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An Algorithm for the SE(3)-Transformation on
Neural Implicit Maps for Remapping Functions

Yijun Yuan and Andreas Niichter

Abstract—Implicit representations are widely used for object
reconstruction due to their efficiency and flexibility. In 2021, a
novel structure named neural implicit map has been invented
for incremental reconstruction. A neural implicit map alleviates
the problem of inefficient memory cost of previous online 3D
dense reconstruction while producing better quality. However,
the neural implicit map suffers the limitation that it does not
support remapping as the frames of scans are encoded into a
deep prior after generating the neural implicit map. This means,
that neither this generation process is invertible, nor a deep prior
is transformable. The non-remappable property makes it not
possible to apply loop-closure techniques. We present a neural
implicit map based transformation algorithm to fill this gap. As
our neural implicit map is transformable, our model supports
remapping for this special map of latent features. Experiments
show that our remapping module is capable to well-transform
neural implicit maps to new poses. Embedded into a SLAM
framework, our mapping model is able to tackle the remapping
of loop closures and demonstrates high-quality surface recon-
struction. Our implementation is available at githulﬂ for the
research community.

Index Terms—Mapping; SLAM

I. INTRODUCTION

HE reconstruction of 3D models has been explored for

decades. Its developments followed the trend of low-
cost, high-quality sensors, and efficient computation hardware
and were boosted in recent years with the progress in Deep
Learning.

In the field of reconstruction, most attention has been
drawn to global optimizations with bundle adjustment and loop
closure [1]-[3]]. Reconstructions using the Signed Distance
Function (SDF) as a representation [4] have been widely
accepted as a fundamental basis since Kinect Fusion [5] and
VoxelHashing [[6]. Recently, this basis is being challenged
by the new trend of Deep Learning, as those conventional
approaches have issues with the memory requirements and
quality of uncomplete scans.

Relying on the high modeling ability of deep learning
models, DeepSDF [7] and Occupancy Networks [8] propose
implicit geometric representations that represent the shape
in continuous space and thus are able to extract maps at
an arbitrary resolution. Similar to deep local descriptor [9]
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Fig. 1: Two flow paths to SE(3)-transform and deep encode the
point cloud. The solid line indicates the transform-encoding
path to generate implicit map of T ,-transformed point cloud
P. The shows the encoding-transform path, trans-
forming the map of features with transformation S, that is
introduced in this paper.

that uses a parametric function to encode the geometry, the
deep implicit model further supports prediction of the fields.
These deep implicit representations have been widely sought
after for their flexible use in shape reconstruction [7]], shape
generation [10] and more general tasks. By operating on the
voxel-level, [11]], [12]] even provide semantics-agnostic high-
quality reconstructions.

Relying on the success of deep implicit representation,
in 2021, DI-Fusion [13] and NeuralBlox [[14f] firstly pro-
posed incremental neural implicit maps for 3D reconstructions.
DI-Fusion especially has introduced a novel reconstruction
pipeline that effectively combined the advantage of the ef-
ficiency of neural implicit representation and the robustness
of field base registration. Different from the DI-Fusion that
uses still the conventional SLAM pipeline, [15], [16] have
proposed live-optimization with implicit representation for
reconstruction which is also able to complete unseen surfaces.

However, there is still a severe limitation for an implicit rep-
resentation compared with the common (point cloud, TSDF)
methods: implicit representations do not support transforma-
tion. And it is this limitation that makes it hard to implement
relocalization and remapping for neural implicit map recon-
structions. Yuan et al. proposes indirect registration to evade
the transformation of field during registration [[17]]. However,
the rotation and translation is inevitable for remapping func-
tion.

In this paper, we propose a transformation algorithm for
neural implicit maps to fill in this gap. As shown in Fig. [I]
encoding the transformed point cloud is equivalent to first en-
coding the points and transforming then on the neural implicit.
S, is the transformation on neural implicit corresponding to
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the Euclidean space transformation T.

The main challenge is the feature space transform with the
corresponding alignment of the original point set. Thus, in this
paper, we exploit the topic of equivariant representation [18]]-
[20], to implement the implicit map transformation. As the
focus of SE(3)-equivariant research is not the transformation, it
is actually not adequate to solve full transformation in feature
space. In addition, the recent approaches work only on small
examples with simple structures. Thus, our proposed model
works on a map of neural implicits, i.e., a set of neural implicit
functions, instead of one holistic implicit function, to evade
both limitations.

The transformed implicit map is able to produce a very close
result to the implicit map of the transformed point cloud. To
demonstrate the advantage of our mapping model, we also
embed it into a loop-closure equipped SLAM-algorithm [21]].

The contributions of this paper are as follows:

o We propose a transformation algorithm for neural implicit

maps.

o We implement a 3D reconstruction with this remapping

model.

In the following, we first describe briefly the related work
for implicit function and equivariant features. Then, we intro-
duce our transformation algorithm for neural implicit maps.
After that, experiments demonstrate the performance and we
conclude this work.

II. RELATED WORK
A. Deep Implicit Representations

Algorithms for Implicit Representation can be divided into
two categories: First, the most widely used branch is the
DeepSDF [7]]. For SDF, the geometry prior is encoded with
MLP and then fed into another model together with query
points to extract the signed distance values with a discretized
distance field. A mesh is then extracted using the Marching
Cubes algorithm [22]. For non-closed shapes which is more
general for point cloud data, an unsigned distance field neural
model is introduced without indicating inside-outside [23]]. The
second category is Occupancy Networks [8]. For Occupancy
Networks, different from the distances in the SDF model, the
probability of occupancy at a certain position is estimated
from the implicit function. Then a Multiresolution IsoSurface
Extraction (MISE) is implemented to obtain meshes.

To efficiently reconstruct intricate surfaces, DeepLS
introduces a local deep geometry prior and performs the
reconstruction with a set of local learned continuous SDFs.
Similarly, proposes a local implicit grid for reconstruc-
tion. Note that, one advantage of the local implicit model is
that it relieves the pressure on the encoding model. As a local
surface is much more simple compared to a whole complicated
scene, such a local strategy is trained on a simple synthetic
object dataset and generalized then to the real complex scene.

In 2021, DI-Fusion [[13] moves one step further and leads
the research to a real reconstruction of a scene. It is the
first implicit function research that realizes the incremental
reconstruction of a scene. More importantly, they alleviate
the memory inefficiency of SDF representation by updating

Fig. 2: PLIVox representation from DI-Fusion .

a map of latent features while extracting distance values for
registration and visualization, yielding a new direction of 3D
reconstruction with Deep Learning. Similarly, NeuralBlox [14]
also proposes to fuse the grid of latent features. Given an
external state estimation with noise, its latent code fusion
still shows a robust performance. iMAP proposes a non-
conventional SLAM pipeline with implicit neural represen-
tation for incremental reconstruction. The main component
of it is a differentiable rendering model. With an online
optimization, the reconstruction is optimized by repeatedly
minimizing the rendering distance to observed images.

In this work, we build on top of DI-Fusion by using their
PLIVox representation as in Fig. [2]

B. Equivariant Feature

Equivariance is a novel concept for 3D point clouds. The
target is a universal representation of objects with different
poses to avoid exhaustive data augmentation.

We follow the definition in SE(3)-Transformers [19]: Given
a set of transformations Ty : V — V for g € G, where G is
an abstract group, a function ¢ : V — ) is equivariant if for
g, there exists a transformation S, : Y — ) such that

Sglo(v)] = ¢(Ty[v]) forall g € G,ve V. (D

From their definition, an SO(3)-equivariant function ¢ fol-
lows Sr¢(v) = ¢(R[v]) with function S an operation to

ﬂ o
J
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Point cloud input Encoded feature

Fig. 3: SO(3)-equivariant representation for point cloud.
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Fig. 4: Pipeline for SLAM embedding our mapping module. SLAM module provides the point cloud P, and the pose table

{Ty,---,T;} for the with keyframe i.

produce same result as aligning the point cloud. While for
the translation-equivariant, for convenience, the S operation is
usually defined as identity mapping.

As the translation is reduced with the relative position,
most of works mainly focus on SO(3)-equivariant represen-
tations [[18]], [24]-[26]] with steerable kernel bases. SE(3)-
Transformers [19] leverages the advance of self-attention on
large point sets and graphs with various point numbers.

Realizing equivariance by learning, those works are re-
stricted to using convolutions and relative positions of neigh-
boring points. Vector Neurons (VNN) firstly introduce a
whole group of network layers that produce SO(3)-equivariant
features [20]. It is flexible to reconstruct PointNet [27] or
DGCNN [28]] with VNN layers. This provides us a good basis
as it is able to function as point-encoder. In this work, we
mainly use three rotation-equivariant operations: VNLinear,
VNLeaKyReLU, and mean-pooling. For example, with{ the
input V. € RY*3 VNLinear parameter W; € R *¢,
VNLinear produces the output W;V where (W, V)R =
W, (VR) is rotation-equivariant. LeaKyReLU produces each
output vector-neuron v/C eV = freakyreLu(V) with sep-
arate parameters W, € R*¢ and U, € R where
¢ e {1,---,C}. For each vector-neuron v, € R**3, it maps
the input feature V to the feature q. = W,V € R'*3 and
direction k., = U,V € R'*3, Thus it produces

/ e if {(qc,ke) 20
R MR
e = (e i T/ e OtHETWISE,

c

with the output V' = [v_]<_, [20]. Mean-pooling is an average
on the same dimension of all points, therefore it is naturally
rotation-equivariant.

As the original goal of the equivariance concept is to provide
universal features, i.e., S = I is adequate for translation.
However, with a different focus of transforming the feature
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Fig. 5: The structure of encoder-decoder neural network. pj,
n; are point xyz and norm for certain point p; in one m-
th PLIVox. p are point for inference and pu, o are estimated
distance value and its standard derivation.

space, this setting is not applicable. In this paper, only the
feature rotation resorts to the SO(3)-equivariant architecture
VNN [20]] and functions as Fig. El The translation is solved
using other techniques.

III. METHODOLOGY

We follow DI-Fusion [13]] to use the evenly-spaced voxels
(PLIVoxs) to represent the map. V = {v,, = (¢, Fpn, W)}
with ¢,, € R3, F,, € RE, w € N the voxel centriod, latent
representation of observed geometry and observation count
respectively.

A. SO(3)-equivariant Features

Our encoder-decoder neural network @ follows the design
of encoder-decoder in DI-Fusion [13]. ¢, encodes points in a
PLIVox, and ¢, predicts distance mean and standard deviation
for query points. But different from DI-Fusion that is using a
simple PointNet structure, to realize the transformation on the
neural implicit map, we propose to use VNN layers [20] to
build an SO(3)-equivariant encoder.
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For each local voxel, it uses the points P,, and the norm
S, as an input. Two branches of VNN-MLPs are respectively
applied on P,,, and S,,, and produce features Fp,, € R!*3 and
Fs,, € R™3. Then by concatenating Fp,, and Fg , along the
| axis, it achieves F,,, € R?*3, A point encoder ¢p 18 given
in Fig. [5| The local point set encoder ¢, produces the mean-
pooling of the ¢, output in P,,.

In this encoder-decoder we changed the encoder with VNN
to realize the SO(3)-equivariant functionality. For more details
about the decoder network and Conditional Neural Processes-
style training, please refer to DI-Fusion [13]].

B. Neural Implicit Mapping Module
Neural Implicit Mapping Module consists of Encod-

ing (Sec. [lII-A), Fusion (Sec. [lI-B3), Removal (Sec. [[II-B3),
and Transforming (Sec. functions.

The input frame to this module is firstly encoded into
a local neural implicit map and fused to the global map.
When a loop is detected, remapping a certain frame requires
removing, transforming, and fusing the corresponding local
neural implicit map.

A diagram of our mapping module is given in Fig. ] The
neural implicit mapping module serves as a mapping module
for SLAM.

1) Transformation to Global Coordinate: Our transforma-
tion algorithm of Neural Implicit Map consists of two steps:
the grid transformation and the feature rotation.

As demonstrated in Fig.[6] given the transformation T of the
local map V; to global coordinates, the update is actually on
the center ¢ and its corresponding implicit feature F for each
PLIVox. For PLIVox voxel v,, € V;, center (grid coordinate)
c,, directly transforms

Cm < T Cm. (3)

Afterwards, for the feature F,, € R2*3, as the feature is
always positioned at the voxel center, the rotation is left to
solve. Thus

F,, (R : FZ;L)T' 4)

However, only transforming the local neural implicit frame is
not sufficient to update the global map. Because the trans-

7
/
/

(Cm,Fum)

Fig. 6: Demonstration of the transformation on the neural
implicit map. The voxel grid is transformed to a new position.
F,, rotates since F,, is still positioned at the center of a voxel
in the grid after the transformation (center is transformed).

formed voxel grid for the local frame may not be consistent
with the grid of the global map.

2) Interpolation to Global Grid: As shown in Fig. [/| there
is a small gap between global and local grid coordinates.
Therefore, we need to additionally interpolate the local fea-
tures on the global grid.

Since the distance between the local and the target voxel
is small, and points involved for encoding are actually in a
2-times voxel length region around its voxel in implementa-
tion, we propose to align voxels by linearizing the function
¢(P + t). Each v,, in the local grid will contribute to the
close neighbor v,, in the global grid:

FVn = ¢e (Pm + tmm)a

Then by linearizing the right side of Eq. (3), we yield

tm,n =Cp —Cm (5)

0
F,, =F,, + a[‘be(Pm)}tm,n- 6)

Here we denote the Jacobian as J,,, = 2 [$(P,,)], for which
J'm c RQZXBXS'
Following the feature metric of PointNetLK [29], we ap-
proximate each column of the Jacobian using
J ~ ¢6(Pm + tp) - ¢6(Pm)
P At
where t, € {[At,0,0],[0, At, 0], 0,0, At]}.
Then the Jacobian of the feature over the translation is

I = [Jm,l Jm,2 Jm,3]- (8)

To note that the Jacobian is computed together with the
implicit feature which is before the transformation (with T).
Thus each column of Jacobian need a pre-transformation
Jmp — JmpRT together with its feature transformation in
Eq. {@). In addition, the translation bias t,, ,, in Eq. (6) cannot
be directly multiplied with J,,,. An inverse rotation is required,
that is J mRTtm,,L. We then keep the formulation Eq. @ still
valid by rewriting the Jacobian as J,, < J,,R”.

In our implementation, for each target grid v,, in V, that
has neighbors with center distance<voxelSize, we find its K
nearest neighbors v, where m € {c1,---ck} in the local
grid. Here ¢; denotes the PLIVox index of neighbors. Then
we interpolate

c RQl x3 (7)

mée{ci,ckx}
,,,,,, S
]
Vg ””” YRURD,

Fig. 7: The transformed local grid is not well-fitted with the
global grid. Here we show the center of the grid for better
demonstration.
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_ exp(_lltn,ml‘z) :
where s, ,, = S exp(—[lta )" Moreover, the voxel point

number w is required for the following global neural implicit
map updating (LII-B3), thus should also be recorded

Wy, = E Snym * Wi
m

3) Map Removal & Fusion: DI-Fusion provided an updat-
ing of the neural implicit map in a voxel-to-voxel manner.
As we transform and fit the local grid to the global grid in
previous Sec. [[II-BT| Sec. [[II-B2} we are now ready for the
neural implicit map updating.

Since the global map has been fused previously with the
local map Vi, i.e., after a pose update, the global map
V, requires a local removal, and afterwards a local fusion
with the updated neural implicit map. We similarly formulate
the removal formula. The removal and fusion are done as
following:

(10)

k
Fow, F f‘m (11
W F Wy,

4) Mesh Extracting: We follow DI-Fusion [[13]] to build
the reconstruction model from the neural implicit map. First,
signed distance fields are generated for each PLIVox by using
the decoder ¢4 from Sec. Then with the one complete
signed distance field, the Marching Cube algorithm is used to
extract the mesh model.

The whole pipeline is plotted in Fig. When frame ¢
is processed by the SLAM system, an external localization
module (see experiment section) is required to track the
camera and maintain the pose graph. In each frame, our
neural implicit mapping module encodes the frame and fuses
it into the global implicit representation. When there is a loop
closure, it updates the sequence of poses and our mapping
system checks the pose of each frame. If the pose of a certain
frame is updated, the mapping module will (1) remove the
old local neural implicit map of that frame, (2) transform to
a new pose and interpolate to produce a new local neural
implicit map from the original copy of the local map, and (3)
fuse this new local map into global.

F,, « , wmewm¥wﬁI

IV. EXPERIMENTS
A. Setting

1) Datasets: Three datasets have been used in our experi-
ments. The object dataset ShapeNet [30]] is used for training
purpose. The RGB-D dataset ICL-NUIM [31]] and Replica [32]
are utilized for quantitative evaluation.

a) ShapeNet [30|]: ShapeNet is a rich-annotated large
variety 3D shape dataset. We follow [[13]] to select 6 categories
(bookshelf, display, sofa, chair, lamp, and table) and 100
samples to train the encoder and decoder model. For more
details about the pre-procession of this data, please refers to
[13].

b) ICL-NUIM [31)]: ICL-NUIM is a widely used RGB-D
dataset for SLAM and Reconstruction. It contains living rooms
and office room scenes. From which the living room scene
contains a ground truth surface model. So this living room
scene is widely involved in research for surface comparison.
We use Ir-kt[0-3] with synthetic noise for standard surface
comparison.

¢) Replica [32)]: The Replica data set is a highly photo-
realistic 3D indoor scene reconstruction dataset. We use
iMAP’s [15] 8 sequences (5 offices and 3 apartments) from
Replica. The 8 sequences contain rendered 2000 RGB-D
frames each. Different from ICL-NUIM sequences that do
not repeatedly record certain views, because of the live-
optimization of iMAP, the replica sequences cover each di-
rection and surface multiple times. We extensively implement
our model on this dataset to demonstrate the reconstruction
quality.

2) Implementation details: All of the experiment is im-
plemented on a NUC-computer (CPU-i7-10710U 1.10GHz,
32GB memory, GTX2080Ti-12GB). We follow the DI-Fusion
to set PLIVox parameters: voxel-size= 0.1m. For mesh ex-
traction, we also set the same o threshold op = 0.06 to
fairly compare with DI-Fusion. For encoding, we set the length
of a feature to 9 x 3 x 2 for the VNN SO(3)-equivariant
feature. Three VNN-linear operations are required on each
point and normal to get the two 9 x 3 features for each
point in PLIVox. More specifically, the point encoder se-
quentially VNLinear(1,32)—VNLeakyReLU— VNLinear(32,
32)—VNLeakyReLU—VNLinear(32,9) results in a 9 x 3
size feature at point and normal branch respectively. Then,
by mean-pooling and concatenating, one 18 x 3 size point
set feature is obtained for that PLIVox. For decoding and
optimization loss, we follow the same as DI-Fusion to predict
both mean and variance and train the whole encoder-decoder
network in a similar strategy as the Conditional Neural Pro-
cesses [33]. For interpolation, we set the candidate number
K = 8. For mesh extracting, resolution= 4 for the space grid
in each PLIVox used.

To test on the Replica dataset, we set op = 0.15 and

resolution= 3.

3) Training: Even with the different encoder structures,
our model is actually trained with the same setting as DI-
Fusion [13] on ShapeNet data.

4) Testing: During testing, the pre-trained encoder-decoder
is transferred to the new scene of indoor scale reconstruc-
tion. We have two tests, one is about the functionality of
the transformation, and the other is about the incremental
reconstruction. For the first test in Sec. [[V-B| we use the
mapping module for a single frame.

For the second test in Sec. ORB-SLAM2 RGB-
D is utilized to provide the localization. Then we use two
benchmarks to evaluate the performance: ICL-NUIM and
Replica [32]. ICL-NUIM is the most widely used standard
test which has a standard surface model and metrics tools for
comparison.

On the standard ICL-NUIM benchmark, we compare with
DVO-SLAM [34], Surfel Tracking [35], ElasticFusion [3],
BundleFusion [2]], and DI-Fusion [|13]].

On Replica dataset, we follow the paper iMap [15] to select
the data and compare it with iMAP as a baseline. Values are
taken from the iMAP paper as its source is not released.
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B. Evaluate the Functionality of Transformation on Neural
Implicit Maps

As introduced in Fig. [I] there are actually two paths to
encode point clouds into the neural implicit map with trans-
formation. To evaluate the functionality of our transformation
algorithm, we generate neural implicit maps in both branches
and then measure the performance with respect to accuracy
and completeness between the reconstruction from the result
neural implicit maps. Accuracy shows the average distance
between the sampled reconstruction points in the encode-
transform path and the nearest points in the transform-encode
path. Completeness shows the average distance between the
sampled points from transform-encode reconstruction and the
nearest points in the encode-transform path. We select Ir-
kt[0-3] as the test sequences, and GT-trajectory to provide
the transformation accordingly. After generating the neural
implicit maps, the decoder is used to generate the Signed
Distance Field and the Marching Cubes algorithm is used
to generate the surface. Each frame is recorded separately
to compute the surface error. We also draw the error for
each frame, the distribution of error is shown in Fig. It
is clear that our method retains a similar reconstruction with
the transformation on the neural implicit maps.

For the completeness especially, the very low error shows
that our transformation-on-implicit well-reconstructs the sur-
face region compared to the transformation-then-implicit build.
However, there still exists an ~ 3cm error. The success of the
incremental reconstruction in the following experiment shows
that this is more a small surface generation effect in the whole
reconstruction.

C. Evaluate the Incremental Reconstruction Performance

1) ICL-NUIM test: In this part, we evaluate our model
on the ICL-NUIM benchmark with synthetic noise added.

Completeness

0.20
0.15 1
E
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E
w
oos| L. __ T
o — = = p——
0.00 T T T T
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=
w
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Fig. 8: Accuracy and completeness. Accuracy metrics show
how close extracted points to points in
transform-encode branch are. While completeness metrics
show how close transform-encode extracted points to points
in are.

TABLE I: Comparison of surface error on ICL-NUIM [31]]
benchmark (measured in centimeters).

\ Ir ktO Ir ktl Irkt2 Ir kt3
DVO-SLAM [34] 3.2 6.1 11.9 5.3
RGB-D SLAM [36] 44 32 3.1 16.7
MRSMap [37] 6.1 14 9.8 24.8
Kintinuous [38]] 1.1 0.8 0.9 15.0
ElasticFusion [3]] 0.7 0.7 0.8 2.8
DI-Fusion [[13] 0.6 1.5 1.1 4.5
Ours | 1.2 1.58 1.0 1.2

We use a surface error to metric for the difference between
reconstruction and the ground-truth model. The quantitative
evaluation is demonstrated in Tab. [ We observe that the
neural implicit map based algorithm achieves high accuracy
compared to others. However, in Ir-kt3 which contains loops,
DI-Fusion does not exceed ElasticFusion. But our model gets
the best score with 1.2. To note that, our model is able to
detect and remap the start-end loop on Ir-kt3, which is reflected
on the scores, 1.2cm, exceeding the rest. This demonstrates
that our model is able to address the problem of DI-Fusion
which is not compatible to a loop closure module. We find
that our model scores similar on Ir-kt1, 2 with DI-Fusion. It
also approves that our VNN-encoder well-represent the feature
while holding the SO(3)-equivariant functionality.

2) Replica Test: We also evaluate our model on the
iMAP [15] Replica Dataset sequences. The metrics follow
iMAP on accuracy, completion, and completion ratio. The
completion ratio is an important metric because the ground
truth model contains the ceiling which is mostly non-touched
in data sequences. In Tab. we see that our model scores
best on all accuracy tests, and best on most completion and
completion ratio. On the average scores, our model achieves
best on accuracy and completion ratio. Our average completion
does not exceed iMAP.

Note that iMAP is a live-training model with differential
rendering. It is naturally capable to complete the blocked
region of point clouds. Our model does not have this point
cloud completion function. This explains why iMAP exceeds
ours on completion. But its higher completion but lower
or similar completion ratio of iMAP means the guess of
unobserved surface usually fails.

Some results are textured and plotted at Fig. [9]

D. Efficiency Test

1) Time Cost: Time efficiency of encoding and remapping
directly influences the usage of our model in online recon-
struction. Thus we recorded the time cost of Ir-kt3 test from
Sec. that contains a large loop.

For each frame that is fed into the mapping model, it is
encoded as a local neural implicit map. The recorded encoding
time is 0.0077s £ 0.0019s per frame.

When a loop is detected, certain frames require being
removed, transformed and fused again onto the global map.
This is accomplished with neural implicit maps.

Per frame removal from global map
0.0040s £ 0.00038s. Per frame transformation

takes
and
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TABLE II: Reconstruction Test on Replica Dataset .

room-0 room-1 room-2 office-0 office-1 office-2

office-3 office-4 Avg.

Acc. [cm] | 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43

iMAP* [15] Comp. [cm] | 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56
Comp. Ratio [< 5cm %] T  83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06

Acc. [cm] | 2.05 1.74 1.97 2.03 1.63 2.10 2.75 3.07 2.17

Ours Comp. [cm] | 3.75 341 4.60 9.68 8.73 5.67 4.77 5.14 5.72
Comp. Ratio [< 5cm %] 1 86.59 87.60 83.57 79.28 78.14 71.76 78.19 74.16 80.66

* Values taken from .

(a) office0 (b) officel

(f) roomO

(e) office4

(g) rooml (h) room2

Fig. 9: Reconstruction Demonstration. Our post-processed textures are averaged from projected image colors.

interpolation take 0.018s 4 0.0039s. Per frame fusion to
global map takes 0.0032 £ 0.00044s.

Thus the encoding processes around 130Hz, and the
remapping processes around 50Hz on our NUC-computer.
Therefore this remapping can be well-adequate for the online
application.

2) Space Cost: The space cost mainly consists of the Net-
work (encoder, decoder), Neural Implicit Map, and Meshing.

We evaluate this by saving network parameters and neural
implicit maps into files. The parameter files are 31.5kB for
encoder and 207k B for decoder. We save full result map from
Ir-kt3 test with torch.save, merely 29.2M B are taken.

During the encoding, we fetched the network parameters
that take 26.5kB. Points are passed to our VNN-Encoder. As
we previously provided the specific layers. The space cost is
computed as n x max{1,32,32,9} x 3 x 2 = 192n float32
as an intermediate buffer is not reserved. Thus we count
the points into the encoder to compute the encoding buffer
105M B £ 59M B.

We do not count the space cost of the mesh extracting, as
in Fig. [ it is for visualization and can be operated externally.

E. Demonstration on Campus-scale Reconstruction

We are also interested in scenarios that other methods
cannot do. We see that for indoor scenes, many sequences
do not contain large loops for the front-end restructuring.
But when it turns to outdoor LiDAR SLAM, such as KITTI-
odometry [39], loop closure shows vital significance to remove

Fig. 10: Incremental reconstruction result on KITTI-odometry
sequence 00.

the accumulated error for a long trajectory. Thus, we attempt
to produce a neural implicit mapping on such a scene to further
reveal the capability of our algorithm. The LiDAR localization
model PyICP—SLAMEl is utilized to provide tracking estimation
and the pose graph. Due to the scale difference to the indoor
scene and limited available memory, we use a voxel size of
4m, other hyperparameters are preserved. A reconstruction on
KITTI-odometry sequence 00 is given in Fig. [10]

Zhttps://github.com/gisbi-kim/PyICP-SLAM
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V. CONCLUSION

In this paper, we have presented a neural implicit map-
ping module that does support loop closing. By utilizing
an SO(3)-equivariant encoder, we are able to implement
SE(3)-transformations directly on the neural implicit maps. In
combination with an interpolation step, our mapping module
supports updating the neural implicit map when the pose
of certain frame changes without touching the original 3D
point cloud. In addition, we showed in our experiments,
that our SO(3)-equivariant encoder takes the responsibility
of generating neural implicit maps, and based on that, our
transforming module functions well and provides high-quality
reconstruction with and without a loop closure.
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