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ros2 tracing: Multipurpose Low-Overhead
Framework for Real-Time Tracing of ROS 2

Christophe Bédard1, Ingo Lütkebohle2, Michel Dagenais1

Abstract—Testing and debugging have become major obsta-
cles for robot software development, because of high system
complexity and dynamic environments. Standard, middleware-
based data recording does not provide sufficient information
on internal computation and performance bottlenecks. Other
existing methods also target very specific problems and thus
cannot be used for multipurpose analysis. Moreover, they are
not suitable for real-time applications. In this paper, we present
ros2_tracing, a collection of flexible tracing tools and multi-
purpose instrumentation for ROS 2. It allows collecting runtime
execution information on real-time distributed systems, using the
low-overhead LTTng tracer. Tools also integrate tracing into the
invaluable ROS 2 orchestration system and other usability tools.
A message latency experiment shows that the end-to-end message
latency overhead, when enabling all ROS 2 instrumentation, is
on average 0.0033 ms, which we believe is suitable for production
real-time systems. ROS 2 execution information obtained using
ros2_tracing can be combined with trace data from the
operating system, enabling a wider range of precise analyses,
that help understand an application execution, to find the cause
of performance bottlenecks and other issues. The source code is
available at: https://github.com/ros2/ros2 tracing.

Index Terms—Software tools for robot programming, dis-
tributed robot systems, Robot Operating System (ROS), perfor-
mance analysis, tracing.

I. INTRODUCTION

As modern robots have become more versatile, e.g., in
tackling unstructured environments or collaborative work, their
software has become correspondingly more complex. Dis-
tributed, asynchronous compute graphs based on frameworks
like ROS [1], [2] are now the dominant approach for integrated
systems, even for space exploration [3]. Correspondingly,
testing and debugging is now typically conducted by collecting
data from a running system for later analysis, through tools
like rosbag or textual logging [4], [5].

However, there are well-known drawbacks: rosbag and
similar middleware-based tools can only record data that is
available as messages. Aside from the effort involved, there
is also a significant resource cost in both CPU and memory
usage. It is also well known that perturbing a system through
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extensive monitoring is to be avoided [6]. Therefore, messages
simply cannot practically deliver the stacktrace-level of detail
and the detailed execution context information that we have
come to expect from classical debuggers. Logging also cannot
fill this gap, because of its unstructured output and lack of
support for binary data. As a result, the debugging experience
in robotics is greatly impoverished.

In contrast, tracing has been developed to provide struc-
tured, flexible, on-demand data capture across multiple ap-
plications and the kernel, to enable detailed analysis when
needed. Conceptually, it can be considered an evolution of
logging with support for binary data and well-defined data
structures. Common frameworks provide support for easy
and low-overhead capture of contextual data, such as process
information or accurate, in-process timestamps, as well as
aggregation of data across hosts and tooling for analysis [7],
[8], [9], [10].

However, two challenges need to be solved to truly improve
the testing and debugging situation. First, tracing has so far
been a tool for performance experts, used in very specific
analysis use-cases – such as scheduling optimization [11] or
message latency analysis [12] – that were difficult to extend.
To improve the debugging experience in general, a more
versatile approach is required. Second, we need to ensure that
the performance requirements of robotics are met. Standard
ROS 2 targets soft real-time systems, i.e., systems where
reaction time should have an upper bound, and should be
achieved almost always, even though exceeding the bound is
not catastrophic. To maintain these characteristics, a tracing
integration must have comparatively low overhead with very
few outliers.

Contributions. In this paper, we present ros2_tracing,
a framework for tracing ROS 2 [2] with a collection of mul-
tipurpose low-overhead instrumentation and flexible tracing
tools. This new tool enables a wider range of precise analyses
that help understand an application execution. The source
code is available at: https://github.com/ros2/ros2 tracing.
ros2_tracing brings the following contributions:

• It offers extensible tracing instrumentation capable of
providing execution information on multiple facets of
ROS 2.

• With a strategic two-phase instrumentation design and
using a low-overhead tracer, it has a lower runtime
overhead than current solutions, making it suitable for
the real-time applications targeted by ROS 2.

• It enables more precise analyses using combined ROS 2
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userspace and kernel space data as a whole.
Furthermore, notable ros2_tracing features include a
close integration into the expansive suite of ROS 2 orchestra-
tion & general usability tools, and an easily swappable tracer
backend to support different operating systems or to switch to
a tracer with other desired features.

This paper is structured as follows: We survey related work
in Section II and summarize relevant background information
in Section III. We then present our solution in Section IV
and discuss its analysis potential in Section V. Thereafter,
Section VI presents an evaluation of the runtime overhead of
our solution. Future work is outlined in Section VII. Finally,
we conclude in Section VIII.

II. RELATED WORK

Tracing is an established approach for performance analysis,
popular for operating system-level performance analysis and
for distributed systems. Its popularity is both due to the low
overhead when not in use, which is often zero, and due to the
extensive tool support. An excellent overview, covering both
cloud and operating system use-cases, is [6], [13]. However,
while powerful, these tools arguably operate at an abstraction
level that is too low to be practical for the average roboticist.

In the context of robotics and ROS 1, the earliest reported
use of tracing was motivated by non-deterministic behavior of
obstacle avoidance in a mobile robot, by one of the present
authors [14]. Using a model of the ROS 1 navigation stack, and
tracing based on LTTng [8], a lack of synchronization between
the sensory data processing and motion control pathways
could be identified. This is a primary example of how non-
deterministic effects can be hard to diagnose otherwise, since
the magnitude of the effect was dependent on how the OS
scheduled the threads involved, which also varied over the run-
time of the system. There were some attempts at generalizing
this kind of tracing tooling in [15], and deriving a message
flow analysis [16]. However, they were discontinued due
to the emergence of ROS 2 and its potential for real-time
applications [17], [18].

Previous work has identified various open problems in
ROS 2. Kronauer et al. [19] investigated the end-to-end latency
of communications and found that its overhead is up to 50%
compared to directly using DDS, the underlying middleware.
Similarly, Jiang et al. [20] found that the message conversion
cost is highly dependent on the complexity of the message
structure. Casini et al. [21] proposed a scheduling model
that aims to bound the end-to-end latency of processing
chains. Furthermore, several previous contributions propose
tools that use tracing to measure and/or improve message
transmission latency, due to its importance for realizing low-
latency distributed systems. This includes the RAPLET tool by
Nishimura et al. [12] for ROS 1, ROS-FM by Rivera et al. [22],
and ROS-Llama by Blass et al. [11], both targeting ROS 2.
The last two are monitoring tools, meaning that they use
instrumentation to extract execution information, process it,
and provide the results to users or act on them during runtime.
However, none of these tools support any use-cases beyond
latency, and they all show significant overheads (cf. Table I),

which is due for some of them to the use of logs or custom
unoptimized tracers to extract execution information. An in-
teresting custom proposal to detect latency deadline violations
with a low overhead of only 86 µs per event, including online
detection, is proposed by Peeck et al. [23], but again, without
attempt at generality.

In conclusion, the present work is – to the best of our
knowledge – the first and only tool that provides a generic,
tracing-based approach for ROS 2 performance analysis.

III. BACKGROUND

In this section, we summarize relevant background informa-
tion needed to support subsequent sections. Note that we use
“ROS 1” to refer to the first version of ROS and use “ROS”
to refer to ROS 1 and ROS 2 in general, since many concepts
apply to both.

A. ROS 2 Architecture

The ROS 2 architecture has multiple abstraction layers;
from top to bottom, or user code to operating system:
rclcpp/rclpy, rcl, and rmw. The user code is above
and the middleware implementation is below. rclcpp and
rclpy are the C++ and Python client libraries, respectively.
They are supported by rcl, a common client library API
written in C which provides basic functionality. The client
libraries then implement the remaining features needed to
provide the application-level API. This includes implementing
executors, which are high-level schedulers used to manage
the invocation of callbacks (e.g., timer, subscription, and
service) using one or more threads. rmw is the middleware
abstraction interface. Each middleware that is used with ROS 2
has an implementation of this interface. Multiple middleware
implementations can be installed on a system, and the desired
implementation can be selected at runtime through an environ-
ment variable, otherwise the default implementation is used.
As of ROS 2 Galactic Geochelone, the default middleware is
Eclipse Cyclone DDS [24].

B. ROS Nodes and Packages

ROS is based on the publish-subscribe paradigm and also
supports the RPC pattern under the “service” name. ROS
nodes may both publish typed messages on topics and sub-
scribe to topics, and they can use and provide services. While
the granularity and semantics of nodes in a system is a design
choice, the resulting node and topics structure is analogous to
a computation graph.

There are also specialized nodes called “lifecycle
nodes” [25]. They are stateful managed nodes based on a
standard state machine. This makes their life cycle easier to
control, which can be beneficial for safety-critical applica-
tions [18]. Node life cycles can also be split into initialization
phases and runtime phases, with dynamic memory allocations
and other non-deterministic actions being constrained to the
initialization phases for real-time applications.

As for the code, in ROS, it is generally split into multiple
packages, which directly and indirectly depend on other pack-
ages. Each package has a specific purpose and may provide
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multiple libraries and executables, with each executable con-
taining any number of nodes. The ROS ecosystem is federated:
packages are spread across multiple code repositories, on
various hosts, and are authored and maintained by different
people. The ROS 2 source code itself is made up of multiple
packages that approximately match its architecture.

C. Usability and Orchestration Tools

Much like ROS 1, ROS 2 has many tools for introspection,
orchestration, and general usability. There are various ros2
commands, including ros2 run to run an executable and
ros2 topic to manually publish messages and introspect
published messages. Packages can also provide extensions that
add other custom commands. The ros2 launch command
is the main entry point for the ROS 2 orchestration system and
allows launching multiple nodes at once. This is configured
through Python, XML, or YAML launch files which describe
the system to be launched using nodes from any package
or even other launch files. Since ROS systems can be quite
complex and contain multiple nodes, an orchestration system
is indispensable. Launch files can also be used to orchestrate
test systems and verify certain behaviors or results.

D. Generalizability

Fig. 1 shows a summary of the ROS 2 architecture and the
main tooling interaction. The architecture and launch system
can be generalized down to an orchestration tool managing
an application layer on top of a middleware. Therefore, the
tool presented in this paper could be applied to other similar
robotic systems.

OS

DDS

rmw

rcl

rclcpp
user code

launch

Fig. 1. Overall ROS 2 architecture and tooling interaction.

IV. ROS2_TRACING

In this section, we present the design and content of
ros2_tracing. It contains multiple ROS packages to sup-
port three different but complementary functionalities: instru-
mentation, usability tools, and test utilities. Table I shows a
comparison between our proposed method and the existing
methods mentioned in Section II.

A. Instrumentation

As shown in Fig. 2, core ROS 2 packages are instru-
mented with function calls to the tracetools package.
This package provides tracepoints for all of ROS 2 and
is the one that triggers them. Tracepoints usually act as
instrumentation points and could be directly added to the
instrumented code. This creates an indirection, which we

introduced for two complementary reasons. First, it allows for
abstracting away the tracer backend and allows to easily switch
the tracer. Indeed, by replacing the compiled tracetools
library, the tracer backend can be replaced without affecting
the instrumented packages (i.e., the core ROS 2 code). This
could be done to support tracing on a different platform or
to use a tracer that has other desired functionalities. Second,
this keeps instrumented packages free of boilerplate code
(e.g., tracepoints definitions and other required preprocessor
macros). However, the main advantage of this design choice
also has a slight downside, since adding new tracepoints
requires modifying both the instrumented package and the
tracetools package.

ROS 2
package tracetools Tracer

Tracer

instrumentation
function call

tracepoint

call

Fig. 2. Instrumentation and tracepoint calls.

As shown in Table I, in addition to being extensible,
our method provides instrumentation for multiple aspects
of ROS 2, including messages, callbacks, services, executor
states, and lifecycle states. Table II presents a full list of the
instrumentation points provided by tracetools. We split
the instrumentation points into two types: initialization events
and runtime events. The former collect one-time information
about the state of objects, e.g., creation of publishers, subscrip-
tions, and services. The latter collect information about events
throughout the runtime, e.g., message publication and callback
execution. The former are therefore predominantly triggered
during the system initialization phase and are used to minimize
the payload size of the latter. This strategic instrumentation
design is key to minimizing the overhead in the runtime
phase. For example, all publisher-related tracepoints in the
runtime phase include a unique identifier for the publisher,
which is then matched with the data collected by the publisher-
related tracepoints in the initialization phase (e.g., topic name,
corresponding node name, etc.), thus minimizing the payload
size of runtime tracepoints. The information that is collected
to form the trace data can then be used to build a model of the
execution. Due to the very abstractional nature of the ROS 2
architecture, multiple instrumentation points are sometimes
needed to gather the necessary information. For example, to
build a model of a subscription, we collect information about
its callback function from rclcpp and its topic name from
rcl. This is because callbacks are managed by the client
library. Furthermore, both the instrumentation point name and
the payload are meaningful: some instrumentation points only
differ by their names and are used to indicate the originating
layer. Since the instrumentation points cover multiple analysis
use-cases, if a portion of the information is not needed for
a given analysis, some of the instrumentation points can be
disabled and therefore have virtually no impact on execution.

We did not instrument the Python client library, since
it is not used for the kind of real-time applications that
we are considering with ros2_tracing. However, we in-
strumented rcl directly whenever possible. By putting the
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TABLE I
SUMMARY OF EXISTING MONITORING AND INSTRUMENTATION METHODS AND COMPARISON WITH PROPOSED METHOD

Method Typea ROS
1 / 2

Instrumentation Extensible Launch
tools Overheadb Source

avail.messages callbacks services executor lifecycle

ROS-FM [22] M 1 / 2 X × X - / × - / × × × 15-515% C ×
tracetools [15], [16] I 1 X X × - - × × ? X
RAPLET [12] I 1 X X × - - × × 2-20% L X
ROS-Llama [11] M 2 X X × X × × × 30-40% C ×
ros2_tracing I 2 X X X X X X X 1-15% L X

a M and I for monitoring and instrumentation-only types, respectively.
b C and L for CPU and latency overhead, respectively.

instrumentation as low as possible in the ROS 2 architecture,
it can be leveraged to more easily support other client libraries
in the future.

The Linux Trace Toolkit: next generation (LTTng) tracer was
chosen as the default tracing backend, for its low overhead
and real-time compatibility as well as its ability to trace
both the kernel and userspace [8], [26]. The runtime cost per
LTTng userspace tracepoint on a vanilla Linux kernel using
an Intel i7-3770 CPU (3.40 GHz) with 16 GB of RAM is
approximately 158 ns [7]. Since it is a Linux-only tracer,
all instrumentation calls to the tracetools package are
preprocessed out on other platforms. This can also be achieved
on Linux through a build option.

TABLE II
INSTRUMENTATION POINTS LIST WITH TYPES

ROS 2 Layer Instrumentation Point Name Typea Noteb

rclcpp

rclcpp subscription init I
rclcpp subscription callback added I
rclcpp publish R P
rclcpp take R S
rclcpp service callback added I
rclcpp timer callback added I
rclcpp timer link node I
rclcpp callback register I
callback start R S
callback end R
rclcpp executor get next ready R S
rclcpp executor wait for work R S
rclcpp executor execute R S

rcl

rcl init I
rcl node init I
rcl publisher init I
rcl subscription init I
rcl publish R P
rcl take R S
rcl client init I
rcl service init I
rcl timer init I
rcl lifecycle state machine init I
rcl lifecycle transition R

rmw

rmw publisher init I
rmw subscription init I
rmw publish R P
rmw take R S

a I and R for initialization and runtime types, respectively.
b P and S for publishing and message reception hot paths, respectively.

B. Usability Tools

In line with the ROS 2 usability and orchestration tools,
our proposed solution includes two different interfaces to
control tracing: a ros2 trace command and a Trace
action for launch files. The ros2 trace command is a
simple command that allows configuring the tracer to start
tracing. The system or executable to be traced must then be
run or launched in a separate terminal. When the application
is done running, tracing must be stopped in the original ros2
trace terminal. On the other hand, the Trace action can
be used in XML, YAML, and Python launch files. It then
allows configuring the tracer and launching the system at
the same time. Tracing is stopped automatically after the
launched system has shut down, either on its own or after
being manually terminated. Listing 1 shows an example with
an XML file that launches two nodes. While ROS 2 does not
currently natively support it, this would be useful for remote or
multi-host orchestration to trace all hosts at once and aggregate
the resulting traces.

Listing 1
TRACE ACTION IN XML LAUNCH FILE

<launch>
<trace

session-name="ros2" events-ust="ros2:*"/>
<node pkg="package_a" exec="executable_x"/>
<node pkg="package_b" exec="executable_y"/>

</launch>

Furthermore, these tools can be used to leverage exist-
ing LTTng instrumentation (e.g., kernel and other userspace
instrumentation) and to enable any custom application-level
tracepoints to record other relevant data. For example,
LTTng provides shared libraries that can be preloaded with
LD_PRELOAD to intercept calls to libc, pthread, the
dynamic linker, and function entry & exit instrumentation
(added with -finstrument-functions) and trigger tra-
cepoints before calling the real functions. If those tracepoints
are enabled through launch files, the corresponding shared
libraries will be located and preloaded automatically for all
executables, which greatly simplifies the launch configuration.
The tools also do not prevent users from directly configuring
the tracer for advanced options. They are only a thin flexible
compatibility and usability layer for ROS 2 and use the LTTng
Python bindings for tracer control.
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C. Test Utilities

The tracetools_test package provides a test utility
that allows running nodes and tracing them. The resulting trace
can then be read in the test using the tracetools_read
package to assert results or behaviors in a lower-level, less
invasive way.

V. ANALYSIS

The instrumentation and tracing tools provided by
ros2_tracing allow collecting execution information at
the ROS 2 level. This information can then be processed using
existing tools to compute metrics or to provide models of
the execution. For example, we traced a ROS 2 system that
simulates a real-world autonomous driving scenario [27]. In
this example, a node receives data from 6 different topics
using subscriptions. When the subscriptions receive a new
message, they cache it so that the node only keeps the latest
message for each topic. The periodically-triggered callback
uses the latest message from each topic to compute a result
and publish it. To analyze the trace data, we wrote a simple
script using tracetools_analysis [28], a Python library
to read and analyze trace data. As shown in Fig. 3, we can
display message reception and publication instance timestamps
as well as timer callback execution intervals over time. There
is a visible gradual time drift between the input and output
messages, which could impact the validity of the published
result, similar to the issue described by [14]. This could
warrant further analysis and tuning, depending on the system
requirements. We can also compute and display the timer
callback execution interval and duration, as shown in Fig. 4.
The timer callback period is set to 100 ms and the duration is
approximately 10 ms, but there are outliers. This jitter could
negatively affect the system; these anomalies could warrant
further analysis as well.

0 100 200 300 400
time (ms)

pub.

timer

sub. 6

sub. 5

sub. 4

sub. 3

sub. 2

sub. 1

Fig. 3. Example time chart of subscription message reception (sub.), timer
callback execution (timer), and message publication (pub.). Message reception
and publication instances are displayed as single timestamps, while timer
callback executions are displayed as ranges, with a start and an end. The
periodic timer callback uses the last received message from each subscription
to compute a result and publish it; this inputs-outputs link is illustrated using
colors, highlighting an inadequate synchronization.
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Fig. 4. Example timer callback execution interval (top) and duration (bottom)
over time. The callback period is set to 100 ms, while the callback duration
depends on the work done. Both contain outliers.

To dig deeper, this information can be paired with data from
the operating system: OS trace data can help find the cause of
performance bottlenecks and other issues [30]. Since ROS 2
does higher-level scheduling, this is critical for understanding
the actual execution at the OS level. Using LTTng, the Linux
kernel can be traced alongside the application. The ROS 2
trace data that was obtained using the ros2_tracing in-
strumentation can be analyzed together with the OS trace data
using Eclipse Trace Compass [29], which is an open-source
trace viewer and framework aimed towards performance and
reliability analysis. Trace Compass can analyze Linux kernel
data to show the frequency and state of CPUs over time,
including interrupts, system calls, or userspace processes ex-
ecuting on each CPU. It can also display the state of each
thread over time, as shown in Fig. 5 for the application threads.
Building Trace Compass analyses specific to ROS 2 is left as
future work; however, we can visualize timestamps of ROS 2
trace events on top of the existing analyses. From the ROS 2
trace data shown in Fig. 4, we know that the timer callback
instance following the longest interval is at the 1.4 s mark
with 107.8 ms. Finding the timestamps of the corresponding
ROS 2 events in Trace Compass, we see that the thread was
blocked waiting for CPU for 9.9 ms before the aforementioned
callback instance. The thread then had to query the middleware
for new messages (even if timers are strictly handled at the
ROS 2 level) and finally call the overdue timer callback.
In this example, a multi-threaded executor was used, with
the number of threads being equal to the number of logical
CPU cores by default. Since this was not the only application
running on the system at that time, multiple processes and
threads were competing for CPU, as can be observed using
Trace Compass. Therefore, the executor settings could be
tuned, or the executor could be replaced by another type of
executor with features that better meet the requirements for
this system, which could entail creating a new executor: this
is an open problem in ROS 2. A multi-level analysis such as
this one would not have been possible without collecting both
userspace & kernel execution information, and analyzing the
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Fig. 5. State of ROS 2 application threads over time with timestamps of ROS 2 events from the ros2_tracing instrumentation displayed as small triangles
on top of the thread state rectangle: 1© thread waiting for CPU for 9.9 ms (orange), 2© thread running (green), 3© event marking start of middleware query & wait
for new messages, 4© event marking end of middleware query, and 5© rclcpp_executor_execute event followed shortly after by callback_start
event for timer callback. This result was obtained by importing trace data collected from the Linux kernel and from the ROS 2 application using LTTng into
Trace Compass [29]. The black arrow to the left of 3© represents the scheduling switch from one thread to another for a given CPU. Some less relevant
threads were hidden.

combined data, which current tools do not offer. The scripts
and full instructions to replicate this example are available at:
github.com/christophebedard/ros2 tracing-analysis-example.

VI. EVALUATION

To validate that our proposed solution is compatible latency-
wise with real-time systems, we evaluate the overhead of
ros2_tracing, or specifically its instrumentation overhead.
This is the time consumed by the instrumentation within the
monitored process. When enabled, it directly affects these
processes by adding latency.

Since the ros2_tracing tracepoints are placed along
the message publication and reception pipeline, an easy way
to capture the maximum overhead is to measure the time
between publishing a message and when it is handled by the
subscription callback. This is what we will do in the following.

A. Experiment Setup

We use the standard message-passing latency benchmark for
ROS 2, performance test [31], with a minimal configuration:
one publisher node and one subscription node. We vary
message size and publishing rate, since it is known that they
affect middleware performance [19]. The parameter space is
shown in Table III and is based on typical use-cases [32].

TABLE III
EXPERIMENT PARAMETERS AND VALUES

Publishing rate (Hz) 100, 500, 1000, 2000
Message size (KiB) 1, 32, 64, 256
Quality of service reliable only

DDS implementation eProsima Fast DDS

To reduce measurement variability, we follow common
practice by using a kernel patched with the PREEMPT RT
patch (5.4.3-rt1), disabling simultaneous multithreading, and
disabling power-saving features in the BIOS (dynamic fre-
quency scaling, C-states, Turbo Boost, etc.). Further, we
increase UDP buffers to 64 MB to ensure sufficient networking
performance for larger messages. The experiment was run
on an Intel i7-3770 (3.40 GHz) 4-core CPU, 8 GB RAM
system with Ubuntu 20.04.2. All measurements are based on
the ROS 2 Rolling distribution, in between the Galactic and
Humble releases, which is the most recent version at this
time. While Eclipse Cyclone DDS [24] is the default DDS
implementation for the current ROS 2 release, Galactic, we
have found eProsima Fast DDS [33] to be more stable for

larger messages, and it is also the default for the upcoming
release, Humble. We have therefore used Fast DDS.

For each combination in the parameter space, perfor-
mance test is run for 60 minutes and scheduled with the
SCHED FIDO real-time policy with the highest priority (99).
To reduce outliers due to system initialization, the first 10 sec-
onds of each recording are discarded. To determine the tracing
overhead, we run the experiment once without any tracing
enabled, and once with all tracepoints enabled. In practice,
since not all tracepoints might be needed depending on the
intended analysis, this represents the worst-case scenario.

The code and instructions to replicate this experiment
are available at: github.com/christophebedard/ros2 tracing-
overhead-evaluation.

B. Results and Discussion

Fig. 6 shows the individual average latencies without and
with tracing, while Fig. 7 shows the absolute and relative
latency overhead.
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Fig. 6. Message latencies (avg. ± std.) without tracing (left) and with
tracing (right).

First, as expected, the mean latency values increase with the
message size, and the relative latency overhead values decrease
with the message size. There is no significant decrease in
latency as the publishing frequency increases; this behavior
was however much more noticeable before disabling power-
saving features through the BIOS. We would also expect the
CPU overhead to be the same for all message sizes and pub-
lishing frequencies, since it is, in theory, a constant overhead

https://github.com/christophebedard/ros2_tracing-analysis-example
https://github.com/christophebedard/ros2_tracing-overhead-evaluation
https://github.com/christophebedard/ros2_tracing-overhead-evaluation
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Fig. 7. Absolute (left) and relative (right) latency overhead results. The
standard deviation of the difference between the two means is insignificant
here.

for message publication and reception. However, it can be seen
that this is not the case, and instead, the absolute overhead is
larger at small frequencies. This is somewhat puzzling, and
it would certainly merit further experiments. However, due to
the overall small effect, we are approaching a range where
cache effects in the CPU or other non-deterministic factors
come into play. Since the overhead values are overall fairly
close, the overhead does not seem to be related to any of the
experiment parameters, and the absolute values are well within
acceptable ranges, we consider the requirements set out for
ros2_tracing to be fulfilled. Additionally, these absolute
latency overhead results are within one order of magnitude of
the results that [7] presented: since there are 10 tracepoints
in the publish-subscribe hot path (see Table II), the overhead
should therefore be 10 · 158 ns = 0.00158 ms, which is
indeed comparable.

Since most practical systems use a mixture of message sizes
and frequencies, we also analyze the overhead by aggregating
it over all experiment runs. For each combination of message
size and publishing frequency, we use the two sets of latencies
(i.e., without tracing and with tracing, represented in Fig. 6),
and subtract the mean of the no-tracing set from all latencies.
By aggregating the latency differences for all combinations, we
obtain two sets of latency overheads, which are represented in
Fig. 8 (without tracing and with tracing, respectively). Note
that the aggregate overhead is more strongly influenced by the
higher publication frequencies, since more messages are sent
in the same time frame. The mean overhead is thus 0.0033 ms,
with 50% of the data between 0.0010 ms and 0.0056 ms.

No measurement system can be entirely without over-
head – however, we think that these results show that
ros2_tracing has very low overhead, which is acceptable
for most target situations for ROS 2. It is certainly lower than
known alternatives as presented in Table I.

Nonetheless, for very busy systems or very particularly
CPU-constrained platforms, overheads might add up enough to
impact the messaging performance. For such situations, there
are two potential optimization options: First, about half of
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Fig. 8. Aggregated latency overhead and variation without tracing (left) and
with tracing (right). Latency values have been individually normalized to zero
mean based on the latencies without tracing, showing overhead and variation.
Note that the left mean is very slightly below zero due to the additional
imbalance caused by the variation in publishing frequency.

the tracepoints would be sufficient for basic information, and,
second, tracing can be selectively enabled on only some of the
processes, instead of all ROS 2 nodes.

VII. FUTURE WORK

Many improvements and additions could be made to
ros2_tracing. While the RPC pattern is not used as much
in real-time applications, instrumentation could be added to
support services and actions, with the latter being services with
optional progress feedback. Furthermore, ros2_tracing
does not gather information about object destruction, e.g., if
a publisher or a subscription is destroyed during runtime.
This is because it does not fit with design guidelines of
real-time safety-critical systems, where the system is usually
static once it enters its runtime phase. Nonetheless, complete
object lifetime information could be gathered. Middleware
implementations could also be instrumented to provide lower-
level information on the handling of messages. Instrumenting
rclc [34], [35] would also be interesting. It is a client library
written in C with a deterministic executor aimed at ROS 2
applications on memory-limited real-time platforms such as
microcontrollers.

As for the usability tools, as mentioned previously, the
orchestration tools could be improved, when native support
for remote or coordinated multi-host orchestration gets added
to the ROS 2 launch system.

While the overall approach taken for ros2_tracing is
primarily aimed at offline monitoring and analysis, the instru-
mentation itself could be leveraged for online monitoring. For
example, the LTTng live mode could be used to do online
processing of the trace data. Another backend could also
be added for a tracer that better supports online monitoring.
There could also be other default backends for other operating
systems, like QNX, which is often used for real-time as well.

In future work, we plan on building on the
ros2_tracing instrumentation and tools to analyze
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the internal workings of ROS 2. For example, as mentioned
in Sections II and V, the determinism and efficiency of the
ROS 2 executors could be analyzed and compared to proposed
alternatives. The ROS 2 instrumentation could of course also
be used in conjunction with the LTTng built-in userspace
and kernel instrumentation, as demonstrated in Section V.
For example, to verify real-time systems, unwanted runtime
phase dynamic memory allocations could be detected by
combining lifecycle node state information and the LTTng
libc memory allocation tracepoints. Trace Compass could
also be used to provide analyses and views specific to ROS 2.

VIII. CONCLUSION

Testing and debugging robotic systems, based on recordings
of high-level messages, does not provide sufficient informa-
tion on the computation performed, to identify causes of
performance bottlenecks or other issues. Existing methods
target very specific problems and thus cannot be used for
multipurpose analysis. They are also not suitable for real-world
real-time applications, because of their high overhead or poor
usability.

We presented ros2_tracing, a framework with instru-
mentation and flexible tools to trace ROS 2. The extensible
multipurpose low-overhead instrumentation for the ROS 2 core
allows collecting execution information to analyze any ROS 2
system. The tools promote usability through their integration
with the ROS 2 orchestration system and other usability tools.
Our experiments showed that the message latency overhead
it introduces is in an acceptable range for real-time systems
built on ROS 2. These tools enable testing and debugging
ROS 2 applications based on internal execution information,
in a manner that is compatible with real-time applications and
real-world development processes. Analyzing the combined
trace data, from a ROS 2 application and the operating system,
can help find the cause of performance bottlenecks and other
issues. We plan on leveraging ros2_tracing in future work
to analyze the internal handling of ROS 2 messages.
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[30] M. Côté and M. R. Dagenais, “Problem detection in real-time systems
by trace analysis,” Advances in Computer Engineering, vol. 2016, 2016.

[31] Apex.AI, “performance test.” [Online]. Available: https://gitlab.com/
ApexAI/performance test

[32] M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein, T. Walter,
and D. Matheis, “A self-driving car architecture in ros2,” in 2020
International SAUPEC/RobMech/PRASA Conference. IEEE, 2020, pp.
1–6.

[33] eProsima, “Fast dds.” [Online]. Available: https://github.com/eProsima/
Fast-DDS

[34] J. Staschulat, I. Lütkebohle, and R. Lange, “The rclc executor: Domain-
specific deterministic scheduling mechanisms for ros applications on
microcontrollers: work-in-progress,” in 2020 International Conference
on Embedded Software (EMSOFT). IEEE, 2020, pp. 18–19.

[35] J. Staschulat, R. Lange, and D. N. Dasari, “Budget-based real-time
executor for micro-ros,” arXiv preprint arXiv:2105.05590, 2021.

https://vimeo.com/649657650
https://www.brendangregg.com/linuxperf.html
https://www.brendangregg.com/linuxperf.html
https://doi.org/10.36288/ROSCon2017-900789
https://doi.org/10.36288/ROSCon2017-900789
https://github.com/boschresearch/ros1_tracetools
https://christophebedard.com/ros-tracing-message-flow/
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/realtime_proposal.html
https://design.ros2.org/articles/realtime_proposal.html
http://arxiv.org/abs/2101.02074
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://design.ros2.org/articles/node_lifecycle.html
https://github.com/ros-realtime/reference-system
https://gitlab.com/ros-tracing/tracetools_analysis
https://gitlab.com/ros-tracing/tracetools_analysis
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS
http://arxiv.org/abs/2105.05590

	I Introduction
	II Related Work
	III Background
	III-A ROS 2 Architecture
	III-B ROS Nodes and Packages
	III-C Usability and Orchestration Tools
	III-D Generalizability

	IV ros2_tracing
	IV-A Instrumentation
	IV-B Usability Tools
	IV-C Test Utilities

	V Analysis
	VI Evaluation
	VI-A Experiment Setup
	VI-B Results and Discussion

	VII Future Work
	VIII Conclusion
	References

