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Abstract— This work investigates a data-driven template
model for trajectory planning of dynamic quadrupedal robots.
Many state-of-the-art approaches involve using a reduced-order
model, primarily due to computational tractability. The spirit
of the trajectory planning approach in this work draws on
recent advancements in the area of behavioral systems theory.
Here, we aim to capitalize on the knowledge of well-known
template models to construct a data-driven model, enabling
us to obtain an information rich reduced-order model. In
particular, this work considers input-output states similar to
that of the single rigid body model and proceeds to develop a
data-driven representation of the system, which is then used
in a predictive control framework to plan a trajectory for
quadrupeds. The optimal trajectory is passed to a low-level and
nonlinear model-based controller to be tracked. Preliminary
experimental results are provided to establish the efficacy of
this hierarchical control approach for trotting and walking gaits
of a high-dimensional quadrupedal robot on unknown terrains
and in the presence of disturbances.

Index Terms— Legged Robots, Motion Control, Multi-
Contact Whole-Body Motion Planning and Control

I. INTRODUCTION

Many of the current state-of-the-art approaches for plan-
ning or controlling legged robots rely on a reduced-order
(i.e., template) model of the robot [1]. This is done to
gain real-time computational tractability while retaining the
dominant traits of the nonlinear dynamics by providing a
low-dimensional approximation of the full-order dynamics.
This work aims to construct a template model based on data
obtained during locomotion to provide a mapping from some
desired inputs to some desired outputs. This is intended to
allow one to construct a reduced-order model without explic-
itly having access to model parameters while also potentially
encapsulating some of the rich nonlinear dynamics. This
additionally removes a layer of abstraction introduced by
linearizing a physics-based template model.

A. Reduced-Order Models and Motivation
Many works consider the combination of reduced-order

models and model predictive control (MPC) frameworks for
trajectory planning of legged robots. Among the most well-
studied template models is the Linear Inverted Pendulum

The work of R. T. Fawcett and K. Afsari is supported by the National
Science Foundation (NSF) under Grant 2128948. The work of K. Akbari
Hamed is supported by the NSF under Grants 1923216 and 2128948. The
work of A. D. Ames is supported by the NSF under Grant 1923239.

1R. T. Fawcett and K. Akbari Hamed (Corresponding Author) are with
the Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA,
24061, USA, {randallf, kavehakbarihamed}@vt.edu

2K. Afsari is with the Myers-Lawson School of Construction, Virginia
Tech, Blacksburg, VA, 24061, USA, keresh@vt.edu

3A. D. Ames is with the Department of Mechanical and Civil Engi-
neering, California Institute of Technology, Pasadena, CA, 91125, USA,
ames@caltech.edu

(LIP) model [2]. In its most basic form, the LIP model is
restrictive since it considers the body as a point mass and
requires the center of pressure (COP) to remain within the
convex hull formed by the contacting legs. The LIP model
has been studied extensively, particularly on bipeds with non-
trivial feet, and has been validated on several platforms for
quasi-static locomotion of both bipeds and quadrupeds [2]–
[6]. Largely due to the quasi-static nature of LIP-based mod-
els, many control approaches have shifted toward template
models that are more directly amenable to dynamic motions.
For example, the Spring-Loaded Inverted Pendulum (SLIP)
model has been used successfully to produce more dynamic
motions [7], [8]. However, the SLIP model still treats the
body as a point mass and suffers from nonlinearity.

Another very popular method is to consider the torso as
a single rigid body (SRB) being propagated through space
via forces applied to the body [9]. The SRB model, com-
bined with standard linearization and MPC techniques, has
proven to be a powerful technique for stable locomotion and
has been experimentally validated on several quadrupedal
platforms [9]–[12]. One of the primary flaws of the SRB
model is the assumption that the legs have negligible mass.
While this is a reasonable assumption for small quadrupeds,
it does not readily extend to robots with more massive legs.
Reference [11] has used quasi-static compensation for the
mass of the legs during balance control but does not consider
the full-order dynamics. In addition to neglecting the legs,
the successive linearization of the SRB dynamics introduces
another undesirable layer of abstraction. Centroidal dynamics
have also been employed, which is similar in nature to
the SRB model but considers the angular momentum of
the torso. Centroidal dynamics have been more intensely
studied on bipeds [13], [14], but have proven to be effective
for quadrupeds as well [15]. However, the centroidal model
shares many of the same issues as the SRB model. Namely,
the leg dynamics and inertial effects are generally neglected
[16].

B. Data-Driven Approaches

Data-driven techniques are becoming increasingly impor-
tant as systems become more complex and applications
demand more rigorous controllers and have progressed sub-
stantially in the last several decades [17]. Furthermore,
increased dynamical complexity can require considerable
expertise to obtain an accurate physics-based model. While
the literature on model-free control methodologies spans
many areas, including reinforcement learning [18], [19], here
we focus on the use of data-driven approaches for predic-
tive control, generally referred to as data-driven predictive



Fig. 1. Overview of the proposed hierarchical control algorithm. At the high level, the data-driven predictive control generates optimal trajectories for
trajectory planning of the quadrupedal robot. The optimal trajectories are then passed to a low-level and QP-based nonlinear controller for the whole-body
motion control. The data-driven transition matrix is computed based on a set of offline experiments.

control, or data-enabled predictive control (DeePC) [20]–
[25]. These works stem from behavioral systems theory,
used to parameterize a linear time-invariant (LTI) system in
terms of its observed trajectories as opposed to physics-based
dynamics [26]–[28]. Although the original theory does not
directly apply to complex nonlinear systems, recent works
have provided theoretical extensions to certain classes of
nonlinear systems [29], implementations for stochastic and
nonlinear systems [21]–[23], and linear parameter varying
systems [30]. However, to the best of the authors’ knowledge,
there has not been an implementation for unstable hybrid
dynamical models of legged robots with underactuation and
unilateral constraints, which is the focus of this work. While
rigorous theory has yet to be developed extending to hybrid
nonlinear systems, we have observed good performance
nonetheless.

C. Goals, Objectives, and Contributions

The overarching goal of this paper is to develop a lay-
ered control approach based on data-driven template models
for real-time planning and control of dynamic quadrupedal
robots. More specifically, this paper’s objectives and key
contributions are as follows. 1) At the higher level of the con-
trol approach, we provide a reduced-order model based on
data by leveraging information about state-of-the-art template
models, specifically the SRB model, which also potentially
encapsulates important nonlinear information while forgoing
the need for successive linearization (see Fig. 1). 2) A com-
putationally tractable predictive controller is presented, based
on a data-driven template model, for the real-time trajectory
planning of high degree of freedom (DOF) quadrupeds. 3)
The optimal trajectories are then passed to a low-level non-
linear controller based on virtual constraints [31] for whole-
body motion control. 4) Preliminary experimental validation
of the proposed layered control approach is provided on
the 18-DOF quadrupedal robot A1 for a walk and trot gait
and differing gait parameters for trotting. The experimental
results also show robust locomotion of the A1 robot on
unknown terrains and in the presence of disturbances.

II. PRELIMINARIES

This section provides an overview of some of the perti-
nent components of behavioral systems theory. Behavioral
systems theory provides a formal manner in which an un-
known LTI system can be parameterized purely by measured
trajectories of the system.

Consider the model of an LTI system with the state vector
xk ∈ Rn, the input vector uk ∈ Rm, and the output vector
yk ∈ Rp for k ∈ Z≥0 := {0, 1, · · · }. The standard discrete-
time state-space representation is described by

xk+1 = Axk +B uk

yk = C xk +Duk, (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m

are the state space matrices which are unknown. Here we
denote n, m, and p as the number of states, inputs, and out-
puts, respectively. Consider some L, T ∈ N := {1, 2, · · · },
where T is the total length of the data collected and T ≥ L,
along with some input trajectory ud ∈ RmT composed of a
sequence of collected data ud

k, i.e., ud := col(ud
0, . . . , u

d
T−1).

In our notation, “col” represents the column operator. As
will be discussed shortly, L represents the sum of the
prediction and estimation horizons. Using this trajectory,
one can construct the corresponding Hankel matrix [21] as
follows:

HL(u
d) :=


ud
0 ud

1 · · · ud
T−L

ud
1 ud

2 · · · ud
T−L+1

...
...

. . .
...

ud
L−1 ud

L · · · ud
T−1

 ∈ RmL×(T−L+1).

(2)
Definition 1 ( [20]): The signal ud is said to be persis-

tently exciting of order L if HL(u
d) is full row rank, ensuring

the signal contains sufficiently rich information.
Definition 2 ( [20]): The sequence {(ud

k, y
d
k)}

T−1
k=0 is said

to be a trajectory of the LTI system (1) if there exists an
initial condition x0 and a state sequence {xk}Tk=0 that meets
the state and output equations in (1).

Using Definitions 1 and 2, we are now in a position to
present a foundational theorem that is used to define an LTI
system in terms of its trajectories.



Theorem 1: [26, Theorem 1] Let a trajectory of an LTI
system, referred to as data, be denoted by {(ud

k, y
d
k)}

T−1
k=0 . If

ud is persistently exciting of order L+n, then {(ūk, ȳk)}L−1
k=0

is a trajectory of the system if and only if there exists g ∈
RT−L+1 such that [

HL(u
d)

HL(y
d)

]
g =

[
ū
ȳ

]
. (3)

Theorem 1 presents a data-driven approach for characteriz-
ing trajectories of an unknown LTI system without requiring
explicit system identification. This theorem will be used to
synthesize a data-driven predictive control approach for real-
time motion planning of legged robots in Section III.

In order to formulate the trajectory planning problem as a
closed-loop data-driven predictive control approach, we will
consider two different horizons as the estimation horizon Tini
and the prediction (i.e., control) horizon N . In particular, we
assume that L = Tini +N . Here, the estimation horizon Tini
can be viewed as the number of input-output (I-O) pairs
used to uniquely determine the initial condition from the
given sequence {(ūk, ȳk)}L−1

k=0 in (3). In addition, N can be
viewed as the prediction horizon in traditional MPC. Using
collected I-O data, denoted by (ud, yd), we can decompose
the Hankel matrices of (3) as follows:

HL(u
d) =

[
Up

Uf

]
, HL(y

d) =

[
Yp

Yf

]
, (4)

where Up ∈ RmTini×(T−L+1) and Yp ∈ RpTini×(T−L+1) are
the portions of the Hankel matrices used for estimating the
initial condition (i.e., past), and Uf ∈ RmN×(T−L+1) and
Yf ∈ RpN×(T−L+1) are the portions used for prediction (i.e.,
future). A necessary condition for ensuring the information
in the Hankel matrices is sufficiently rich is that T much be
chosen such that T ≥ (m+ 1)(Tini +N + n)− 1.

III. DATA-DRIVEN MOTION PLANNER

This section provides a brief overview of data-driven
predictive control and outlines the application to trajectory
planning for a quadruped. We further discuss similarities
between the SRB template model and the data-driven model.

A. Data-Driven Predictive Control

This section outlines an approach to address predictive
control without a physics-based model. In particular, we
consider the DeePC methodology provided in [21], [22] as
follows:

min
(g,u,y,σ)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)
+ λg∥g∥2 + λσ∥σ∥2

s.t.


Up

Yp

Uf

Yf

 g +


0
σ
0
0

 =


uini
yini
u
y


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1 (5)

where Q ∈ Rp×p and R ∈ Rm×m are positive definite
weighting matrices, ∥y∥2Q := y⊤Qy, {ydes

k }N−1
k=0 represents a

desired trajectory, and U and Y are feasible sets. In addition,

λg and λσ are positive weighting factors meant to regularize
g and penalize the defect variable σ, respectively. Here, the
defect variable σ allows (5) to remain feasible in the wake
of noisy measurements. If no noise is present, then Theorem
1 applies directly. In our notation, (uini, yini) denotes the
past measured trajectory (i.e., feedback) over the estimation
horizon Tini to be used to indirectly estimate the initial
condition in (5). In addition, (u, y) represents the predicted
trajectory over the control horizon N . We remark if the
standard system identification approach is applied to compute
the realization matrices in (1) optimally, the state vector may
not correspond to a physically measurable variable. Hence,
one would need to integrate the MPC approach with observer
techniques to asymptotically estimate the states. However,
the DeePC approach does not require any estimation beyond
what was required during data collection.

While effective, the size of the optimization problem (5)
is prohibitive for real-time implementation on a quadruped.
Lengthening the prediction horizon by one results in an
increase of 2(m + p) decision variables, and adds corre-
sponding constraints. Furthermore, the majority of results in
behavioral systems theory are applicable only to LTI systems.
Extending these methods to nonlinear and underactuated
dynamical models of legged robots requires larger sets of
data (i.e., larger T ). This introduces considerably more
decision variables since the size of g is directly proportional
to the size of T . For this reason, we consider a least-
squares approximation of (5), which reduces the problem
by (p Tini + T − L + 1) decision variables. In particular, a
least-squares approximation is used to find g such that it can
be removed from the problem, resulting in a constant linear
mapping between the inputs u and the outputs y based solely
on experimental data. We remark that using this approach
with sufficiently large amounts of data precludes the need
for σ in (5). Analogous to [22], finding an approximation of
g reduces to the following offline optimization problem

min
g

∥g∥2

s.t.

Up

Yp

Uf

 g =

uini
yini
u

 . (6)

The closed-form expression of (6) can be described by

g =

Up

Yp

Uf

† uini
yini
u

 , (7)

where (·)† represents the pseudo inverse. Using the fact that
y = Yf g from (5), we have

y = G

uini
yini
u

 , G : = Yf

Up

Yp

Uf

†

, (8)

where G denotes the data-driven state transition matrix
over N -steps. Using (8), we are now in position to present
the general form of a computationally tractable predictive



controller based on data for trajectory planning

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)

s.t. y = G

uini
yini
u


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1. (9)

Remark 1: Careful consideration is required when per-
forming this approximation. In particular, we remark that g
in (5) seeks to find a linear combination of the previous I-O
pairs that can uniquely predict the future I-O pairs. The vari-
ables u and y are, in turn, directly determined by the choice
of g and the data in the Hankel matrices. From Theorem 1, if
properly constructed, all possible trajectories of (1) are in the
range space of the Hankel matrices. However, this places no
restriction on the norm of g. Suppose that we are interested
in maintaining a constant non-zero velocity of a rigid body.
In this case, position changes monotonically and ∥g∥2 → ∞
as t → ∞. Therefore, this restricts us to outputs that will
remain in a neighborhood of zero.

B. Trajectory Planning for Quadrupedal Robots

In this section, we discuss the application of the data-
driven predictive control of (9) to the real-time planning of
quadrupeds and draw relations to the common SRB template
model. The nonlinear SRB model is described by [9], [11],
[12]

d
dt


pc
ṗc
R
ω

 =


ṗc

1
mnet f

net − g0 ez
R ω̂

I−1
r (R⊤τ net − ω̂ Ir ω)

 , (10)

where mnet is the total mass, g0 is the gravitational constant,
ez := col(0, 0, 1) is the unit vector along the z-axis, Ir is
the body inertia, pc ∈ R3 is the position of the COM of
the robot in an inertial world frame, ω ∈ R3 is the angular
velocity in the body frame, R ∈ SO(3) is the rotation matrix
with respect to the inertial world frame, f net is the net force
acting on the COM, and τ net is the net torque induced by the
forces at the leg ends acting about the COM. Furthermore,
we denote the skew symmetric operator by (̂·) : R3 → so(3).
The net forces and torques in (10) can be described by[

f net

τ net

]
=

∑
ℓ∈C

[
I3×3

d̂ℓ

]
fℓ, (11)

where ℓ ∈ C represents the index of the contacting leg with
the ground, C is the set of contacting points, fℓ ∈ R3 is the
ground reaction force (GRF) at leg ℓ, and dℓ is the vector
from the COM to leg ℓ. The equations are nonlinear and
typically linearized before being used with traditional MPC
approaches. Due to the accuracy degradation over long pre-
diction horizons induced by linearization and computational
issues, the prediction horizon in these approaches is usually
small. Since the horizon is small, many implementations for
nominal gaits such as trotting assume the number of contact

points with the environment remains constant for the duration
of the MPC. However, multiple domains have also been
considered for more dynamic gaits [32].

In the data-driven approach, we aim to draw on knowledge
of the well-studied SRB model to pick suitable inputs and
outputs while considering some of the potential pitfalls listed.
In particular, the inputs and outputs used to construct the
Hankel matrices are chosen to be u := f ∈ R12 (i.e., GRFs)
and y := col(z, ẋ, ẏ, ż, α, ω) ∈ R10, where α ∈ R3 denotes
the Euler angles of the trunk. In other words, the inputs and
outputs for the data-driven model are identical to those used
in the SRB model (10), with the exception of the position in
the transverse plane, i.e., the x and y position of the COM.
These states are removed in light of Remark 1.

Remark 2: Contrary to the SRB model, the data-driven
model does not directly consider the mapping between the
forces and the torques acting about the COM as in (11).
It is assumed that the data-driven model encapsulates this
mapping. While one could consider the relative foot positions
directly in the model, the increase in the size makes this
prohibitive for real-time computation.

The data-driven trajectory planner is then defined by

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk − udes
k ∥2R

)

s.t. y = G

uini
yini
u


uk ∈ FC, yk ∈ Y , k ∈ 0, . . . , N − 1, (12)

where udes
k represents the desired force at time k ∈ Z≥0

and FC := {col(fx, fy, fz)|fz > 0, ±fx ≤ µ√
2
fz, ±fy ≤

µ√
2
fz} denotes the linearized friction cone with µ being the

friction coefficient. In order to address the fact that we are
predicting over a larger horizon compared to many traditional
SRB-based MPC approaches due to the lack of terminal cost,
the desired force and the constraints on the forces should
be considered carefully. In particular, the prediction horizon
considered in this work is 1.25 times longer than the nominal
stance time of 200 (ms), which guarantees the prediction will
span multiple continuous-time domains (i.e., different stance
leg configurations). Therefore, the desired force trajectory
changes in a step-like manner at anticipated domain changes.
The desired forces in the x, y, and z direction for leg
ℓ are defined as udes

k,ℓ := col(0, 0, mnetg0
Nc,k

), ∀ℓ ∈ Ck and
zero otherwise. In this notation, Ck is the anticipated set of
contacting legs with the ground at time k and Nc,k represents
the number of contacting legs at time k. The force constraints
also change in a similar manner such that the forces on
anticipated swing legs are restricted to zero, while the stance
leg forces must abide by the linearized friction cone FC. By
altering the desired contact sequence, one could parameterize
different gaits such as walking and trotting. Although mnetg0
may not be strictly known, one could use the average net
force obtained during the data collection procedure.

This data-driven predictive controller embodies many of
the same principles as the SRB-based MPC. However, in the



Fig. 2. Overview of the process used to construct the data-driven template mode. The data is collected by directly using the QP-based low-level controller
(17), and that data is then used to construct a template model on which a predictive trajectory planner can be based.

data-driven approach, we explicitly consider domain changes
in the prediction and do not consider the x and y position of
the COM. In addition, no assumptions are made about the
dynamics of the legs, enabling this approach to potentially
capture some of the rich nonlinear dynamics indirectly
through the GRF. Finally, this approach uses a constant
mapping that does not require successive linearization as
done in [9], [11], [12].

IV. NONLINEAR LOW-LEVEL CONTROLLER

This section aims to present the low-level controller used
to track the trajectories produced by the trajectory planner.

A. Full-Order Nonlinear Dynamics

Here we provide an overview of the full-order model used
for the synthesis of the low-level controller. The model of the
robot is constructed as a floating base, where q ∈ Q ⊂ Rnq

represents the generalized coordinates, Q is the configuration
space, and nq denotes the number of DOFs. We then define
the state vector to be xf := col(q, q̇) ∈ X ⊂ R2nq with
X := Q × Rnq . The motor torques are then described by
τ ∈ T ⊂ Rmτ where T is the set of admissible torques and
mτ is the number of inputs. The equations of motions are
described by

D(q) q̈ +H(q, q̇) = Υ τ + J⊤(q) f, (13)

where D(q) ∈ Rnq×nq represents the mass-inertia matrix,
H(q, q̇) ∈ Rnq denotes the Coriolis, centrifugal, and gravita-
tional terms, Υ ∈ Rnq×mτ represents the input matrix, J(q)
denotes the contact Jacobian matrix, and f := col{fℓ| ℓ ∈ C}
represents the vector GRFs of the contacting leg ends. We
further impose the holonomic constraint r̈ = 0 on (13), where
r := col{pℓ| ℓ ∈ C} represents the position of the contacting
leg ends with the environment. This constraint implies rigid
contact with the ground and is valid if fℓ ∈ FC, ∀ℓ ∈ C.

B. Virtual Constraints Controller

This section provides the formulation of a QP-based
virtual constraints controller used for tracking both the forces
and COM trajectory provided by the trajectory planner. We
consider a set of holonomic virtual constraints [31] as

h(xf , t) := h0(q)− hdes(t), (14)

where h(xf , t) ∈ Rnvc , with nvc representing the number of
virtual constraints, and is imposed by I-O linearization [33].

The term h0(q) denotes the variables that we are interested
in controlling, and hdes(t) describes the desired evolution
of h0(q). In this work, h0(q) consists of the position and
orientation of the COM, and the Cartesian position of the
swing feet. In particular, a Bézier polynomial is constructed
to move the foot from its initial position to the target position,
wherein the target position is determined using the Raibert
heuristic [34, Eq. (4), pp. 46]. Differentiating h(xf , t) twice
along the dynamics (13), we have

ḧ = Θ1(xf ) τ +Θ2(xf ) f + θ(xf ) = −KP h−KD ḣ+ δ,
(15)

where Θ1, Θ2, and θ are of proper dimension and obtained
using a standard I-O linearization procedure. We refer the
reader to [35, Appendix A.2] for more details on the deriva-
tion of these terms. In addition, KP and KD are positive
definite gain matrices, and δ ∈ Rnvc is a defect variable used
in the formulation of the QP. In a similar manner, we define
the holonomic constraint placed on the stance legs to enforce
rigid contact by differentiating the Cartesian coordinates at
the stance leg ends twice and setting them to zero as follows:

r̈ = Φ1(xf ) τ +Φ2(xf ) f + ϕ(xf ) = 0, (16)

for some proper Φ1, Φ2, and ϕ. We are now in a position
to present the QP-based nonlinear controller. The goal is to
solve for the minimum 2-norm torques while imposing the
virtual constraints and tracking the desired forces, as well
as abiding by the feasible torques and friction cone. To this
end, the following strictly convex QP is employed [36]

min
(τ,f,δ)

γ1
2
∥τ∥2 + γ2

2
∥f − f des∥2 + γ3

2
∥δ∥2

s.t. Θ1(xf ) τ +Θ2(xf ) f + θ(xf ) = −KP h−KD ḣ+ δ

Φ1(xf ) τ +Φ2(xf ) f + ϕ(xf ) = 0

τ ∈ T , fℓ ∈ FC, ∀ℓ ∈ C, (17)

where γ1, γ2, and γ3 are positive weighting factors. In
addition, the desired force profile f des(t) represents the
optimal GRFs (i.e., inputs u) prescribed by the high-level
data-driven planner in (12). The defect variable δ is included
such that the QP remains feasible if the I-O linearization
cannot be met exactly. The weighting factor on δ is chosen
to be much larger than the other weights to make the
defect variable as small as possible. The low-level controller
can be used without a planner if the virtual constraints



Fig. 3. Snapshots from experiments with the proposed hierarchical control algorithm: (a) external push disturbances, (b) external tethered pull disturbances,
(c) unknown rough terrain covered with wooden blocks, and (d) unstructured and unknown outdoor environment.
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Fig. 4. Phase portraits of the robot’s body orientation (i.e., roll and pitch)
during different experiments. The quadruped is able to robustly trot over
flat ground (nominal), unknown rough terrain covered with wooden blocks,
and subject to external disturbances (pulls). For each experiment, the robot
is commanded to walk forward at 0.5 (m/s). The reason for the slight pitch
offset is unknown, but is attributed to tracking error at the low-level.

are chosen heuristically, i.e., hdes(t) can be hand-tuned to
produce stable locomotion. However, we aim to provide an
optimal trajectory produced by a trajectory planner to reduce
the required expertise necessary to enable stable locomotion.

V. EXPERIMENTAL RESULTS

This section seeks to demonstrate the efficacy of the
proposed approach for quadrupedal locomotion through a va-
riety of hardware experiments. We consider the quadrupedal
platform A1 made by Unitree. This robot consists of nq = 18
DOFs. We consider a floating-base model of the robot,
wherein the absolute position and orientation of the floating
base comprise the first 6 DOFs, which are unactuated. The
remaining DOFs are composed of the actuated leg joints.
Each leg has a 2-DOF hip joint followed by a 1-DOF knee
joint (i.e., mτ = 12). The robot weighs approximately 12.45
(kg) and stands roughly 28 (cm) off the ground.

A. Data Collection and Trajectory Planner

This section describes the procedure and parameters used
for constructing the data-driven model. An overview of this
procedure can be found in Fig. 2. The data for the Hankel
matrices were collected at 100 (Hz) by moving the robot
around a lab environment using a trot gait, commanded via
a joystick, utilizing only the low-level controller presented
in Section IV-B. From the low-level QP (17), we obtain
estimates of the GRFs and these estimates are then utilized
during the construction of the data-driven model as inputs
ud. Although we consider the use of the controller presented
in Section IV-B, a different low-level controller can be

used as long as the outputs can be properly estimated. As
mentioned in Section III-B, the proposed outputs are taken
as yd = col(z, ẋ, ẏ, ż, α, ω) ∈ R10. We opt to use a joystick
as opposed to a random input trajectory which may require
more data due to the requirement of persistency of excitation
but does not pose an issue in the current formulation due to
the removal of g from the predictive controller. Namely, the
size of the high-level QP remains constant, regardless of the
amount of data used. The parameters used are Tini = 10 for
the estimation horizon, N = 25 for the prediction horizon,
and T = 4284 collected I-O data points, which is much
greater than the minimum number of data points required
by the general theory. The use of a large amount of data is
highly beneficial here because the system is nonlinear. By
using more data, the model better encapsulates information
from various configurations and is less sensitive to noise from
the collected data, providing a better approximation of the
system. This is inline with the promising results of [21], [22]
for control of nonlinear systems. In particular, [21] considers
drone dynamics that are similar to the SRB model.

Although the size of the problem is reduced consider-
ably by using (9) as opposed to (5), it is still large with
550 decision variables and 800 constraints. The planner is
solved using OSQP [37] and takes upwards of approximately
25 (ms) to solve on an external laptop with an Intel®

Core™ i7-1185G7 running at 3.00 GHz and 16 GB of
RAM. We therefore run the planner every 30 (ms) and use
the first three steps of the predicted COM trajectory and
GRFs as inputs passed to the low-level controller. Finally,
the parameters in the predictive controller are taken to
be Q = diag(8e6, 5e5, 5e5, 5e3, 8e6, 8e5, 8e5, 5e3, 5e3, 5e5)
and R = 0.5I , where I is the identity of appropriate size.

Remark 3: If good force estimates are not available, the
chosen I-O pair seems restrictive. To alleviate this, one could
also consider using u := col(zdes, ẋdes, ẏdes, żdes, αdes, ωdes),
y := col(z, ẋ, ẏ, ż, α, ω) as the I-O pair for (12), which is
less restrictive in terms of readily available measurements.

B. Data-Driven Experimental Results

The purpose of this section is to provide the parameters
for the QP-based low-level controller (17) used in tandem
with the trajectory planner and further provide experimental
results of the proposed hierarchical control scheme. In order
to track the provided trajectory, the weights in the low-level
QP are chosen to be γ1 = 102, γ2 = 103, and γ3 = 106. The
low-level controller is solved at 1kHz using qpSWIFT [38]
and takes approximately 0.22 (ms) using the same external
laptop as the planner. Snapshots of various experiments
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Fig. 5. The prescribed trajectory from the planner while trotting subject to
(a) rough terrain consisting of unstructured wooden blocks and (b) tethered
pulls. The robot is commanded to walk forward at 0.5 (m/s), the height
command is 0.28 (m), and all other states are commanded to be zero. Pulls
occur for the first 4 seconds.

using the trajectory planner in tandem with the low-level
controller can be found in Fig. 3. In these experiments, the
robot is commanded to blindly walk forward at 0.5 (m/s)
and was subject to pushes (Fig. 3(a)), pulls (Fig. 3(b)),
unknown rough terrain (Fig. 3(c)), and unstructured outdoor
environments (Fig. 3(d)). In all scenarios, the quadruped was
able to robustly maneuver. Videos of the experiments can be
found online at [39]. Phase portraits for these stable gaits
can be found in Fig. 4. The phase portraits remain small
and bounded, which demonstrates the overall stability of the
system. Using the data from the same experiments found in
Fig. 4, Fig. 5 displays the time response of the trajectories
resulting from the planner. While the disturbances are un-
known, the planner remains stable showing the robustness
of the planner against unknown external influences.

Extension to Other Gaits: The controller was addition-
ally evaluated in terms of its ability to track a time-varying
reference, and to consider an additional gait without collect-
ing new data. In order to test this, the robot was maneuvered
across flat ground using a joystick for velocity commands.
The comparison between the output of the planner and the
commanded velocities for a trot gait can be found in Fig.
6(a), and for a walk gait in Fig. 6(b). Additional experiments
also evaluated the efficacy of the planner when using a stance
time that is 25% shorter (150 (ms)) and longer (250 (ms))
than that which was used during the initial data collection.
While omitted due to space constraints, the videos of these
experiments can be found online at [39]. Our results suggest
that the same data can be used even in situations that were not
exactly represented during the data collection procedure. This
includes being robust to external disturbances and handling
gaits with different footfall patterns and step frequencies than
that which was used during collection. However, dynamic
gaits like bounding may require additional data collection.

C. Comparison to Physics-Based Reduced-Order Model

This section aims to briefly provide insight into how the
proposed data-driven methodology compares to linearized
SRB. A comparison of the trajectories of the proposed
approach versus the linearized SRB can be found in Fig. 7.
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Fig. 6. The figure shows the stable output tracking of the planner compared
to the time-varying reference provided by a user through a joystick and the
robot’s actual states while using (a) a trot gait and (b) a walk gait. Each
domain lasts 200 (ms).

Fig. 7. Hardware experiments showing the evolution of the trajectory
produced by the data-driven planner (a) and a MPC planner using a
linearized SRB model (b). The robot aims to follow a velocity profile that
results in a circular path.

The proposed approach, using only data to construct a model,
performs comparably to a moderately tuned linearized SRB-
based MPC. The slightly attenuated noise profile in the
proposed approach is likely due to the estimation that is
inherently contained within the model through (uini, yini).
This could also be due to the longer time horizon of the
proposed approach and the fact that the horizon spans multi-
ple domains. While the two methods perform very similarly,
the primary advantage of the proposed approach is that no
knowledge of the system dynamics is required to create
a reduced-order model and foregoes the need for explicit
system identification. Improvements could potentially be
obtained by considering a Page matrix representation [23]
or singular value truncation [40], but we leave this to future
investigation. Videos of the comparison can be found in [39].

VI. CONCLUSION

This paper presented a hierarchical control algorithm
based on data-driven template models for real-time planning
and control of dynamic quadrupedal robots. At the higher
level, we provide a reduced-order model, based purely on
data, which is used in a computationally tractable predictive
control framework for real-time trajectory planning. The
data-driven model leverages the information about the SRB
model while forgoing the need for successive linearization.
The optimal trajectories are then passed to a QP-based
and low-level nonlinear controller for whole-body motion



control. The efficacy of the proposed layered control ap-
proach is validated via extensive experiments for robustly
stable locomotion of the A1 quadrupedal robot on different
unknown terrains, in the presence of disturbances, and con-
sidering different gaits and gait parameters without collecting
additional data. Future work should explore the use of data-
driven template models with more complex systems such as
collaborative systems. In particular, the scalability to large-
scale complex systems will be a major challenge. Exploring
how the data-driven approach compares analytically to the
linearized SRB model would also provide valuable insight
into the dynamics captured by the proposed method.
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