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Image-Goal Navigation in Complex Environments
via Modular Learning

Qiaoyun Wu1, Jun Wang2, Jing Liang3, Xiaoxi Gong2, and Dinesh Manocha3

Abstract—We present a novel approach for image-goal navi-
gation, where an agent navigates with a goal image rather than
accurate target information, which is more challenging. Our goal
is to decouple the learning of navigation goal planning, collision
avoidance, and navigation ending prediction, which enables more
concentrated learning of each part. This is realized by four
different modules. The first module maintains an obstacle map
during robot navigation. The second predicts a long-term goal on
the real-time map periodically, which can thus convert an image-
goal navigation task to several point-goal navigation tasks. To
achieve these point-goal navigation tasks, the third module plans
collision-free command sets for navigating to these long-term
goals. The final module stops the robot properly near the goal
image. The four modules are designed or maintained separately,
which helps cut down the search time during navigation and
improve the generalization to previously unseen real scenes. We
evaluate the method in both a simulator and in the real world
with a mobile robot. The results in real complex environments
show that our method attains at least a 17% increase in navigation
success rate and a 23% decrease in navigation collision rate over
some state-of-the-art models.

Index Terms—Vision-Based Navigation, Model Learning for
Control, Reinforcement Learning, Hierarchical Decomposition.

I. INTRODUCTION
Target-driven navigation in unstructured environments re-

mains an open problem in the robotics community. This
problem is challenging, especially in settings where it is
necessary to proceed without accurate target position infor-
mation and with only a goal image. Furthermore, if the
image-goal navigation is long-range and occurring in crowded
scenarios (see Figure 1), the agent needs to learn an effective
exploration strategy and a robust collision avoidance module
in addition to the navigation policy. The ability of a robot
to bypass obstacles safely and navigate to specified goals
efficiently without a preset map, would have a great impact on
robotic applications, including surveillance, inspection, deliv-
ery, and cleaning. However, although the navigation problem
has been well studied in robotics and related areas for several
decades [1], [2], [3], the mobility of robots is still limited.

Most existing image-goal navigation approaches use end-to-
end learning to tackle this problem [4], [5]. These methods
combine deep convolutional neural networks (CNNs) with re-
inforcement learning (RL) to manage the relationship between
vision and motion in a natural way. These map-less methods
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have presented encouraging results for image-goal navigation,
and in the meantime, have shown a great tendency to overfit in
the domain in which they are trained. Therefore, it is always
necessary to train, or at least fine-tune, these methods for new
navigation targets or environments. In addition, several recent
works learn navigation policies in maze-like environments [6]
or synthetic indoor scenes [7], which are both much smaller
and less complex than real indoor environments. Directly
transferring these trained policies to real environments can be
extremely challenging and impractical.

Target

(b) Navigation in real crowded scenarios(a) Long-range navigation 

Target

Fig. 1. The challenging image-goal navigation.

This difficulty has motivated one important set of works [8],
[9], [10], which feature hierarchical planners combined with
RL. These works insist on building spatial maps [8] or
topological representations [11] of free space combined with
a local RL-based policy executing navigation at run-time. The
hierarchical and modular fashion leverages the regularities
of real-world layouts, resulting in competitive performance
over both geometry-based methods and recent learning-based
methods. However, as we increase the complexity of the
problems by requiring navigation in real scenarios with many
obstacles, these RL-based methods become harder to train and
do not consistently generalize well to new environments.

In this paper, we investigate alternative formulations of
employing learning for image-goal navigation that does not
suffer from the drawbacks of end-to-end learning while trans-
ferring well to real crowded scenarios. Our key conceptual
insights lie in leveraging structural regularities of indoor
environments for long-range navigation and learning a local
sensor-to-controls planner for reactive obstacle avoidance. This
motivates the use of learning in a modular and hierarchical
fashion. More specifically, our proposed image-goal navigation
architecture comprises of an automatic mapping module, a
long-term goal prediction module, a reactive motion planning
module, and a robust navigation ending prediction module.
The mapping module builds explicit obstacle maps to maintain
episodic memory via a learning-based system (e.g., Active
Neural SLAM [8]) or a geometric-based method (e.g., Gmap-
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ping [12]). The long-term goal prediction module consumes
the maps with agent navigation tasks and employs learning to
exploit structural regularities in layouts of real-world environ-
ments to produce distant goals for navigation. These distant
goals are used to explore the environment efficiently and
finally approach the positions of navigation targets over the
maps. The motion planning module uses learning to transfer
raw sensor inputs to a collision-free steering command for
navigating to a long-term goal [13]. The navigation ending
prediction module learns to distinguish between the current
observation and the navigation target observation, which are
temporally close to or distant from one another. When the
two observations are close, the navigation will be ended.
The use of mapping during image-goal navigation provides
a feasible way to exploit regularities in layouts of real-world
environments. Learned long-term goal prediction can support
long-range indoor navigation, while learned motion planning
policies can use sensor feedbacks to exhibit effective and safe
navigation behaviors. The navigation ending judgement stops
an agent properly near the image goal.

In summary, our contributions are as follows: (1) We
present a hierarchical framework for image-goal navigation in
real crowded scenarios. Hierarchical decomposition decouples
the learning of navigation planning, collision avoidance, and
navigation ending prediction, so that each part can demon-
strate more concentrated learning capabilities. (2) We propose
combining long-range planning with local motion control for
image-goal navigation. This drives the robot towards the goal
image, while avoiding some static or dynamic obstacles in the
scenes. (3) We demonstrate that, in simulation, our approach
can significantly cut down the search time during navigation,
leading to state-of-the-art navigation performances. It can also
more easily transfer from simulation to the real world, includ-
ing a 17% increase in navigation success and a 23% decrease
in navigation collision overall compared with [14], while
maintaining good performances despite increasing obstacles.

The remainder of this paper is organized as follows. We
review the relevant background literature in Section II. Sec-
tion III describes the image-goal navigation problem and
presents the proposed hierarchical framework for solving the
problem. Section IV provides an exhaustive experimental
validation of our approach. We conclude in Section V with
a summary and a discussion of future work.

II. RELATED WORKS

A. End-to-End Navigation System

We focus on image-goal navigation in novel indoor envi-
ronments, where no target position is available, except for the
target image. Learning-based approaches commonly use end-
to-end reinforcement or imitation learning for training image-
goal navigation policies, which do not build a geometric map
of the area. Instead, they learn the direct mapping from visual
inputs to motion. The work of [7] is the first to address
the image-goal navigation problem, which designs scene-
specific layers to capture the layout characteristics of a scene.
Yang et al. [15] extend this work by incorporating a graph
convolutional network into a deep reinforcement learning

framework for encoding semantic priors, which shows great
improvements in generalization to unseen synthetic scenes.
Wortsman et al. [16] propose a meta-reinforcement learning
navigation approach, which allows an agent to automatically
learn in testing environments while completing navigation
tasks effectively. Mousavian et al. [17] use a deep network
to learn the navigation policy based on semantic segmentation
and detection masks of visual observations. Wu et al. [14]
enhance the cross-target and cross-scene generalization of
target-driven visual navigation by introducing an information-
theoretic regularization term into an RL objective. In the
above methods, the navigation models need to learn navigation
planning, obstacle avoidance, and scene layouts implicitly
and simultaneously, which is extremely challenging and can
easily result in memorizing object locations and appearance in
training environments. Consequently, they always suffer from
poor generalization in the real world.

B. Hierarchical and Modular Navigation System
Hierarchical and modular navigation is an active area of

research, aimed at exploiting hierarchies to navigate an agent
in a scene. There has been a recent interest in using techniques
from deep learning in a modular and hierarchical fashion
inside navigation systems. For example, Chaplot et al. [19]
propose a fully-differentiable model for active global localiza-
tion. Devo et al. [20] design a novel architecture composed
of two main deep neural networks. The first one explores
the environment and approaches the target, while the second
one aims at recognizing the specified target in the view of
an agent. The work is exclusively trained in maze simulation,
which is considerably simpler than real scenes. Other works
design deep models to reason spatial representations, semantic
representations or topological representations, based on which
navigation tasks can be executed. The work of [8] presents
a Neural SLAM module for free spatial space mapping and
shows strong generalization while achieving point-goal nav-
igation tasks. [9] extends the proposed model to complex
semantic tasks, such as object-goal navigation, by designing
a semantic Neural SLAM module that captures semantic
properties of the objects in the environment. While our work
builds on the existing literature [8] on spatial metric maps,
the resemblance is only at the map structures. Our work
focuses on balancing between scene exploration and image-
goal navigation. Chaplot et al. [11] study the problem of
image-goal navigation by building topological representations
of space that leverage semantics and afford approximate ge-
ometric reasoning. Beeching et al. [10] design a hierarchical
model for long-term image-goal navigation under uncertainty
in novel environments, which combines high-level graph-based
planning with a local point goal policy. Mezghani et al. [19]
propose a novel three-stage algorithm for learning to navigate
to image goals using only RGB vision. The first stage focuses
on learning visual representations and the second one explores
the environment to maintain a scene memory buffer module,
based on which the third stage guides an agent along a shortest
path by which the agent is likely to succeed.

However, the above methods learn about navigation plan-
ning and collision avoidance simultaneously, which can be
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Fig. 2. Image-goal navigation method overview. (a) In Habitat, at each time step t, the Neural SLAM module [8] predicts a map mt and an agent pose based
on the visual observation ot and the sensor reading pt. When t reaches a time scale, the map mt, the observation ot and the goal image Ig are used by a
long-term goal prediction module to output a distant goal, which is then converted to a set of navigation actions by using the Fast Marching Method [18]. A
navigation ending prediction module is trained to stop the agent properly. (b) In real scenarios, the Gmapping [12] is used to provide the online map mt and
the CrowdMove [13] is used for the motion planning to long-term goals. The main differences are highlighted by orange and the color difference of the map
is to distinguish between the simulation and the real world.

prohibitively expensive. Additionally, these methods do not
consider navigation in real-world scenarios, which are char-
acterized by heavy clutter and noise. In contrast, we consider
navigation and collision avoidance separately in the real world,
and our design is inspired by the work of [21], which proposes
a hierarchical planning method for long-range point-goal nav-
igation that combines sampling-based path planning with an
RL agent as a local controller for solving obstacle avoidance.
In contrast, we achieve this by designing a global planner
for long-term goal prediction followed by a local controller
for reactive obstacle avoidance. This strategy has never before
been applied to the image-goal navigation.

III. HIERARCHICAL IMAGE-GOAL NAVIGATION

In the image-goal navigation, the objective is to learn a nav-
igation controller, which can produce the shortest sequences of
actions for an agent to navigate to specified goal images in a
fixed time budget. The agent is initialized at a random location
in the environment and receives the goal image Ig as input.
At each time step t, the agent receives visual observations ot
and sensor pose readings pt and takes navigational actions at
from the controller. In our experimental setup, all images are
panoramas, including agent observations and goal images.

To tackle the image-goal navigation problem, we propose
a hierarchical framework consisting of four components in-
cluding an automatic mapping module, a long-term goal
prediction module, a reactive motion planning module, and
a robust navigation ending prediction module. The mapping
module builds a geometric map over time, and the goal
prediction module produces a long-term goal based on the
map to approach the given goal image efficiently. The motion
planning module navigates an agent to the long-term goal
while avoiding environmental obstacles. The navigation ending
module stops the agent properly near the goal image. Figure 2
provides an overview of the proposed framework.

A. The Automatic Mapping Module

Our mapping module is strongly decoupled from the con-
struction and training of the rest modules. To enable an
agent to do goal planning based on an online map, we
propose using some state-of-the-art SLAM methods (e.g.,
ORB-SLAM2 [22], Neural-SLAM [8], or the laser-based
SLAM [12]) to produce the map. In the experiments, ORB-
SLAM2 does not detect enough reliable keypoints in low-
texture scenes, prompting a greater likelihood of lost tracking.
Considering that we must use simulators for the long-term
goal prediction learning, we use the pre-trained Neural-SLAM
to produce an online map mt at each time step t during
navigation in simulation. However, Neural-SLAM can not
bridge the simulation to reality gap, especially when the real
robot setting is as simple as ours. Hence, in real crowded
scenarios, we use Gmapping [12] to provide the online map
and we show that the map built from the laser-based SLAM
helps the agent perform as well as it does in simulation.

B. The Long-term Goal Prediction Module

In this section, we focus on learning an RL-based policy
for predicting a long-term goal over an online maintained
map to seek a balance between exploring an environment and
approaching a navigation goal. Our problem is, given a goal
image Ig , at each time scale T , the agent receives as inputs
the current map mT and the visual observation oT to predict
a distant goal gT that will guide the robot to approach the
viewpoint from which Ig is taken.

1) Learning Setup: Before introducing our policy, we first
describe the key ingredients of the learning setup, including
datasets, inputs and output, and reward design.

Datasets. We conduct our learning on the Habitat simula-
tor [23] with the visually realistic Gibson [24] dataset. We split
the set of 86 scenes from [24] into sets of 72/14 scenes for
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training/testing, respectively. Each environment corresponds to
a different apartment or house, generally including a kitchen,
a bedroom, a living room, and a bathroom in the layout. In
the experiments, we further transfer the learned policies from
Habitat to some real-world crowded scenes based on a mobile
robotic platform (e.g., TurtleBot2). These scenes have never
been encountered before.

Inputs and output. The long-term goal prediction policy
takes a goal image, a current map, and a visual observation
as inputs. At each time scale T , the goal image Ig and the
visual observation oT are both panoramas. Each panorama
consists of four images, which are collected from 0◦, 90◦, 180◦

and 270◦ orientations of the agent, respectively. The image
resolution is 128∗128. The current map mT is drawn from our
mapping module, which consists of eight channels containing
the obstacle area, the explored area, the current agent location
and the past agent locations. Our model learns to analyze
the connection between the current observation and the goal
image and to exploit structural regularities of the current map
to produce the possible position (namely, the long-term goal
gT ) over the map where the goal image Ig could be.

Reward design. The objective of a reinforcement learning
policy is to collect as many rewards as possible, and an infor-
mative reward function becomes a critical foundation on which
a successful RL policy relies. The reward function evaluates
the behaviors drawn from the RL policy and always needs
to be provided beforehand. However, in practice, defining
the reward function can be challenging, since an informative
reward function may be very difficult to specify and exhaustive
to tune for large and complex problems [20].

Our purpose during the long-term prediction policy learning
is to let an agent explore the environment effectively while
moving towards the goal image and to avoid collisions during
navigation. Therefore, when the predicted long-term goal is
near Ig , high values of reward are published. Collisions with
obstacles are assigned penalties. In addition, to realize efficient
navigation in unseen scenes, we encourage the agent to explore
the environment before reaching the goal and penalize new
explorations once Ig is in the explored area of the agent. We
use the explored area increments to design the reward function,
which results in faster convergence. Formally, the total reward
collected by the agent at time scale T can be given as:

rT = rg + rcollide + rexplore(T ) (1)

rg denotes the reward when the distance between the
predicted long-term goal and the final goal Ig is less than
some threshold (e.g., dg = 1.0m). rcollide represents the
penalty when the predicted long-term goal is located in the
unreachable area of the environment. We set rg = 20 and
rcollide = −5 in our formulation. rexplore(T ) evaluates the
agent exploration, which is given as:

rexplore(T ) =


0 if T = 0,

Exp(T )− Exp(T + k) elif Ig ∈ Area(Exp(T )),
Exp(T + k)− Exp(T ) otherwise.

(2)
where Exp(T ) denotes the size of the explored area at time

scale T ; Exp(T + k) denotes the size of the explored area at

the next time scale (namely, T + k); and Ig ∈ Area(Exp(T ))
represents Ig is located in the explored area at time scale T .

2) Model: We focus on learning the long-term goal predic-
tion policy function π via deep reinforcement learning, where
the long-term goal gT at time scale T can be drawn by:

gT ∼ π(Ig,mT , oT ) (3)

The main task of the RL-based agent is to maximize the
expected sum of future discounted rewards:

π∗ = argmax
π

E[

∞∑
T=0

τT rT ] (4)

where rT is the reactive reward provided by the environment
at each time scale and τ ∈ (0, 1] is a discount factor.
We extend the Proximal Policy Optimization (PPO) [25] to
our parallel training framework. The policy is trained with
experiences collected by all threads in parallel. The parallel
training framework not only dramatically reduces the time cost
of the sample collection but also makes the algorithm suitable
for training in various environments. Training in multiple en-
vironments simultaneously enables robust performances when
generalizing to unseen scenes.
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Fig. 3. The architecture of the long-term goal prediction module.
Network architecture. The long-term goal prediction pol-

icy demands an understanding of the relative spatial positions
between the current observation and the goal image, as well
as a holistic sense of the scene layout. To reason about the
spatial arrangement between the current observation oT and
the goal image Ig , we use a two-stream deep siamese net-
work for discriminative embedding learning. The backbone of
the siamese layer is the ImageNet-pretrained ResNet-18 [26]
(truncated last layer) that produces a 512-d feature on a
512 × 128 × 3 RGB image. The fusion layer takes a 1024-
d concatenated embedding of the state and the target, finally
generating a 256-d joint representation. The current map mt

is fed into five convolutional layers with (32, 64, 128, 64, 32)
filters with 3×3 kernel and stride 1, all of them with rectified
linear units (ReLU) as activation; it finally produces a 256-
d representation. The two representations are concatenated
together and processed by two fully connected layers, and
the second fully connected layer connects to three heads to
output the value, the mean, and the variance of a Gaussian
distribution, from which our 2-d long-term goal gT is sampled.
The architecture is shown in Figure 3.

Training details. We train this network with an Adam
optimizer of learning rate lr = 2.5e−6, exponential decay rates
betas = (0.9, 0.999), and stability parameter eps = (1e−6).
The training time is about 24 hours on a high-performance
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computing cluster with two Intel Xeon Cascade Lake Gold
6248 CPUs, 2.5Hz, 20 cores, and eight NVIDIA Tesla PCIE
V100 GPUs. During training, we estimate the discounted
accumulative rewards and back-propagate through time for
every 10 unrolled time scales with 72 navigation episodes
executed at each time. In addition, the number of navigation
steps k between two adjacent time scales is 10. Each episode
terminates when the RL-based agent navigates 500 time steps
(namely, 50 time scales) in an environment.

C. The Reactive Motion Planning Module

The motion planning module takes as inputs the current
sensor observation and the long-term goal gT at each naviga-
tion time step (T + t), s.t. t ≤ k and outputs a navigational
action. This module is also decoupled from the other modules
and any sensor-to-controls obstacle-avoidance agent could be
used to take collision-free steering commands to reach the
long-term goal gT . We explore this with two different motion
planning technologies: the Fast Marching Method [18] and
CrowdMove [13]. In Habitat, due to the lack of a laser sensor,
we use the deterministic local motion planning algorithm, Fast
Marching Method, to facilitate the learning of our long-term
goal prediction module. An agent simply takes deterministic
actions {aT+t}t=kt=1 along the path to reach the long-term
goal gT , where aT+t ∈ A. A is a discrete set defined as:
A = {Move forward;Turn right;Turn left}. In real crowded
scenarios, we use CrowdMove to take collision-free steering
commands to reach a long-term goal. In our experiments,
CrowdMove uses continuous actions for image-goal naviga-
tion, taking both robot dynamics and path feasibility into ac-
count and leading to better approximate optimal paths than the
Fast Marching Method. Note that although the goal prediction
policy acts at a coarse time scale (e.g., k = 10), the motion
planning module acts at a fine time scale. At each time step
(T + t), we replan the motion aT+t to the long-term goal gT
over the updated map mT+t.

D. The Robust Navigation Ending Prediction Module

In this section, we train the navigation ending prediction
module to issue a stop action at a correct location. With the
module, an agent can figure out if a goal image is reached
during the navigation in real unseen scenes. The module takes
as inputs the navigation goal image Ig and the current visual
observation ot, and outputs an ending indicator et to determine
whether the navigation is over.

This is essentially a binary classification problem and we
design a siamese neural network like the one used in the long-
term goal prediction module, including a pretrained ResNet-18
backbone and then a fusion layer (with the yellow background
in Figure 3). The 256-d feature from the fusion layer is
then fed into a fully connected layer to produce the 2-d
ending indicator. The navigation ending prediction module is
jointly trained with our long-term goal prediction module in
Habitat, although no parameters are shared between the two
modules. When the agent navigates in Habitat, we collect the
navigation trajectories including the observation images and
corresponding spatial positions. We construct the dataset for

navigation ending prediction learning by selecting observation
pairs randomly on these trajectories. The spatial distance d
between two observations in a pair is used as a surrogate
similarity measure. We define a label egtij for each observation
pair (oi, oj) and the label egtij is equal to 1 if dij ≤ 1.0m and
0 otherwise. We train the navigation ending prediction module
(NEPM) to predict the ending indicator eij from the input pair
(oi, oj) with a binary cross-entropy loss as:

l = Eegtij∼p(e|oi,oj)
[− logNEPM(eij |oi, oj)]

s.t. p(e|oi, oj) =
{
1 e = egtij
0 otherwise.

(5)

Training details. We update the network every two naviga-
tion time scales. The batch size is set to 128 for each back-
propagation, and each batch has an equal number of positives
and negatives for training data balance. We also use Adam
optimizer of learning rate lr = 2.5e−5, exponential decay rates
betas = (0.9, 0.999), and stability parameter eps = (1e−5).

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our image-goal navigation per-
formance on both simulated and real-world navigation tasks.

A. Ablations and Baselines

We first conduct experiments to analyze the effectiveness of
different choices in our design. As developed in Section III-B,
our method includes a long-term goal prediction module,
which allows an agent to explore the environment efficiently
and finally determine the locations of image goals. We first
use a random policy (RP) to replace the module, denoted as
Ours-RP. The random policy randomly predicts a location on
an online map at each time scale. In addition, we ablate the
effect of our proposed continuous rewards in Section III-B by
using the sparse reward (SR) design in [7], denoted as Ours-
SR. The motion planning module and the navigation ending
prediction module are both crucial for our navigation method.
We exhibit the importance of the design over [11], which uses
FMM [18] to convert a long-term goal to a short-term goal
and trains an end-to-end local policy (LP) for both motion
planning and navigation ending prediction. The local policy
takes as inputs the current visual observation and the short-
term goal and outputs a discrete action from A∗. We use this
design for an ablation and denote the variant as Ours-LP.

In addition, we compare our method with the following
baselines: (1) Random Agent (RA) randomly picks an action
from a discrete set of actions A∗ at each time step, where
A∗ = {Move forward;Turn right;Turn left; Stop}. (2) TD-
VNM represents the target-driven visual navigation model
from [7] and is trained using standard reinforcement learning.
We evaluate the navigation generalization to unknown scenes
and thus we do not use the scene-specific design during
the training. (3) G-LSTM-RL-BC is adapted from [27],
which incorporates a Gated-LSTM structure with an RL-based
framework (e.g., A3C) and is trained using behavioral cloning
(BC) to improve the navigation performance. (4)TD-RL-ITR
is an end-to-end image-goal visual navigation model [14] that
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designs an information-theoretic regularization to facilitate the
RL policy leaning. (5) NTS is the abbreviation of ‘Neural
Topological SLAM’ [11], which studies the image-goal navi-
gation in a hierarchy of three modules.

All the baselines are trained on Habitat. Please refer to
Section III-B for the training data description. For evaluation,
we sample navigation tasks in the testing scenes to create
three levels of difficulty based on the distances between the
image goal locations and the starting locations, as in [11]:
Easy (1.5 ∼ 3m), Medium (3 ∼ 5m), and Hard (5 ∼ 10m).
An agent succeeds in a navigation task if it predicts the
stop action before the time limit (e.g., 500 time steps) and
the distance between the agent’s current location and the
goal image location is within a threshold (e.g., 1.0m). The
agent fails if it takes stop action anywhere else or runs up
to 500 steps. To measure the navigation performance, we
use two metrics, success rate (SR) and success weighted by
(normalized inverse) path length (SPL), as defined in [28]. The
higher the SR value, the better generalization, on average, the
agent performs. The higher the SPL value, the less search time,
on average, the agent uses when approaching the target.

B. Navigation in the Habitat Simulator

In the Habitat simulator, our method uses pre-trained
Neural-SLAM [8] to maintain an online map at each time
step during navigation, and then produces a long-term goal
on the map at each time scale with the proposed goal pre-
diction module. Next, our method uses the Fast Marching
Method [18], to plan a collision-free path to the long-term
goal and uses the navigation ending prediction module to
stop the navigation. We denote the whole architecture as
Ours1. The architecture is similar to the variant of Active
Neural SLAM model from [11], and the differences lie in
the design of the long-term goal prediction module and the
navigation ending prediction module. In addition, to avoid
errors in pose prediction, we use the poses from the sensor
of a navigation agent directly, leading to relatively noiseless
maps. This is reasonable since our work is designed for
image-goal navigation in real-world scenarios, and we always
use Gmapping [12] to provide the noiseless map of the real
world. The mapping module is important, but not our main
innovation. Our goal in this subsection is to evaluate the ef-
fectiveness of the proposed long-term goal prediction module
during navigation. We analyze the navigation performances
of the proposed method and all the baselines in the Habitat
simulator. The evaluation involves three difficulty levels, each
containing 1000 different navigation tasks randomly sampled
from unknown scenes, as in [11].

1) Ablation: We provide ablation results to gain insight
into how navigation performances are affected by changing
the structure. As shown in Table I, our navigation pipeline
shows 6% improvement in average SR, and 8% improvement
in average SPL over Ours-RP, which indicates the proposed
long-term goal prediction module has a significant impact
on improving the navigation capability of an agent. Dealing
with sparse rewards is especially challenging during navigation
learning. Ours-SR exhibits no learning even after millions of

TABLE I
AVERAGE NAVIGATION PERFORMANCE (SR AND SPL) COMPARISONS ON

UNSEEN SCENES FROM THE HABITAT SIMULATOR.
Models Easy Medium Hard Overall

SR / SPL SR / SPL SR / SPL SR / SPL
Ours-RP 0.65 / 0.32 0.51 / 0.28 0.39 / 0.21 0.51 / 0.27
Ours-SR 0.37 / 0.21 0.23 / 0.10 0.09 / 0.01 0.23 / 0.11
Ours-LP 0.61 / 0.37 0.49 / 0.26 0.31 / 0.19 0.47 / 0.27
Ours1 0.73 / 0.49 0.56 / 0.33 0.43 / 0.24 0.57 / 0.35

Random Agent 0.36 / 0.15 0.31 / 0.09 0.11 / 0.03 0.26 / 0.09
TD-VNM [7] 0.56 / 0.22 0.17 / 0.06 0.06 / 0.02 0.26 / 0.10

G-LSTM-RL-BC [27] 0.53 / 0.31 0.19 / 0.07 0.04 / 0.02 0.25 / 0.13
TD-RL-ITR [14] 0.68 / 0.36 0.45 / 0.23 0.19 / 0.09 0.44 / 0.22

NTS [11] 0.80 / 0.60 0.47 / 0.31 0.37 / 0.22 0.55 / 0.38
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Fig. 4. Navigation visualization. We show trajectories of the proposed method
and some baselines in a navigation task. Top: Front-view observations seen by
the agent. Bottom: Local maps and trajectories. The ground-truth maps and
poses are shown in grey. Trajectories generated by these navigation methods
are shown in red. Map predictions from the Neural SLAM module are overlaid
in green. Long-term goals selected by our goal prediction module are shown
with large blue circles. The image goal positions are shown with small blue
spots. Our agent can successfully stop in the yellow circle, which means the
distance between the agent and the goal image is within 1.0m.

training frames, and it does not seem to follow any specific
strategy during the evaluation. The comparison results (Ours1
vs. Ours-SR) suggest that our continuous reward design man-
ages to explore the scene properly and guide the navigation
efficiently. Ours-LP considers motion planning and navigation
ending prediction simultaneously, and the performances of this
ablation deteriorate as the difficulty of the navigation tasks
increases. Our model decouples the two processes and can
tackle the hard level relatively well.
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2) Comparison: Table I also summarizes the comparison
results with some navigation baselines in the RGB setting.
We compare with the state-of-the-art methods and show the
generalization abilities of these navigation agents to transfer
the learned navigation skills to previously unseen scenes.
Image-goal navigation is practically difficult and the general
performances of these navigation agents are not very good,
since the goal images can not directly provide the direction
to explore compared to the point-goal navigation providing
updated directions to the goals at each time step. In addition,
ending a navigation task in a right place is also challenging
for these navigation agents, which requires analyzing the dif-
ferences between the agent observations and the goal images.

In detail, the performances are intensely unfavorable in both
the SR and the SPL metrics, when an agent applies random
walk or is trained only by reinforcement learning as TD-VNM.
TD-VNM [7] originally designs different scene-specific layers
for different scenes and thus the model lacks the generalization
ability to unseen scenes. We consider it is difficult to generate
sensible navigation results for the pure RL-based agent due
to the huge searching space. G-LSTM-RL-BC [27] and TD-
RL-ITR [14] are both end-to-end RL-based baselines and
are trained with expert data in different ways. As shown in
Table I, these two baselines cost much more searching time
and have worse navigation performances (SR/SPL) than the
hierarchical navigation agents (e.g., NTS [11] and Ours1).
Hence, it is more challenging for end-to-end RL networks to
tackle the higher-order complicated control tasks. On the other
hand, since the proposed long-term goal prediction module can
explore a new environment effectively, comparing with Neural
Topological SLAM (NTS) [11], our method achieves better
performances in both the Medium and Hard level navigation
scenarios in the Habitat simulator as Table I. However, the
powerful exploration can be troublesome when the navigation
ending prediction module loses confidence, which leads to a
little worse performances in the Easy scenarios.

Figure 4 visualizes the trajectories of the proposed method
and some baselines for a navigation task. Note that we also
present the automatic mapping results for these compared
baselines. As can be seen, the agent based on TD-VNM [7]
gets stuck in the corner and thus the mapping area is small. The
agents based on G-LSTM-RL-BC [27] and TD-RL-ITR [14]
both present limited exploration capabilities and waste much
time in exploring similar areas, and finally fail to approach
the goal image. Our method explores the scene effectively and
successfully navigates the agent to the goal.

TABLE II
AVERAGE NAVIGATION PERFORMANCE (SR AND SPL) COMPARISONS ON

UNSEEN SCENES FROM THE REAL WORLD.
Models (b) (c) (d) (e) (f)

SR/CR SR/CR SR/CR SR/CR SR/CR
TD-VNM [7] 0.14/0.46 0.06/0.60 0.24/0.36 0.10/0.50 0.12/0.48

G-LSTM-RL-BC [27] 0.18/0.42 0.08/0.52 0.20/0.34 0.06/0.46 0.08/0.42
TD-RL-ITR [14] 0.28/0.38 0.22/0.54 0.32/0.30 0.14/0.38 0.18/0.34

Ours2 0.50/0.14 0.32/0.20 0.58/0.10 0.26/0.20 0.34/0.16

C. Navigation in the Real World

We demonstrate the proposed navigation system using the
TurtleBot2 robot. The hardware configuration of TurtleBot2
is shown in Figure 5(a), which consists of a Kobuki base, an

onboard laptop, an RPLIDAR A1 laser, and four monocular
cameras. The moving base executes the steering command
output from the navigation system, which is deployed on
the laptop. The laser sensor and the camera sensors provide
the inputs to the proposed system. The output space of the
system is a set of permissible velocities in continuous space,
as described in Section III-C. The navigation experiments are
conducted on three physical indoor environments with five
different configurations, as shown in Figure 5(b-f).

(d) (f)

(b) (c)

(e)

Monocular 
cameras

Kobuki

Laptop

RPLIDAR 
A1

(a)

Fig. 5. (a) The robot system setup. (b-f) The physical indoor environments
with different configurations.

We first deploy Ours1 on the laptop and visualize the
mapping results, which are inferior and lead to poor navigation
performances. We consider that Neural-SLAM [8] is sensitive
to the robot setting and can not bridge the simulation to reality
gap, especially when the real robot setting is as simple as
ours. To tackle the image-goal navigation in real settings, as
mentioned in Section III, our method uses Gmapping [12] to
update a navigation map in real time and uses the trained
long-term goal prediction module to produce a long-term goal
on the map at each time scale. In addition, CrowdMove [13]
is exploited for the motion planning to the long-term goal
and uses continuous actions to provide better approximate
optimal paths than the Fast Marching Method [18]. Finally,
the navigation ending prediction module stops the navigation
agent at a proper location. We denote the whole architecture
as Ours2. In addition, all the tested navigation models are
trained purely in simulation, and the real-world environments
are unknown to these navigation agents. We test the image-
goal navigation capabilities, including the average success rate
and the collision rate (CR, the rate of collision cases to all
navigation cases). The collision rate is measured to evaluate
the robustness of navigation models to real sensor noises and
thus is not provided during the simulation. The robot and the
goal image are both placed randomly in these environments
and the objective of the robot is to approach the goal image
as fast as possible. We evaluate 50 navigation tasks in each
configuration. The authors of [11] do not provide the code
and the navigation results from the real world, so we do not
compare with this work here. We compare our method with
TD-VNM [7], G-LSTM-RL-BC [27], and TD-RL-ITR [14].
The quantitative analysis of the navigation performances is
provided in Table II.

In the experiments, the pure RL-based model (e.g., TD-
VNM [7]) tends to be more cautious, and it thrashes around
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Fig. 6. Real-world transfer. We show three successful trajectories of the
proposed method transferred to the real world. Sample images seen by the
robot are shown on the top and the local maps in green and the trajectories
in red are shown below. The long-term goals selected by the goal prediction
module are shown in blue.

in space without making progress, resulting in a lower success
rate. G-LSTM-RL-BC [27] and TD-RL-ITR [14] are both
end-to-end navigation models, which are both trained with
supervision from the shortest paths of navigation tasks. The
two models collide more often because learning about naviga-
tion and collision avoidance simultaneously is especially dif-
ficult for the end-to-end training strategy. As expected, Ours2
generalizes well to the unseen real-world environments and
shows the best navigation performances in both success rate
and collision rate. This can be explained by the fact that we
decouple the learning of image-goal navigation and collision
avoidance by designing two mutually independent modules;
thus, each module can demonstrate more concentrated learning
capabilities. In addition, the three navigation baselines all
predict discrete action commands, leading to significantly
oscillatory and jerky motions during robot navigation. Using
our proposed navigation system, the mobile robot can move
continuously in most cases. This is an important navigation
property in a physical environment.

In practice, we also found that the navigation performances
are highly affected by the complexity of navigation tasks
(e.g., Table II (3) vs. Table II (4)). Complex navigation
tasks generally lead to poor navigation performances. In our
case, the long-term goal prediction module and the navigation
ending prediction module are the main problems and they are
trained in the Habitat simulator and directly used in the real
scenarios. The large differences between the reality and the
simulation seriously affect the two modules. In addition, the
reactive motion planning module is partly responsible, which
leads to some occurrences of the robot freezing and collisions
during navigation due to the sensor noises and the actuation
delays of our robot. Hence, exploring more effective motion
planning methods will be helpful. Figure 6 visualizes three
trajectories of TurtleBot generated by our system. Please see

the video in the supplementary material for additional results
obtained from the experiment in the real world.

V. CONCLUSION

In this work, we proposed a novel navigation method to
tackle the image-goal navigation in real complex environ-
ments. The core of the method is hierarchical decompo-
sition and modular learning, which decouples the learning
of navigation planning, collision avoidance, and navigation
ending prediction. This enables more concentrated learning
and helps achieve state-of-the-art performances on the image-
goal navigation. We show that a direct sim-to-real transfer
is possible. The proposed hierarchical framework generalizes
well in real crowded scenarios. However, although the results
are promising, there are still some open problems. Both
the reliability and the robustness of the proposed modules
including the navigation goal planning, the motion planning,
and the ending prediction, should be improved. In future work,
we will explore effective techniques to improve overall per-
formances. For example, semantic properties of environmental
objects can be used during the navigation goal planning, as
in [9]. Incorporating 3D environmental perception [29], [30]
for better generalization is also a great topic for future work.
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