
Self-Supervised Moving Vehicle Detection from Audio-Visual Cues

Jannik Zürn and Wolfram Burgard

Abstract— Robust detection of moving vehicles is a critical
task for any autonomously operating outdoor robot or self-
driving vehicle. Most modern approaches for solving this task
rely on training image-based detectors using large-scale vehicle
detection datasets such as nuScenes or the Waymo Open
Dataset. Providing manual annotations is an expensive and
laborious exercise that does not scale well in practice. To tackle
this problem, we propose a self-supervised approach that lever-
ages audio-visual cues to detect moving vehicles in videos. Our
approach employs contrastive learning for localizing vehicles in
images from corresponding pairs of images and recorded audio.
In extensive experiments carried out with a real-world dataset,
we demonstrate that our approach provides accurate detections
of moving vehicles and does not require manual annotations.
We furthermore show that our model can be used as a teacher
to supervise an audio-only detection model. This student model
is invariant to illumination changes and thus effectively bridges
the domain gap inherent to models leveraging exclusively vision
as the predominant modality.

I. INTRODUCTION

Accurate and robust detection of moving vehicles has
crucial relevance for autonomous robots operating in outdoor
environments [10], [11], [25]. In the context of self-driving
cars, other moving vehicles have to be detected accurately
even in challenging environmental conditions since knowing
their positions and velocities is highly relevant for predicting
their future movements and for planning the ego-trajectory.
Also, robots operating in areas reserved for pedestrians such
as sidewalks or pedestrian zones, e.g., delivery robots, require
precise detections of vehicles in order to assess their planned
trajectories and safety clearance with regard to moving
vehicles in their vicinity. In this work, we focus on detecting
moving vehicles perpendicular to the robot orientation for
robots operating in pedestrian areas. Such detections, for
example, enable delivery robot applications to more safely
cross streets [11], [14], [15] or potentially localize vehicles
within pedestrian areas.

With the rise of learning-based methods, training image-
based vehicle detectors in a supervised fashion has made
substantial progress. However, creating large-scale datasets is
an expensive and time-consuming task. Previous works have
shown that the performance of detectors can break down if
they are presented with image data different from samples
encountered during training. For outdoor robots, this domain
gap may be induced by changes in environmental conditions
such as rain, fog, or low illumination during nighttime [21].
While recent approaches in the area of domain adaptation
show encouraging results [21], [22], most approaches still
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Fig. 1: We use unlabeled video clips of street scenes recorded
with a camera and a multi-channel microphone array and
leverage the audio-visual correspondence of features from
each modality to train an audio-visual vehicle detection
model. The bounding boxes predicted by this model can be
used for a downstream student model that does not depend
on the visual domain for vehicle detection.

require a large amount of hand-annotated images in order to
not exhibit a large domain gap.

Due to the evident domain gap for vision-based detection
systems, some works consider the auditory domain instead
since it does not exhibit a domain gap between different
lighting conditions. The task of sound event localization
and detection (SELD) is to localize and detect sound-
emitting objects using sound recordings of a multi-channel
microphone array. The difference in signal volume and
time difference of arrival between the microphones can be
exploited to infer the location of a sound-emitting object
relative to the microphones [1]. However, state-of-the-art
learning-based approaches for solving the SELD problem
also require hand-annotated labels for training [4], which re-
stricts their applicability in many domains due to the need for
large-scale annotated datasets. Self-supervised approaches
for audio-visual object detection, in contrast, are able to
localize sound-emitting objects in videos without explicit
manual annotations for object positions. The majority of
these approaches are based on audio-visual co-occurrence
of features in both domains [3], [2], [6]. The main idea in
these works is to contrast two random video frames and their
corresponding audio segment with each other, leveraging
the fact that the chance of randomly sampled frames from
different videos containing the same object type is negligible.
These works, however, only consider mono or stereo audio
instead of leveraging the spatial information in multi-channel
audio. Furthermore, they cannot directly be used to predict
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moving vehicles from videos since vehicles may be present
in all videos and at any time. Therefore, the assumption that
two randomly sampled videos contain different object types
no longer holds true. Lastly, pre-trained object detectors in
the visual domain have previously been used as teachers to
supervise the detection of sound-emitting objects from the
auditory domain [7], [20]. In our work, we do not require a
pre-trained teacher model but self-supervise the model using
auditory and visual co-occurrence of features.

To overcome these issues, we present a self-supervised
approach that leverages audio-visual cues to detect moving
vehicles in videos. We demonstrate that no hand-annotated
data is required to train this detector and demonstrate its
performance on a custom dataset. We furthermore show
how this detector can be distilled into a student model
which leverages solely the audio modality. In summary, our
contributions are as follows:
• A novel approach for self-supervised training of an

audio-visual model for moving vehicle detection in
video clips.

• The publicly available Freiburg Audio-Visual Vehicles
dataset with over 70 minutes of time-synchronized au-
dio and video recordings of vehicles on roads including
more than 300 bounding box annotations.

• Extensive qualitative and quantitative evaluations and
ablation studies of multiple variants of our student and
teacher models including investigations on the influence
of the number of audio channels and the resistance to
audio noise.

II. RELATED WORKS

A. Self-Supervised Audio-Visual Sound Source Localization

The advancement of Deep Learning enabled a multitude
of self-supervised approaches for localizing sounds in recent
years. The line of work most relevant for the problem
we are considering aims at locating sound sources in un-
labeled videos [3], [6], [9], [12], [13]. Arandjelović and
Zisserman [3] propose a framework for cross-modal self-
supervision from video, enabling the localization of sound-
emitting objects by correlating the features produced by an
audio-specific and image-specific encoding network. Other
works consider a triplet loss [17] for contrasting samples of
different classes with each other, while Harwarth et al. [8]
propose to learn representations that are distributed spatially
within and temporally across video frames. These approaches
have in common that they exploit the fact that two different
videos sampled from a large dataset have a low probability
of containing the same objects, while two randomly sampled
snippets from the same video have a very high probability of
containing the same objects. This can be used to formulate a
supervised learning task where the model uses auditory and
visual features to highlight regions in videos where sound-
emitting objects are visible.

In contrast to the works mentioned above, we aim at local-
izing object instances of a single class, namely moving vehi-
cles, and leverage those detections for a downstream audio-
detector model. The assumption that two videos randomly

sampled from the dataset have a low likelihood of showing
the same object class no longer holds in our application since
two different videos may both contain segments with and
without vehicles. To circumvent this limitation, we use the
audio volume to provide a robust heuristic for classifying
image-audio pairs.

B. Audio-Supported Vehicle Detection

Multiple approaches have been proposed in the last two
decades for audio-supported vehicle detection. Chellappa
et al. [5] propose an audio-visual vehicle tracking approach
that uses Markov chain Monte Carlo techniques for joint
audio-visual tracking. Wang et al. [23], [24] propose a mul-
timodal temporal panorama approach to extract and recon-
struct moving vehicles from an audio-visual monitoring sys-
tem for subsequent downstream vehicle classification tasks.
Schulz et al. [16] leverage Direction-of-Arrival features from
a MEMS acoustic array mounted on a vehicle to detect
nearby moving vehicles even when they are not in direct
line-of-sight. Cross-modal model distillation approaches for
detecting vehicles using auditory information were recently
investigated intensively [7], [20]. Gan et al. [7] propose
an approach that leverages stereo sounds as input and a
cross-modal auditory localization system that can recover the
coordinates of moving vehicles in the reference frame from
stereo sound and camera meta-data. The authors utilize a pre-
trained YOLO-v2 object detector for images to provide the
supervision for their approach. Valverde et al. [20] propose
a multimodal approach to distill the knowledge of multiple
pre-trained teacher models into an audio-only student model.

In contrast to previous work, we do not rely on manually
annotated datasets to pre-train a model as a noisy label-
generator for visual object detection. Instead, we leverage
an audio volume-based heuristic to provide supervision to
detect moving vehicles in the videos.

III. TECHNICAL APPROACH

Pivotal to the motivation of our approach is the ob-
servation that sound emitted by passing vehicles and the
associated camera images have co-occurring features in their
respective domains. Our framework leverages this fact to
predict heatmaps for sound-emitting vehicles in the camera
images in a self-supervised fashion. It uses these heatmaps to
generate bounding boxes for moving vehicles. Subsequently,
it uses the bounding boxes as labels for an audio-only model
for estimating the direction of arrival (DoA) of the moving
vehicles. Figure 2 illustrates the core components of the
approach.

A. Learning to Detect Sound-Emitting Vehicles

To localize the sound-emitting vehicles in a given image-
spectrogram pair, we employ the contrastive learning ap-
proach introduced by Arandjelović and Zisserman [3]. We
denote an image and its associated audio segment at time
step t as the pair (It, At), where At denotes the concate-
nated spectrograms obtained from the microphone signals
temporally centered around the recording time-stamp of the
image It. Following the formulation by Arandjelović and
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Fig. 2: We use a volume-based heuristic to classify the videos into positive, negative, and inconclusive image-spectrogram
pairs. We subsequently train an audio-visual teacher model, denoted as AV-Det, on positive and negative pairs. We embed
both the input image and the stacked spectrograms into a feature space using encoders TI and TA, producing a heatmap
that indicates spatial correspondence between the image features and the audio features. We post-process the heatmap to
generate bounding boxes. These bounding boxes can be used to train an optional audio-detector model.

Zisserman [3], we embed the image It in a C-dimensional
embedding space using a convolutional encoder network TI ,
producing a feature map fI of dimensions H × W × C.
Similarly, we embed the audio spectrograms At using a
convolutional encoder network TA, to produce an audio
feature vector fA with dimensions 1×1×C. We calculate the
euclidean distance between each feature vector in the image
feature map with the audio feature vector and thus obtain a
heatmap H. Formally, the heatmap elements Hmn for image
I and multi-channel spectrogram A are defined as

Hmn = ||TI(I)mn − TA(A)||22. (1)

The localization network TI is encouraged to reduce
the distance between a feature vector from the region in
the image containing the sound-emitting object and sound
embeddings from audio segments with the same time-stamp
while it increases the distance to segments containing no
vehicles. This formulation requires knowledge about which
sound-emitting objects are visible or audible in each video
segment. In previous works, a randomly selected query
image-audio pair (Iq, Aq) is contrasted with pairs sampled
from different videos since it can be reasonably assumed,
due to the large size of the dataset, that the other pairs
in the batch contain different object classes than the query
pair. With the problem at hand, this assumption is not valid
due to the following complications: Each video contains
segments both with and without moving vehicles. Thus, the
assumption that each video exclusively contains a single
class is incorrect. Therefore, we also cannot assume that two
different videos contain different object classes as there are
sections in all videos where moving vehicles are present. To

overcome this challenge, we instead classify the image-audio
pairs in the dataset into three classes: Positive, Negative, and
Inconclusive. The Positive class entails pairs for which we
assume they contain a moving vehicle, while the Negative
class entails no moving vehicles. The Inconclusive class
entails pairs for which no clear association can be found.
To train our model, we omit the inconclusive pairs as we
cannot be certain about their class association. The details
of this approach are discussed in Subsection III-B. We can
now formulate the problem as a binary classification problem
similar to Arandjelovic and Zisserman [3], where we use
a binary cross-entropy loss to learn heatmaps highlighting
image regions containing a moving vehicle. Denoting a
mini-batch containing positive samples as B+ and negative
samples as B−, we arrive at the following per-batch loss:

L = − 1

|B+|+ |B−|

|B+|∑
i=1

log(maxHi)

+

|B−|∑
j=1

log(1−maxHj)

 (2)

Minimizing this loss encourages the image encoder network
to highlight image regions where the image features are
similar to the audio features and dissimilar otherwise.

B. Sample Classification Heuristic
Previously, we glanced over the fact that we require a

classifier providing positive and negative samples within a
batch. However, in general, we have no access to these
labels in the self-supervised learning setting. To circumvent
this limitation, we use an audio-volume-based heuristic to



classify samples. We leverage two key observations in the
data distribution for this classifier: Firstly, frames with low
volume typically do not contain any moving vehicles, while
louder frames tend to contain moving vehicles as long as the
camera is generally directed towards the street and vehicles
are located in the camera view frustum. Secondly, we do not
require all frames to be classified in this fashion. Instead,
we require only a subset of all pairs to be classified as long
as the number is large enough to prevent over-fitting on the
positive and negative samples used for training. Therefore,
we label the quietest Nq as negative, and the loudest Nl

pairs from each data collection run as positive pairs. For
our experiments, we empirically selected the loudest 15%
and quietest 15% of samples for all recorded sequences.
We found that thresholds between 5% and 20% lead to
model performances similar to the values reported in Sec.
V. Figure 4 illustrates the classification of audio segments
based on the audio volume. The audio volume can potentially
also be affected by the ego-robot (motor noise or noise from
pavement bumps), however, the system can principally be
adjusted to these additional noise sources by adding audio
filtering techniques in an optional post-processing step.

C. Heatmap Conversion to Bounding Boxes

To be able to quantify the model performance with object
detection metrics, we convert the heatmap produced by our
model with the following approach: We first clip the heatmap
at a threshold of 0.5. Subsequently, we extract bounding
boxes from the clipped heatmap by drawing boxes around
connected regions. We do not perform any filtering of or
post-processing of the heatmap and also no filtering of the
bounding boxes.

D. Audio Student Model

We adapt our audio student model architecture from the
EfficientDet object detection model [18]. The input of the
student model are raw channel-concatenated audio spectro-
grams with a resolution of 512×128 pixels. The spectrogram
corresponds to an audio snippet with a duration of 1 second.
We modify the first feature encoding layer to accommodate
the varying numbers of input spectrograms. The student
model is trained with supervision from the bounding boxes
from our AV-Det teacher model as illustrated in Fig. 2. We
use a focal loss with γ = 2 as the learning objective for our
student model.

IV. DATASET

We collected a real-world video dataset of moving vehi-
cles, the Freiburg Audio-Visual Vehicles dataset, which we
will make publicly available with the publication of this
manuscript. We use an XMOS XUF216 microphone array
with 7 microphones in total for audio recording, where
six microphones are arranged circularly with a 60-degree
angular distance and one microphone is located at the center.
The array is mounted horizontally for maximum angular
resolution for objects moving in the horizontal plane. To
capture the images, we use a FLIR BlackFly S RGB camera
and crop the images to a resolution of 400 × 1200 pixels.

Microphone
Array

RGB Camera

Fig. 3: Exemplary frames from our Freiburg AudioVisual
Vehicles dataset including bounding box annotations for
moving vehicles. Scenes include busy suburban streets and
rural roads in varying lighting conditions. The data collection
sensor configuration is depicted in the top right corner.

Images are recorded at a fixed frame rate of 5 Hz, while
the audio is captured at a sampling rate of 44.1 kHz. The
microphone array and the camera are mounted on top of each
other with a vertical distance of ca. 5 cm.

For our dataset, we consider two scenarios: static record-
ing platform and moving recording platform. In the static
platform scenario, the recording setup is mounted on a
static camera mount. In the dynamic platform scenario, the
recording setup is handheld and is moved in a translational
fashion (approx. 15 cm of positional range along each spatial
axis) and rotated with a maximal deviation angle of 10 deg.
We collected 70 minutes of audio and video footage in
nine distinct scenarios with different weather conditions
ranging from clear to overcast and foggy. Overall, the dataset
contains more than 20k images. The recording environments
entail suburban, rural, and industrial scenes. The distance of
the camera to the road varies between scenes. To evaluate
detection metrics with our approach, we manually annotated
more than 300 randomly selected images across all scenes
with bounding boxes for moving vehicles. The dataset will be
made available at http://av-vehicles.informatik.uni-freiburg.
de.

V. EXPERIMENTAL RESULTS

We first compare our model with two baseline models
(Section V-A). We also perform an ablation study examining
the influence of each model component on the detection
metrics (Section V-B) and evaluate the performance of the
audio-detector student model (Section V-D). We furthermore
investigate the influence of noise on the heuristic classifi-
cation accuracy and on the audio-visual detection metrics
(Section V-E). To quantify model performance we use the
AP value of our only class Vehicle. We list AP values for IoU
thresholds of 0.1, 0.2, and 0.3, denoted as AP@0.1, AP@0.2,
and AP@0.3, respectively. Furthermore, we introduce a

http://av-vehicles.informatik.uni-freiburg.de
http://av-vehicles.informatik.uni-freiburg.de
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Fig. 4: Channel-averaged audio volume V over the maximum
magnitude V0 for the first 600 time steps of a recording. We
add horizontal bars indicating the upper and lower threshold
value for positive, negative, and inconclusive samples.

bounding box center distance metric, denoted as CD. This
distance metric quantifies the average euclidean distance of
ground-truth and predicted bounding boxes in each image
with an optimal assignment of predicted bounding boxes to
ground truth bounding boxes. We introduce the CD metric
due to our observation that many predicted bounding boxes
are not aligned with the outline of the moving vehicles but
instead occupy a subset of the vehicle area or expand over
the outline of the vehicles, which leads to box overlaps below
the IoU threshold. The CD metric thus helps to quantify the
similarity of the box centers instead of the box overlaps.

A. Baselines

Due to the lack of prior work for self-supervised audio-
visual vehicle detection, we created a flow-based baseline
using the RAFT architecture [19]. The baseline also does
not require any manual annotations and does not rely on
pre-trained detectors. The RAFT model was pre-trained on
FlyingChairs, FlyingThings3D, Sintel, and KITTI. We use
the predicted optical flow to segment moving objects from
videos. To obtain bounding boxes from the optical flow
model, we first calculate the optical flow between two con-
secutive frames and threshold the flow field. We finally draw
a bounding box around each connected region with a flow
value above an empirically found threshold. We also created
a baseline based on frame differencing. For this baseline, we
threshold the absolute difference between two consecutive
frames and extract bounding boxes. We furthermore evaluate
the performance of an EfficientDet detector model [18],
which was pre-trained on the MS COCO dataset. We also
combine the optical flow baseline with the pre-trained object
detector and filter out bounding boxes predicted by the
detector if the predicted flow inside a bounding box is below
a threshold value. This reduces the risk of the object detector
predicting a false-positive static vehicle.

B. Audio-Visual Teacher Evaluation

In our experiments, we investigate the influence of the
number of audio channels. Furthermore, we report the in-
fluence of our classification heuristic and compare models
trained with labels from the heuristic to a model trained
with labels from manual annotations, denoted as Oracle.
Table I lists the results of each model variant. We observe

that our best-performing model variant clearly outperforms
the frame differencing and vanilla optical flow baselines. All
other AV-Det models also mostly outperform the baselines
in the dynamic split of our dataset, where many false-
positive detections are reported by the frame differencing
and optical flow baselines, likely due to the camera motion
inducing substantial background pixel differences in con-
secutive frames. We furthermore report detection metrics
from our best-performing AV-Det model that are mostly
on par with the pre-trained EfficientDet + Flow model for
the joint static and dynamic split of our dataset and shows
the best recorded performance for the AP@0.1 metric. For
the dynamic split of the dataset, we observe a deteriorated
performance of our model compared to the pretrained model
performance. We note that false-positive detections of the
plain pre-trained EfficientDet detector are introduced by the
detections of static vehicles in the background. This effect
is lessened when the pre-trained detector is combined with
the optical flow model to ignore static background vehicle
boxes, leading to better detection metrics. In general, we
observe that using mono-audio leads to inferior performance
compared to the model variants with multiple audio channels.

We also investigate the difference in performance between
a model trained with the ground truth classification data
and our heuristic. With the heuristic, we report an overall
precision of 94.2% for samples labeled as Positive and 77.7%
for samples labeled as Negative, respectively. We observe
that using the manually annotated ground truth labels does
not significantly improve the detection accuracy compared to
the heuristic and performs worse than our best-performing
AV-Det model trained on classifications obtained from our
heuristic. We presume that the heuristic provides less am-
biguous training data compared to the manual annotations,
which classify an audio-visual sample as Positive if at least
a part of a moving vehicle is visible in the frame. On one
hand, this does not necessarily mean that the vehicle is
clearly audible at the same time and on the other hand,
a loud vehicle could just have left the camera frustum,
leading to a Negative audio-video pair that contains sounds
characteristic to vehicles but has no correspondence with the
image content. Pairs produced with our heuristic suffer to a
lesser extent from this inconsistency.

C. Qualitative Results

Figure 5 illustrates exemplary detections of our best-
performing model on our Freiburg Audio-Visual Vehicles
dataset. We observe that our model generally predicts mostly
accurate heatmaps and resulting bounding boxes even in
scenes with a large amount of background clutter. Also,
scenes with multiple moving vehicles present show high
detection accuracy. While the bounding boxes generally
overlap well with the ground-truth regions containing moving
vehicles, we observe that in some images, the heatmap
extends over the actual dimensions of vehicles or is slightly
misaligned. We hypothesize that this is due to the imperfect
labeling of our volume-based heuristic for assigning image-
spectrogram pairs the labels Vehicle or No-Vehicle, which
results in an inaccurate back-propagation of the label signal



TABLE I: Performance of models trained and evaluated on the full Freiburg Audio-Visual Vehicles dataset and on the dynamic
split. Better metric values are indicated with arrows. The best-performing model results are shown in bold text while the
best-performing self-supervised model results are shown in italics.

Approach Full Dynamic
AP@0.1 ↑ AP@0.2 ↑ AP@0.3 ↑ CD ↓ AP@0.1 ↑ AP@0.2 ↑ AP@0.3 ↑ CD ↓

Frame Differencing 0.3921 0.3411 0.3192 23.22 0.2192 0.0920 0.0470 45.6
Optical Flow 0.4933 0.4890 0.4828 19.15 0.1867 0.1671 0.1633 32.9
Pre-trained Detector 0.6052 0.6047 0.5949 21.14 0.7662 0.7662 0.7662 5.1
Pre-trained Detector + Flow 0.6634 0.6634 0.6573 12.81 0.7662 0.7662 0.7662 5.1

AV-Det 6-channel Oracle 0.6054 0.4971 0.3634 19.76 0.6294 0.3418 0.1874 23.2

AV-Det 1-channel 0.4169 0.2662 0.1774 25.49 0.1882 0.0966 0.0499 31.1
AV-Det 2-channel 0.3371 0.2191 0.1292 26.50 0.3724 0.3083 0.1233 36.4
AV-Det 4-channel 0.4674 0.3587 0.1901 21.08 0.4237 0.1455 0.0716 19.9
AV-Det 6-channel 0.7126 0 .6195 0 .5575 16 .47 0 .6873 0 .4305 0 .2869 33.4

Fig. 5: Qualitative results of our AV-Det teacher model on the test split of our dataset. We visualize the color-coded learned
vehicle heatmap, the estimated bounding boxes in green color, and the ground truth bounding boxes in blue color. The two
bottom rows illustrate interesting failure cases of our approach.



TABLE II: Performance of audio-detector model variants.

Model AP@0.1 ↑ AP@0.2 ↑ CD ↓

Student 1-channel 0.3583 0.2756 40.8
Student 2-channel 0.3472 0.2450 36.5
Student 4-channel 0.3799 0.2544 41.5
Student 6-channel 0.3833 0.2636 39.2

Student RGB Image 0.6885 0.5727 26.8

back to the respective pixel areas in the input images. We
further note a failure mode where false-positive detections
of vehicles are induced by incorrect highlights in the learned
heatmaps. This effect may be caused by background move-
ment correlating with the presence of moving vehicles in the
foreground, producing an incorrect association of auditory
and visual features. Moreover, the approach may fail to
correlate visual and audio features correctly when sound-
emitting objects are located outside the camera frustum since
the approach assumes such objects to be observable in both
domains simultaneously. In our experiments, however, we
found the moving vehicles to be the dominant sound source
despite audible ambient noise.

D. Audio-Detector Student Model Evaluation

We evaluate the detection performance of the audio-
detector student model in Table II. We run experiments using
1, 2, 4, and 6-channel audio. We also evaluate a student
model trained on RGB images instead of audio spectrograms.
All audio-detector student models perform worse than the
AV-Det teacher model but exhibit an overall decent perfor-
mance with AP@0.1 values close to 0.4. In contrast to the
AV-Det model, we observe no strong correlation between
the number of audio channels and the detection metrics. The
6-channel model version performs similar to the 1-channel
version or the other versions regarding the AP@0.1 and
AP@0.2 metrics. We hypothesize that the student model
architecture, which was adapted from the EfficentDet archi-
tecture, can only insufficiently extract additional information
from the multiple spectrograms for detecting the position of
moving vehicles. This assumption is underlined by the fact
that the student model fed with the RGB images instead
of the spectrograms performs similar to its teacher model,
raising the question of whether further modifications to the
student model need to be made to allow for better detection
of vehicles solely from multi-channel spectrograms.

E. Sensitivity to Noise

We conduct experiments regarding the noise resistance of
our approach. As described in Subsection III-B, we use a
volume-based heuristic to sort the samples into the classes
Positive, Negative, and Inconclusive. One shortcoming of this
approach is that objects producing sounds outside the camera
frustum can change the prediction of the heuristic due to
the change in overall audio signal magnitude. Furthermore,
audio noise pollutes the spectrogram and leads to features
that are less characteristic of vehicle sounds or the lack
thereof. We therefore added varying amounts of white noise
to the audio samples in our dataset. We sample the noise
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Fig. 6: Precision of our classification heuristic and our model
AP@0.1 score on samples corrupted with audio noise.

from a Gaussian distribution with zero mean and a standard
deviation according to the specific Signal-to-Noise Ratio
(SNR). We then classify samples using our heuristic and train
the AV-Det model with these corrupted samples. Figure 6
visualizes the influence of noise on the precision score of
our heuristic and the AP@0.1 scores of the AV-Det model.
An SNR of 0 dB represents noise with the same magnitude
as the audio signal while an SNR of 80 dB represents a noise
signal four orders of magnitude smaller than the signal. We
observe that the precision of the heuristic slightly decreases
with increasing amounts of noise and arrives at a precision
of 0.64 for an SNR of 0 dB. The AV-Det model precision
only slightly decreases for an SNR of 40 dB but is noticeably
reduced to 0.27 for an SNR of 0 dB. We conclude that our
approach shows acceptable performance for lower levels of
noise, but its performance deteriorates with higher amounts
of noise, where the precision of our sample classification
heuristic decreases. Overall, we conclude that our approach
can work well for practical applications where ambient noise
does not exceed moderate noise levels but clearly shows
improved performance when the moving vehicles are the
predominant sound source in a given scene.

VI. CONCLUSION

In this work, we presented a self-supervised audio-visual
approach for moving vehicle detection. We showed that an
audio volume-based heuristic for sample classification in
combination with an audio-visual model trained in a self-
supervised manner produces accurate detections of moving
vehicles in images. We furthermore demonstrated that the
number of audio channels greatly influences the model
detection performance, where more audio channels lead to
improved performance compared to single-channel audio.
Finally, we illustrated that the audio-visual teacher model
can be distilled into an audio-only student model, bridging
the domain gap inherent to models leveraging vision as the
predominant modality. Possible future work includes 360
degree images for larger visual field-of-view, more diverse
scenarios in the dataset, and an improved model architecture
for the audio student model.
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