNT 10.38 276 85.7% 99.3% 30.50 251 71.7% 98.5% 4.77 835 15.0% 85.7%
ours 19.51 331 79.7% 96.8% 29.20 343 66.3% 96.6% 1.96 371 31.4% 94.8%

LNT-sparse 5.48 358 89.0% 97.5% 1.60 7175 2.6% 74.4% 2.96 765 15.4% 80.3%

Algo.
Env. ball-in-cup peg-insertion cliff-walker

(forward task: throw ball) (forward task: remove peg) (forward task: move forward)
average manual forward success average manual forward success average manual forward success
return resets share rate return resets share rate return resets share rate

LNT 33.28 359 75.4% 99.1% 44.57 1714 48.9% 93.1% 6.65 1195 5.7% 95.7%
ours 17.75 1231 47.9% 94.9% 30.27 2525 32.6% 71.2% 6.29 1305 4.2% 68.7%

LNT-sparse 31.70 1527 52.5% 87.8% 0.46 7407 0.6% 35.3% 0.00 1415 0.1% 94.9%

and the number of manual resets (lower is better) as shown
in Table I. We compare the average of the episodic return
throughout training instead of the final episodic return to
consider the convergence rate. ball-in-cup is the easiest
environment and LNT-sparse performed as well or better
than our method in terms of the average episodic return
albeit with a slower convergence rate and with more manual
resets. For peg-insertion, which is a manipulation environ-
ment with greater difficulty, our method vastly outperformed
LNT-sparse and performed close to LNT. Similar can be
said for the cliff environments where our method mostly
outperformed the LNT-sparse and performed on par with
LNT. Our method even outperformed LNT for some tasks
which may be attributed to either the relative ease of the task
or the difficulty of shaping the reset reward.

Considering the ratio of steps taken by the forward agent
versus total steps taken (forward share) and the share of
successful reset attempts by the reset agent (success rate)
provides additional insight. A common failure mode is when
the reset agent becomes overly pessimistic and prematurely
triggers a reset, preventing the forward agent from improv-
ing. In this case, the success rate goes up since the resets
become very easy but the forward share suffers. This is
indeed the case for LNT-sparse, where the forward share
is in the single digits (∼2%) while the success rate remains

(a) peg-insertion (insert) (b) cliff-cheetah (move forward)

Fig. 3: Effect of pthresh on the learning curve.

somewhat comparable to our method and LNT (Table I) for
the peg-insertion and cliff-walker environments. The low
forward share indicates a near-immediate interruption of the
forward agent which explains the exceptionally low average
episodic return of LNT-sparse.

3) Adjusting the threshold for reset trigger: Resets are
triggered if the ensemble average of the probability of
successful reset given current state and action is below some
threshold pthresh. Lower values of pthresh indicate a greater
“step budget” for the reset agent and vice versa. Thus, a
smaller pthresh allows the forward agent to venture further
while a larger pthresh confines the forward agent to states
near the initial states. Varying pthresh reveals such a trend
in the learning curves shown in Fig. 3. As pthresh increases,
forward episodic return is stunted for both environments but
more so for cliff-cheetah, since pthresh effectively limits the
distance travelled along the x axis. In terms of the number
of manual resets, higher values of pthresh prevent more
manual resets in the case of peg-insertion (insert) albeit
the differences are minor. For cliff-cheetah, the optimal
threshold that fully prevents manual resets exist at pthresh =
0.10, and values higher or lower result in worse performance.
One likely explanation is that lower values do not adequately
prevent the forward agent from falling off the cliff and higher
values trigger frequent resets leading to higher counts of
manual resets even if the success rate might be similar.

4) Implicit curriculum for the forward agent: The reset
trigger mechanism enforces an implicit curriculum for the
forward agent, acting as a safety layer to prevent irrecover-
able states. Fig. 4 demonstrates how a curriculum is imposed
on the forward agent by plotting the state of the environment
right before a reset trigger. In the early stages of training,
peg-insertion(insert) is prevented from straying far from the

(a) peg-insertion (insert) (b) cliff-cheetah

Fig. 4: Curriculum for the forward agent with reset trigger.

(a) ur3-peg

(b) ur3-reacher

Fig. 5: Forward and reset episodes from real robot training (see supplementary video). Forward and reset agents were learned from scratch
on hardware with a training time of 160 min and 80 min for ur3-peg and ur3-reacher, respectively.

initial position resulting in a large peg-to-hole distance, but
as training progresses it is allowed to move further until
it eventually succeeds in inserting the peg. Similarly, cliff-
cheetah moves further away from the origin as training
progresses but only up to a point right before the cliff as
the reset agent realizes that it is physically impossible to
return to the initial state after falling off the cliff. Without
the reset agent, cliff-cheetah would blindly maximize its
forward objective of moving forward with no regard for the
consequence.

D. Real robot tasks

To demonstrate the potential of our method to real robot
learning, we learn from scratch on a 6DoF UR3 manipulator.
The 12-dimensional state vector of the UR3 environment
was defined as the cosines and sines of the joint angles
to prevent discontinuity and bound the values to [−1, 1].
Since URScript API provides limited control modes, a 6-
dimensional action vector was defined to be compatible with
the speedj API, which takes the desired joint velocity as the
input. The manipulator was mounted downwards at a 45-
degree angle to mimic the configuration of a human arm
and was operated at 25 Hz. Two tasks were designed for the
UR3 environment. Inspired by peg-insertion(remove), ur3-
peg is tasked with placing the 30 cm peg attached to its end-
effector. ur3-reacher is tasked with reaching a goal 40 cm
away from the initial position but with one caveat. It must do
so while holding a cup filled with a top-heavy stick such that
spilling the stick would result in an irrecoverable state. Thus,
ur3-reacher has an additional state dimension that encodes
the status of the stick. Note that the forward reward of ur3-
reacher only considers the position (not orientation) of the

end-effector such that the burden of preventing irrecoverable
states lies on the reset agent.

E. Real robot results

We applied our method to two UR3 environments and
showcase snapshots of a pair of forward and reset episodes
from training (Fig. 5). The reset agent successfully learns
to place the peg back to the origin for ur3-peg and learns
to return the cup to the initial position without spilling the
stick for ur3-reacher. We recommend the reader to check out
the supplementary video. We also plot the forward episodic
return for both environments and plot the number of manual
resets or the number of irrecoverable states (Fig. 6). We
specifically plot the number of irrecoverable states for ur3-
reacher, since irrecoverable states will likely require human
intervention which severely hinders autonomy compared to
other modes of reset failures.

The reset agent learns to successfully reset for both
environments (up to 90% success rate) with the number of
manual resets or the number of irrecoverable states plateau-
ing after a training time of 160 minutes (1718 episodes) and
80 minutes (644 episodes) for ur3-peg and ur3-reacher, re-

(a) ur3-peg (b) ur3-reacher

Fig. 6: Real-time training curve for the UR3 environments.

spectively. Corresponding wall times, which include time for
manual resets, were 188 minutes and 95 minutes, achieving
a train time efficiency of 85% and 84% made possible by
learning during both forward and reset episodes. Note that
the reset agent starts with zero examples of initial states for
the sake of autonomous learning and collecting initial states
before training could yield even better results. In terms of the
forward episodic return, both environments display a similar
trend. There is a dip in return when the reset agent frequently
interrupts the forward agent to prevent un-resettable states,
followed by a gradual increase as the forward agent learns
to achieve the forward task without triggering resets.

VI. CONCLUSION

We proposed a self-supervised reset agent learning frame-
work based on example-based control to impose an implicit
curriculum and provide a safety layer for the conventional
RL agent in an attempt towards fully autonomous learning
agents. To that end, we trained a reset success classifier to
learn how to reset and trigger resets based on the probability
of successful reset to decide when to reset. We applied our
method to various simulated tasks to demonstrate that our
method allows the forward agent to improve gradually while
reducing the number of manual resets. We confirmed that our
method vastly outperforms sparse-LNT (baseline) and per-
forms comparably to LNT (oracle) over several performance
metrics. We also discussed the effects of pthresh and how
reset triggers provide a curriculum for the forward agent.
Finally, we deployed our method on a UR3 manipulator
to demonstrate the potential of the method for autonomous
robot learning in the real world.

The success of our method hinges on striking the right
balance between the two competing objectives—improving
the forward agent and guaranteeing successful resets—which
was critical for the more difficult tasks. We hope to build
upon our work in the future by eliminating the need for
notifying the reset agent when it has reset by learning a
dynamics-aware distance metric between states. We also plan
to expand our work to the multi-task setting where a single
reset agent is coupled with multiple forward agents or a goal-
conditioned forward agent.

REFERENCES

[1] Y. Duan, et al., “Benchmarking deep reinforcement learning for con-
tinuous control,” in International Conference on Machine Learning,
2016, pp. 1329–1338.

[2] S. Gu, et al., “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates,” in 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, 2017, pp.
3389–3396.

[3] O. Vinyals, et al., “Grandmaster level in starcraft ii using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354,
2019.

[4] C. Berner, et al., “Dota 2 with large scale deep reinforcement learning,”
arXiv preprint arXiv:1912.06680, 2019.

[5] O. M. Andrychowicz, et al., “Learning dexterous in-hand manipula-
tion,” The International Journal of Robotics Research, vol. 39, no. 1,
pp. 3–20, 2020.

[6] A. Yahya, et al., “Collective robot reinforcement learning with
distributed asynchronous guided policy search,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 79–86.

[7] A. Sharma, et al., “Emergent real-world robotic skills via unsupervised
off-policy reinforcement learning,” arXiv preprint arXiv:2004.12974,
2020.

[8] D. Kalashnikov, et al., “Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation,” arXiv preprint
arXiv:1806.10293, 2018.

[9] A. Zeng, et al., “Tossingbot: Learning to throw arbitrary objects with
residual physics,” in Proceedings of Robotics: Science and Systems,
2019.

[10] S. Ha, et al., “Learning to walk in the real world with minimal human
effort,” in Conference on Robot Learning. PMLR, 2021, pp. 1110–
1120.

[11] K. Xu, et al., “Continual learning of control primitives: Skill discovery
via reset-games,” Advances in Neural Information Processing Systems,
vol. 33, pp. 4999–5010, 2020.

[12] H. Zhu, et al., “The ingredients of real world robotic reinforcement
learning,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=rJe2syrtvS

[13] A. Gupta, et al., “Reset-free reinforcement learning via multi-task
learning: Learning dexterous manipulation behaviors without human
intervention,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6664–6671.

[14] A. Sharma, et al., “Autonomous reinforcement learning via subgoal
curricula,” in Advances in Neural Information Processing Systems,
2021.

[15] B. Eysenbach, et al., “Rewriting history with inverse rl: Hindsight
inference for policy improvement,” Advances in neural information
processing systems, vol. 33, pp. 14 783–14 795, 2020.

[16] W. Han, S. Levine, and P. Abbeel, “Learning compound multi-step
controllers under unknown dynamics,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 6435–6442.

[17] B. Eysenbach, et al., “Leave no trace: Learning to reset for safe and
autonomous reinforcement learning,” in International Conference on
Learning Representations (ICLR 2018), 2018.

[18] L. Smith, et al., “Avid: learning multi-stage tasks via pixel-level
translation of human videos,” in Robotics: Science and Systems XVI,
Virtual Event / Corvalis, Oregon, USA, July 12-16, 2020, 2020.

[19] B. Thananjeyan, et al., “Recovery rl: Safe reinforcement learning
with learned recovery zones,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 4915–4922, 2021.

[20] T. Schaul, et al., “Prioritized experience replay,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[21] N. Rahaman, et al., “Learning the arrow of time for problems in
reinforcement learning,” in International Conference on Learning
Representations, 2020.

[22] N. Grinsztajn, et al., “There is no turning back: A self-supervised
approach for reversibility-aware reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[23] C. Florensa, et al., “Reverse curriculum generation for reinforcement
learning,” in Proceedings of the 1st Annual Conference on Robot
Learning, ser. Proceedings of Machine Learning Research, vol. 78.
PMLR, 13–15 Nov 2017, pp. 482–495.

[24] K. Zakka, et al., “Form2fit: Learning shape priors for generalizable
assembly from disassembly,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020.

[25] J. Fu, et al., “Variational inverse control with events: A general
framework for data-driven reward definition,” in Advances in Neural
Information Processing Systems, 2018, pp. 8538–8547.

[26] B. Eysenbach, S. Levine, and R. R. Salakhutdinov, “Replacing rewards
with examples: Example-based policy search via recursive classifica-
tion,” Advances in Neural Information Processing Systems, vol. 34,
2021.

[27] T. P. Lillicrap, et al., “Continuous control with deep reinforcement
learning,” 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, 2016.

[28] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions
for deep reinforcement learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 8617–8629.

[29] G. Brockman, et al., “Openai gym,” 2016.
[30] Y. Tassa, et al., “DeepMind control suite,”

https://arxiv.org/abs/1801.00690, DeepMind, Tech. Rep., 2018.

https://openreview.net/forum?id=rJe2syrtvS

	I Introduction
	II Related Work
	III Preliminaries
	III-A Event framework for the reset agent
	III-B Recursive Classification of Examples (RCE)

	IV Methods
	IV-A Reset trigger mechanism
	IV-B Implementation details

	V Experiments
	V-A Hyperparameters
	V-B Simulated tasks
	V-C Simulation results
	V-C.1 Overview of our method
	V-C.2 Comparison against the oracle/baseline
	V-C.3 Adjusting the threshold for reset trigger
	V-C.4 Implicit curriculum for the forward agent

	V-D Real robot tasks
	V-E Real robot results

	VI Conclusion
	References

