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BIMS-PU: Bi-Directional and Multi-Scale Point
Cloud Upsampling

Yechao Bai1, Xiaogang Wang1, Marcelo H. Ang Jr1 and Daniela Rus2

Abstract—The learning and aggregation of multi-scale features
are essential in empowering neural networks to capture the fine-
grained geometric details in the point cloud upsampling task.
Most existing approaches extract multi-scale features from a
point cloud of a fixed resolution, hence obtain only a limited
level of details. Though an existing approach aggregates a feature
hierarchy of different resolutions from a cascade of upsampling
sub-network, the training is complex with expensive computa-
tion. To address these issues, we construct a new point cloud
upsampling pipeline called BIMS-PU that integrates the feature
pyramid architecture with a bi-directional up and downsampling
path. Specifically, we decompose the up/downsampling procedure
into several up/downsampling sub-steps by breaking the target
sampling factor into smaller factors. The multi-scale features are
naturally produced in a parallel manner and aggregated using
a fast feature fusion method. Supervision signal is simultane-
ously applied to all upsampled point clouds of different scales.
Moreover, we formulate a residual block to ease the training of
our model. Extensive quantitative and qualitative experiments on
different datasets show that our method achieves superior results
to state-of-the-art approaches. Last but not least, we demonstrate
that point cloud upsampling can improve robot perception by
ameliorating the 3D data quality.

Index Terms—Deep Learning for Visual Perception; Computer
Vision for Automation.

I. INTRODUCTION

THE importance of 3D data has become evident in applica-
tions like autonomous driving, robotics, medical imaging,

etc. Recent studies [1], [2], [3], [4], [5] have shown that
point cloud is a compact and efficient 3D representation.
However, real-scanned point clouds produced by depth camera
and LiDAR are often sparse, noisy, and irregular [6], [7], [8].
As point cloud upsampling can improve the quality of real-
scanned data by increasing the point density and uniformity, it
has drawn increasing attention in computer vision and robotics
community. The upsampled point cloud has to preserve the
geometric detail of the underlying surface. To this end, several
state-of-the-art point cloud upsampling methods [9], [10], [11],
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Fig. 1: Qualitative Comparison between our model and state-
of-art methods. The color indicates the nearest distance of each
output point to the ground truth surface. The result demon-
strates that our approach has distinct advantages at challenging
places like intersections, the narrow gap between two surfaces,
and slender objects. We credited it to the effective multi-scale
feature fusion, which enables the model to leverage local and
global contextual information.

[12] exploit the multi-scale features of the point cloud. PU-
Net [9] progressively increases the ball queries of each point
to extract multi-scale local region features and concatenates
them to generate the upsampled features. Following a similar
principle as PU-Net, PU-GCN [11] designs an Inception
DenseGCN module, which has parallel DenseGCN branches
of different receptive fields, to encode multi-scale context of
point clouds. However, the level of geometric detail in the
aggregated multi-scale feature is limited as the input resolution
is fixed. To get fine-grained details, MPU [10] breaks the
upsampling network into successive subnets to progressively
upsample the point clouds. Although MPU preserves better
details, its back-and-forth conversion between high-dimension
feature space and 3D spatial space leads to increased com-
putation complexity and training difficulty. In this work, we
adapt the feature pyramid architecture [13], [14], [15], [16]
for the point cloud upsampling task and construct a bi-
directional and multi-scale upsampling module. Concretely,
instead of obtaining the multi-scale feature directly from a
feature extractor, our method generates multi-scale point cloud
features from a bi-directional up and downsampling pathway
inspired by the back projection mechanism [17] developed
for image super-resolution [18], [19], [20], [21]. The back
projection mechanism uses an iterative up and downsampling
procedure to minimize reconstruction errors. Our method de-
composes the upsampling/downsampling procedure into sub-
steps with a smaller ratio in feature space and generates
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Fig. 2: Overview of the bi-directional multi-scale point cloud upsampling network (BIMS-PU). The architecture of our model
has L pathways to upsample a given sparse point cloud P to increasingly denser outputs Q1, . . . QL at the same time, as
depicted in the lower left of the figure. Learning a multi-scale point cloud upsampling task enables our model to capture rich
geometric details of different levels of resolution.

the multi-scale upsampled point cloud features in a parallel
manner. The goal is to decrease the optimization difficulty via
decomposing the task into multiple simpler sub-tasks [22].
Next, we leverage a fast weighted feature fusion method
to aggregate the resultant multi-scale features. Subsequently,
upsampled point cloud features of each scale get reconstructed
into 3D point clouds. Supervision signals are applied simul-
taneously at each output scale. The multi-scale supervision
guides the network’s training to fuse multi-scale features to
be more discriminative. To enable the model to learn complex
mapping with additional height and width, we formulate a
simple yet highly effective residual block based on the resid-
ual learning concept [23] to expand/squeeze the number of
channels of a point feature during feature expansion and point
reconstruction. The quantitative and qualitative results show
that the bi-directional multi-scale up/downsampling pathway
improves the fine-grained geometric details of the upsampled
point cloud. This is because it enables the up/downsampling
operators to be trained with features of different resolutions
produced by multi-scale features fusion. Lastly, to verify the
value of point cloud upsampling to the robotics community,
we design an experiment to show that upsampling is beneficial
to point cloud classification, a fundamental robot perception
task. In summary, our contributions are:

• Design a bi-directional multi-scale upsampling module;
• Propose training with multi-scale supervision to facilitate

the multi-scale feature fusion to produce more discrimi-
native features;

• Conduct extensive quantitative and qualitative experi-
ments on synthetic and real-world datasets to show that
our method achieves superior results to state-of-the-art
approaches;

• Design an experiment to verify the value of point cloud
upsampling to robot perception.

II. RELATED WORKS

Learning-based point cloud upsampling. PointNet [1] and
the multi-scale variant PointNet++ [2] propose networks that
directly consume point cloud for several 3D recognition
tasks. Based on PointNet++, PU-Net [9] designs a point-
based network for the point cloud upsampling task. It adopts
the hierarchical feature learning mechanism [2] for feature
extraction and upsamples point cloud at patch-level. EC-
Net [24] designs an edge-aware network and a joint loss to
deliberately improve the consolidation near the edge. However,
it requires expensive edge annotation for training. To generate
outputs of large upsampling factor, MPU [10] progressively
upsampled the point cloud to different levels of resolution with
a cascade of sub-networks. Unlike previous encoder-decoder
networks, PU-GAN [25] incorporates the adversarial training
concept into a point upsampling network. It uses a self-
attention unit to leverage the long-range context dependencies
in the upsampling module. The geometric-centric network,
PUGeo-Net [26], explicitly learns the first and second funda-
mental forms for point cloud upsampling. However, it requires
the normals of points as a supervision signal, which is not
directly available in a real-scanned point cloud. PU-GCN [11]
focuses on improving the upsampling module and the feature
extraction module for point cloud upsampling. It integrates the
graphical convolutional network into the upsampling module
and designs an Inception-based feature extraction module.
The recently proposed Dis-PU [12] disentangle the point
upsampling tasks into dense point generation and point spatial
refinement. To achieve this, they design a network that consists
of two cascaded sub-networks. Though both MPU [10] and our
methods produce multi-resolution point clouds, our method is
not a kind of progressive upsampling method. There are two
distinctive differences. First, MPU [10] consists of a cascade
of sub-networks, whereas our method produces multi-scale
outputs in a single network. Second, the MPU progressively
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trains L subnets using 2L+1 stages, whereas we apply multi-
scale supervision signals to each output scale simultaneously,
so training can be completed in only one go. PU-GCN [11]
and Dis-PU [12] extract local and global features to learn
fine-grained details using graphical convolutional network
and attention mechanism. However, their method has a high
computation demand due to intensive use of kNN and self-
attention operation. Our method uses a hierarchical network
architecture that is computationally efficient to extract multi-
scale features to grasp the fine-grained patterns.
Multi-scale feature representation and aggregation. Multi-
scale feature representation and aggregation are one of the
main problems in visual perception tasks. Lin et al. [13] pro-
poses a top-down architecture with lateral connections to fuse
multi-scale features instead of directly using the pyramidal
feature hierarchy for prediction. Taking one step further, Liu
et al. [14] adds a bottom-up pathway to enhance the entire
feature hierarchy. Ghiasi et al. [15] adopts a neural architecture
search to discover a new feature pyramid architecture. Tan et
al. [16] revises the architecture design to be more intuitive
and principled. The main difference between our work and
the pyramid feature architecture in 2D visual perception tasks
is that the latter obtains the multi-scale feature directly from
feature extractors. But our approach generates a pyramidal
point cloud feature from a bi-directional up/downsampling
pathway with shortcut connections.

III. APPROACH

A. Overview

Given a sparse point cloud P of N points, our network
outputs L denser point cloud {Q̂1, . . . , Q̂l, . . . , Q̂L} where
Q̂l ∈ Rr′N×3, r′ = 2l is the intermediate upsampling factor
and r = 2L is the desired upsampling factor. Q is the ground
truth point cloud with rN points. The upsampled point clouds
should lie on the underlying surface of the object and have
a uniform distribution. Our network consists of three parts:
point feature extraction, point feature expansion and point
reconstruction.
Point feature extraction. The feature extractor learns point
feature F ∈ RN×C1 from the input point cloud P ∈ RN×d,
C1 > d. In this case, the feature of the input is the 3D
coordinates of the point cloud, namely d = 3. We adopt
the feature extractor in MPU [10] which uses dynamic graph
convolution [27] to extract point features from local neighbor-
hoods via kNN search in feature space and exploit a dense
connection to facilitate information reuse.
Point feature expansion. In this part, we propose a bi-
directional multi-scale upsampling module to expand the point
features. It takes the point feature F as input and outputs
L upsampled point features {Fup

1 , . . . , Fup
l , . . . , Fup

L }, where
Fup
l ∈ Rr′N×C2 , Fup

L ∈ RrN×C2 and C2 < C1. The bi-
directional up and downsampling path preserves the fine-
grained geometric details by learning the up/down-sampling
operators with global and local context provided by the point
features of different resolutions.
Point reconstruction. To reconstruct the L upsampled point
features from latent space to coordinate space, we assign each
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Fig. 3: Illustration of the point feature upsampling unit in Fig.
2. For simplicity, the target upsampling factor is 4.
upsampled feature with one 2-layer Multi-Layer Perceptron
(MLP) to regress the 3D coordinates.

B. Bi-directional Multi-scale Upsampling Module

The proposed bi-directional multi-scale upsampling module
consists of two sets of upsampling operators and one set of
downsampling operators as shown in Fig 3(a). The number
of operator in each set is L, where 2L = r. The scaling
factor of each operator is 2. We illustrate the up/downsampling
operator in Fig 3(b)/(c). This upsampling operator combines
the duplicated point features and a 2D grid [28], [10] that
adds spatial variation to help spread out the points. Then it
uses shared MLP to produce the upsampled point features.
The downsampling operator reshapes the feature and then
uses shared MLP to generate the downsampled point fea-
tures. We leverage hierarchical network architecture which
is computationally efficient to learn local/global fine grained
patterns instead of using self-attention operator or graphical
convolutional network. Given point feature F from feature
extraction as input, upsampling module first maps the low-
resolution (LR) point feature to a high-resolution (HR) point
feature using the first set of upsampling operators on the left
side. Then, it maps the HR point feature back to the LR point
feature using the set of downsampling operators in the middle.
Lastly, the reconstructed LR point feature is mapped to a
HR feature point by the second set of upsampling operators
on the right side. Our upsampling module uses the shortcut
connections and a weighted feature fusion method to achieve
a fast and efficient multi-scale feature fusion. For simplicity
the desired upsampling factor r is set to 4. Concretely, we
describe the two upsampled point feature outputs F up

1 , F
up
2 ,

and an intermediate fused feature Fm
1 in Fig. 3.

F up
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2 + w2 ·Up (F r
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where Up andDown is the up and downsampling operation;
wi is a learnable weight that represents the importance of each
input, which is ensured to be positive by applying ReLU [29]
after each wi; ε is a small value to avoid numerical instability.

C. Residual Block

In this work, we design a lightweight residual block, as
illustrated in Fig. 4, to expand/squeeze the channel of point
feature during feature expansion and point reconstruction.
Residual learning have proven to be effective at easing the
optimization of a network during training [23]. Our intention
is to use the residual block to allow the network to learn a
complex mapping with increased model complexity namely
the scalable bidirectional pathway and cross-scale shortcut
links in our model.

D. Multi-scale Supervision.

Our model generates multiple intermediate upsampled point
clouds in one feed-forward pass. Supervision signals are
applied simultaneously at each output scale. Notably, we
do not downsample the ground truth to create the multi-
scale supervision label to avoid potential artificial artifacts
and laborious effort. The multi-scale supervision guides the
network’s training to fuse multi-scale features to be more dis-
criminative. Additionally, decomposing the task into multiple
simpler sub-tasks decrease the optimization difficulty. It allows
our model to have a large representation capacity to learn
complicated mappings, thus achieve fewer outliers and render
better geometric details. We train our upsampling network with
multi-scale supervision using a robust joint loss:

L =

L∑
i=1

αi · Ljoint

(
Q, Q̂i

)
Ljoint = LCD + λ · Lrep

(2)

where Q and Q̂i are the ground truth and multi-scale output
point cloud respectively; αi, λ ∈ [0, 1] are weighting factors;
LCD (·) means Chamfer Distance [3] which measures the
average closest point distance between two point sets; Lrep (·)
means Repulsion Loss [9] which encourage the generated
points to distribute more uniformly.

IV. EXPERIMENTS

A. Implementation Details

Datasets For quantitative/qualitative comparisons between
models, we employ two synthetic datasets and one real-
scanned dataset. (1) PU-GAN’s dataset provides 120 training
and 27 testing objects. (2) PU1K dataset proposed in PU-
GCN [11] consists of 1,020 training and 127 testing objects.

(3) The real-scanned dataset ScanObjectNN [30] contains
2,902 point cloud objects in 15 categories manually filtered
and selected from SceneNN [31] and ScanNet [32]. Each
object has 2,048 points. Since the ground truth is not available,
we only conduct qualitative experiments on the real-world
dataset with pre-trained models. To demonstrate point cloud
upsampling is beneficial to 3D object classification, we employ
both synthetic and real-scanned datasets in our experiment in
Section IV-E. The synthetic dataset is the ModelNet40 [33]
dataset, which contains point clouds of 40 common object cat-
egories sampled from 100 unique CAD models per category.
The real-scanned dataset is ScanObjectNN [30].
Training details For training, we use the training data pro-
vided by PU-GAN’s dataset [25] and PU1K [11] and follows
the settings in PU-GAN [25] and PU-GCN [11] for model
comparison. Concretely, the ground truth point clouds Q has
1,024 points; the input point clouds P of 256 points are ran-
domly downsampled from the ground truth point cloud Q on
the fly during training; the upsampling ratio r is 4. We train our
model for 400 epochs using the Adam optimizer with an initial
learning rate of 0.001. The batch size is 64 on PU1K and 28 on
PU-GAN’s dataset. We decrease the learning rate by a factor of
0.7 for every 40 epochs. Data augmentation techniques applied
includes random rotation/scaling/shifting. In the point feature
extraction unit the k for k-nearest neighbors search is 16. C1

and C2 in the feature expansion unit are 648 and 128. We use
α1 = 0.6, α2 = 1.0 and α1 = 0.6, α2 = 0.8, α3 = 1.0 in
Eq. 2 for r = 4 and r = 16 respectively. We implemented our
network using PyTorch and all experiments are conducted on
an Nvidia RTX 2080 GPU.
Testing details For testing, we adopt the commonly used
patch-based strategy [9], [10], [25], [11], [12] as follows.
First, use Poisson disk sampling to generate the ground-truth
object point clouds Q of rN points from object mesh and
then downsample it to get sparse input point clouds P of N
points. Second, apply the farthest point sampling [2] to the
input point clouds to get query points and extract overlapping
input patches of 256 points around each query point using
kNN. Next, feed all input patches to an upsampling model
and combine the output overlapping point clouds of 1,024
points to get the dense object point cloud. Lastly, apply farthest
point sampling to produce a uniform and dense object point
cloud that contains rN points. Both PU-GCN and Dis-PU
reported model comparisons results using PU-GAN’s dataset.
We notice two differences in test settings between them and
PU-GAN’s in their experiment. (1) PU-GAN [25] and Dis-
PU [12] use Monte-Carlo downsampling while PU-GCN uses
Poisson downsampling1 to generate the sparse input point
cloud P . (2) PU-GAN [25] and PU-GCN [11] use input
point cloud of 2,048 points but Dis-PU [12] uses input point
cloud of 1,024 points. Because the Monte-Carlo downsampling
generates a realistic and non-uniform point cloud distribution,
while the Poisson downsampling produces a uniform point
cloud distribution, and the former is also used during training
for input point cloud generation. Hence, we follow PU-

1https://github.com/guochengqian/PU-GCN/issues/3#issuecomment-
888289259
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Fig. 5: Qualitative comparisons of point cloud upsampling on synthetic dataset. The color indicates the nearest distance of
each output point to the ground truth surface. We can see that our model produces a more accurate reconstruction with fewer
red points and preserves better geometric details at challenging areas.

GAN [25] to use the widely used Monte-Carlo sampling.
Regarding the number of test input points, we also follow
PU-GAN [25]’s setting to use 2,048 points for consistency
between model comparisons conducted on PU-GAN’s dataset
and PU1K dataset.
Evaluation metrics The evaluation metrics are (i) Chamfer
distance (CD); (ii) Hausdorff distance (HD) [34]; (iii) point-
to-surface distance (P2F). A lower evaluation metric indicates
a better performance.

B. Quantitative Comparisons

We conduct comparisons on two datasets PU-GAN’s
dataset [25] and PU1K [11]. The results are shown in Tables I
and II, respectively. The recently proposed PUGeo-Net [26]
is not included in the comparison as it requires the accurate
normal of point for training, which is not directly available in
point clouds.

TABLE I: Quantitative comparisons with the state-of-the-
art on PU-GAN’s dataset. The units of CD, HD, and P2F
are 10−3. The best result is highlighted in bold letters and the
runner-up is highlighted with an underline.

Methods 4× 16×
Size CD↓ HD↓ P2F↓ Size CD↓ HD↓ P2F↓

PU-Net [9] 10.1M 0.72 8.94 6.84 24.5M 0.38 6.36 8.44
MPU [10] 23.1M 0.49 6.11 3.96 92.5M 0.19 5.58 3.52

PU-GAN [25] 9.6M 0.28 4.64 2.33 9.6M 0.23 6.09 3.31
PU-GCN [11] 9.7M 0.27 4.38 2.80 9.7M 0.18 4.72 3.15
Dis-PU [12] 13.2M 0.24 4.63 2.23 13.2M 0.16 8.14 2.43

Our 8.3M 0.28 4.28 2.05 15.6M 0.16 4.70 2.59

Comparisons on PU-GAN’s dataset. Quantitative compar-
isons between models on PU-GAN’s dataset under different
upsampling ratios are presented in Table I. The results show
that our method performs competitively to state-of-the-art
approaches under both small and large upsampling ratios.
Notably, our model has the smallest model size when r = 4
and is 37% lighter than the runner-up model Dis-PU. Though
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Fig. 6: Qualitative comparison of upsampled (16×) point clouds generated using different methods and its 3D mesh
reconstruction. The sparse inputs of 2,048 points are from real-scanned dataset ScanObjectNN [30]. While Dis-PU [12] has
an advantage in surface smoothness, our method outperforms others in terms of producing a more accurate reconstruction that
has fewer surface defects and outliers.

our model size grows as the upsampling ratio increases, when
r = 16, it is still comparable to the size of Dis-PU and much
smaller than PU-Net and MPU. The input and ground truth test
data are generated following PU-GAN’s setting when testing
r = 4 and r = 16. We train the models on PU-GAN [25]’s
dataset using their released source code and report the test
performance using the best model obtained from training. For
r = 4, we directly use the result of PU-Net, MPU, and PU-
GAN from PU-GAN [25]’s paper. Though Dis-PU [12] and
PU-GCN [11] have conducted model comparisons using PU-
GAN’s dataset under r = 4 and r = 16, we don’t use the
results in their paper because they used different test settings
from PU-GAN [25], which is discussed in Section IV-A-
Testing in detail.

Comparisons on PU1K. Quantitative comparisons on PU1K
dataset are presented in Table II. We conduct two sets of
experiments. One uses test input point cloud generated using
Poisson downsampling provided by PU-GCN [11]. The other
one uses input point cloud generated using Monte-Carlo
downsampling to produce a more realistic and non-uniform
distribution. For PU-Net [9], MPU [10], and PU-GCN [11],

TABLE II: Quantitative comparisons with the state-of-the-
art on PU1K. We conduct two sets of experiments. One
uses input point cloud generated using Poisson downsampling
as in the paper [11]. Another one uses input point cloud
generated using Monte-Carlo downsampling which produces
more realistic non-uniform distribution distribution. The units
of CD, HD, and P2F are 10−3. The best result is highlighted in
bold letters and the runner-up is highlighted with an underline.

Model Size Monte-Carlo Poisson
CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓

PU-Net [9] 10.1M 0.623 10.907 2.877 1.155 15.170 4.834
MPU [10] 23.1M 0.534 9.725 2.286 0.935 13.327 3.551

PU-GAN [25] 9.6M 0.439 7.697 2.117 0.727 9.622 2.936
PU-GCN [11] 9.7M 0.462 7.671 2.125 0.585 7.577 2.499
Dis-PU [12] 13.2M 0.423 7.095 1.645 0.550 6.997 2.240

Our 8.3M 0.420 7.990 1.547 0.541 8.360 2.280

we use the pre-trained model provided by PU-GCN [11] to
get their results. As the pre-trained model of PU-GAN [25]
and Dis-PU [12] is not provided, we train the models on
PU1K using their released codes and get the result using the
best model. In both sets of experiments, our model presents
competitive performance. We can see that all models generally
performs better when the input point cloud is generated using
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TABLE III: Ablation study. Experiments are conducted on
PU-GAN’s dataset. The units of CD, HD and P2F are 10−3.
MS is the abbreviation of multi-scale. The effectiveness of our
proposed components (residual block, multi-scale supervision,
and multi-scale feature fusion) for point cloud upsampling is
validated.

Model Residual MS Supervision MS Fusion CD↓ HD↓ P2F↓
A 0.30 6.05 2.77
B X 0.28 5.24 2.17
C X X 0.28 4.87 2.04

Full X X X 0.28 4.28 2.05

Monte-Carlo downsampling as it is the downsampling method
used during training (see Section IV-A-Training details). Our
superior performances on the Monte-Carlo setting verified that
our model is more robust to non-uniform points. We also get
lower errors on CD and P2F, which shows that our model is
able to reconstruct more accurate object shapes.

C. Ablation Study

We analyze the contribution of each component of our
network on the PU-GAN’s dataset in Table III, which includes
multi-scale fusion, multi-scale supervision, and residual block.
We remove each component from the full model one by one
(from bottom to top) and measure the performances in terms
of CD, HD and P2F. As shown in Table III, all components
contribute to the full model since removing any component
hampers the performance.

D. Qualitative Comparisons

We compare our model qualitatively with other methods on
two synthetic datasets and one real-word dataset. The results
are shown in Fig. 5 and 6. In Fig. 5, the color indicates
the nearest distance of each output point to the ground truth
surface. We observe three distinct advantages of our approach:
1) Generate points with lower error in the area near the sharp
edge, and the edges are cleaner and sharper. 2) Produces
fewer outliers in challenging areas like the joint, intersection,
and the narrow gap between two surfaces. 3) Preserve better
geometric details of slender objects. Specifically, the number
of points generally increases along the longitudinal direction of
the objects. In Fig. 6, we compare the upsampled point cloud
generated using different methods and its 3D mesh reconstruc-
tion, the noisy and sparse inputs are from the real-scanned
dataset ScanObjectNN [30], where we set r = 16. While Dis-
PU [12] has an advantage in surface smoothness, our method
outperforms others in terms of producing a more accurate
reconstruction that has fewer surface defects and outliers. The
qualitative results suggest that our model possesses a better
understanding of the global and local context relationship and
is capable of generating high-fidelity object details.

E. Benefit of upsampling to point cloud classification

Point cloud object classification is a fundamental task to
robot perception which is crucial to downstream tasks like
object detection and semantic segmentation. To demonstrate
the value of point cloud upsampling to the robotic com-
munity, we design an experiment to show that upsampling

TABLE IV: Classification accuracy comparison. We use
random sampling and farthest point sampling on the testing
point cloud in synthetic dataset ModelNet40 [33] and real-
scanned dataset ScanObjectNN [30] to generate point clouds
of 128 points as input and point clouds of 512 points as ground
truth. Then we upsample the input point cloud by 4 times using
a set of upsampling models. The classification accuracy com-
parison is conducted between input/upsampled/ground-truth
point cloud. The results indicate that point cloud upsampling
is beneficial to point cloud classification, and our model is
superior in generating new points that reflect the underlying
surface of point clouds. Overall and average class accuracy
are shown in %.

Model ModelNet40 [33] ScanObjectNN [30]
OA. Cls Acc. OA Cls Acc.

PU-GAN [25] 84.2 80.0 71.5 67.4
PU-GCN [11] 84.6 80.6 70.9 67.0
Dis-PU [12] 85.0 80.4 71.1 66.8

Ours 87.1 82.5 72.0 68.2
Input 79.4 74.1 61.8 56.3

Ground truth 92.5 88.7 74.9 70.6

is beneficial to point cloud object classification. In this ex-
periment, We employ a synthetic dataset ModelNet40 [33]
and a real-scanned dataset ScanObejctNN [30] and choose
two widely used models PointNet++2 [2] and PointNet3 [1]
to perform point cloud shape classification on ModelNet40
and ScanObjectNN respectively. The PointNet++ is pre-trained
on ModelNet40, whereas PointNet is pre-trained on ScanOb-
jectNN’s hardest variant PB T50 RS. First, we use farthest
point sampling and random sampling to sample the testing
point clouds to point clouds of 512 points as ground truth
data and point clouds of 128 points as input data. Next,
we upsample the input point clouds by four times using
a set of point cloud upsampling models. The upsampling
models are pre-trained on PU-GAN’s [25] dataset used in
Table I. We compare the classification accuracy of the ground-
truth, randomly-downsampled, and upsampled point clouds
in Table IV. The results show that applying point cloud
upsampling to sparse and nonuniform point clouds to generate
denser point clouds effectively improves the classification
result in both synthetic and real-scanned data. Interestingly
the classification performance improvement is more significant
on real-scanned data. This demonstrates that the upsampling
models can generate new points according to the distribution
pattern of the underlying surface. Further, the quantitative
classification accuracy comparison indicates the superiority of
our model in reconstruction accuracy. Experiments could be
designed following a similar principle to show the effect of
point cloud upsampling on semantic segmentation and part
segmentation.

V. CONCLUSION

In this work, we propose a bi-directional multi-scale up-
sampling approach for 3D point cloud upsampling. We de-
compose a bi-directional up/downsampling pathway into sub-
up/downsampling steps of smaller scaling factors to produce

2https://github.com/yanx27/Pointnet Pointnet2 pytorch
3https://github.com/hkust-vgd/scanobjectnn
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a pyramidal multi-scale point feature hierarchy. The point
features in the hierarchy are fused and reconstructed to point
clouds of different resolutions. Supervision signals are applied
to each output point cloud to ensure that the feature fusion
produces discriminative features. A simple yet effective resid-
ual block is proposed to reduce the optimization difficulty.
Extensive quantitative and qualitative results on synthetic and
real-world datasets demonstrate that our method achieves
superior results compared to state-of-the-art approaches. We
demonstrate that point cloud upsampling can improve robot
perception by ameliorating the 3D data quality using a simple
experiment.
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