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A Spanning Tree-Based Multi-resolution Approach for Pose-graph
Optimization

Yuichi Tazaki1

Abstract—This paper proposes a computationally efficient
method for pose-graph optimization that makes use of a multi-
resolution representation of pose-graph transformation con-
structed on a spanning tree. It is shown that the proposed
spanning tree-based hierarchy has a number of advantages over
the previously known serial chain-based hierarchy in terms of
preservation of sparsity and compatibility with parallel compu-
tation. It is demonstrated in numerical experiments using several
public datasets that the proposed method outperforms a state-
of-the-art solver for large-scale datasets.

Index Terms—Mapping, SLAM

I. INTRODUCTION

THE problem of estimating the robot’s trajectory and
generating a map of the environment simultaneously

from a set of measurement data is called the Simultaneous
Localization and Mapping (SLAM) problem. SLAM problems
have two major categories, one is incremental SLAM, which
considers partial and incremental update of a map, and the
other is full SLAM, which considers generation of an entire
map from a batch of observation data. A full SLAM problem
of a posegraph is called a posegraph SLAM problem or
posegraph optimization (PGO), and it has been a subject
of active research in past decades. A posegraph SLAM is
formulated as a nonlinear least squares problem, and it is
often solved by using iterative methods such as Gauss-Newton
and Levenberg-Marquardt methods. Each iteration minimizes
a quadratic function whose coefficient matrix is sparse and
positive symmetric reflecting the topology of the posegraph.
Historically, Lu et al. was one of the earliest to propose a
least squares formulation of posegraph SLAM [1]. Dellaert et
al. proposed to utilize sparse linear algebra to solve large-scale
posegraph SLAM problems efficiently [2]. Later, extension
to Incremental SLAM has been proposed in [3][4], and a
distributed version for multi-robot SLAM has been studied in
[5][6]. Kümmerle et al. proposed a posegraph SLAM solver
called g2o, which is considered to be one of the fastest
implementation of posegraph SLAM solver to date [8]. In-
ternally, g2o uses CHOLMOD, a state-of-the-art sparse direct
solver for symmetric linear system of equations. Rosen et al.
proposed SE-Sync, a posegraph optimization solver based on
an alternative formulation of posegraph optimization and its
efficient solution algorithm based on convex relaxation [15].
Its extension to distributed SLAM has been proposed in [16].
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Bai et al. proposed posegraph optimization in cycle space,
motivated by the intuition that most practical posegraphs
with a large number of nodes may have much lower cycle
space dimensions [17]. Apart from computational efficiency,
improving the robustness against spurious links included in the
posegraph is also considered to be an important research topic
[9][10][11]. Some other studies focus on removing redundant
nodes and links for reducing the size of the posegraph without
losing essential information [12][13][14].

Although direct sparse solvers proved to be quite com-
putationally efficient for posegraphs with moderate size, the
theoretical complexity of posegraph optimization has higher
order than linear complexity. The scale of environmental maps
used for mobile robots, on the other hand, is expected to
grow steadily in the near future. This means that further
improvement of computational cost is required. One promising
approach for reducing the size of posegraph optimization is
hierarchization. Generally speaking, by transforming a single
large-scale posegraph optimization problem into a hierarchy
of smaller problems, the overall computational cost can be
reduced dramatically. Frese et al. was one of the earliest
to apply multi-grid methods to posegraph optimization [18].
Grisetti et al. proposed a method that constructs a hierarchy
of posegraphs by grouping neighboring nodes [19]. One
shortcoming of this method is that the grouping criterion
and the setting of thresholds largely depend on heuristics.
Anderson et al. proposed a multi-resolution method based
on the representation of posegraphs by wavelet transform
[20]. Guadagnino et al. proposed hierarchical initialization of
posegraphs, in which an initial pose estimate is obtained from
a coarse-grained posegraph.

Our study is strongly inspired by the earlier multi-resolution
(MR) approaches [18][20]. In [18], coarser posegraphs are
constructed by downsampling of nodes, while coarse-to-fine
transformation was defined based on interpolation of poses.
In [20], wavelet function was used, but the essential idea
is similar to [18]. One drawback of this interpolation-based
hierarchy is that the Hessians of higher (coarser) resolution
levels tend to become dense, and consequently this type of
MR does not contribute to the reduction of computation cost
as much as one might expect. Moreover, existing studies on
MR methods are nearly (or more than) a decade old, and
quantitative comparison with sparsity-based methods which
appeared later has not been reported.

This paper proposes a method for posegraph optimization
that is based on a novel spanning tree-based multi-resolution
hierarchy. The proposed MR formulation defines a coarse-
to-fine transformation in such a way that the pose of a
node that belongs to the lower (finer) level is defined by
extrapolating the pose of a single supernode that belongs
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to a higher (coarser) level. Compared to the interpolation-
based transformation, this new formulation can reduce the
densification of Hessians in higher levels, and as a result, the
linear equation of each level can be solved more efficiently
by sparse direct methods. Moreover, the spanning tree-based
hierarchy possesses a computationally favorable characteristic
that enables parallel computation of disjoint sub-equations in
the same resolution level. Using open datasets, the proposed
method is compared with g2o and SE-Sync in terms of
convergence speed and computation time. It has been shown
that the proposed method outperforms other methods when
applied to large-scale datasets. An implementation of the
proposed method is made publicly available for evaluation1.

The rest of this paper is organized as follows. In Sec-
tion II, the basic formulation of posegraph optimization is
briefly reviewed. In Section III, a posegraph optimization
method based on a novel spanning tree-based multi-resolution
parametrization is presented. In Section IV, comparison results
of the proposed method and the g2o solver are reported. A
brief summary and concluding remarks are given in Section
V.

II. FORMULATION OF POSE-GRAPH OPTIMIZATION

A posegraph consists of nodes and directed links where
each node represents a pose in the configuration space (either
2D or 3D) and each link possesses desired relative pose and
error covariance between two nodes connected by that link.
The set of nodes is denoted by N and the set of links is
denoted by L. The source and destination nodes of a link l
are denoted by nl and n′

l, respectively. The pose of each node
is expressed by an element of either SE(2) or SE(3), depending
on whether we consider 2D or 3D posegraphs, respectively. In
the following discussion, we assume a 3D posegraph, but the
proposed method is applicable to 2D posegraphs with minor
modification.

Let us denote the pose of a node n by xn = (pn, qn),
where pn ∈ R3 is the translational component and qn ∈ Q
is the rotational component (Q is the set of unit quaternions).
Moreover, let us denote the desired relative pose associated
with a link l by (pl, ql), and the covariance matrix by Il. The
error function of l is defined as follows.

el(xnl
, xn′

l
) =

[
q−1
nl

(pn′
l
− pnl

)− pl
v(q−1

l (q−1
nl

qn′
l
))

]
(1)

Here, for p ∈ R3 and q ∈ Q, qp applies rotation expressed
by q to p, and q−1 denotes the conjugate of q. This function
expresses the error between the relative pose of the two nodes
calculated from their absolute poses and the desired relative
pose associated with the link. The function v(q) returns a
vector in R3 that consists of the x, y, and z components of
a quaternion q. Moreover, the quadratic cost function of l is
defined as

Jl(xnl
, xn′

l
) = eTl Ilel. (2)

1https://github.com/ytazz/mrpgo

A posegraph optimization problem is formulated as a mini-
mization problem of the sum of cost of all links.

min
xn,n∈N

J

J =
∑
l∈L

Jl(xnl
, xn′

l
)

(3)

A posegraph optimization problem has nonlinearity because of
rotation transformation of SE(3) (or SE(2)). A widely accepted
strategy is to solve this problem by iteration. Namely, instead
of optimizing the poses directly, we define correction of poses
as new decision variables and formulate a new problem which
is to reduce the cost as much as possible. The change of
pose of n ∈ N is δxn = [δpTn δqTn ]

T ∈ R6, where δqn is
an angle-axis vector that expresses a change of orientation.
The difference of the error function el is derived as follows.

δel =
∂el
∂xnl

δxnl
+

∂el
∂xn′

l

δxn′
l
,

∂el
∂xnl

=

[
−RT

nl
RT

nl
(pn′

l
− pnl

)×

O − 1
2 (Rnl

Rl)
T

]
,

∂el
∂xn′

l

=

[
RT

nl
O

O 1
2 (Rnl

Rl)
T

] (4)

where Rnl
and Rl is a rotation matrix equivalent to qnl

and
ql, respectively, and r× is a skew-symmetric matrix equivalent
to a cross product with r. Further more, the difference of the
cost function Jl is derived as follows.

δJl = 2(Ilel)
Tδel + δeTl Ilδel

= 2

 ∂el
∂xnl

T

∂el
∂xn′

l

T

 Ilel

T [
δxnl

δxn′
l

]

+

[
δxnl

δxn′
l

]T  ∂el
∂xnl

T

∂el
∂xn′

l

T

 Il

[
∂el
∂xnl

∂el
∂xn′

l

][
δxnl

δxn′
l

]

=: 2dTl

[
δxnl

δxn′
l

]
+

[
δxnl

δxn′
l

]T
Hl

[
δxnl

δxn′
l

]
(5)

Here, dl and Hl are the gradient and the pseudo Hessian of δJl.
We call it the pseudo Hessian because the second derivative
of el is ignored. In the remaining discussion, Hl is referred
to as the Hessian for simplicity. Now, the differential version
of the original cost minimization problem can be written as
follows:

min
δx

δJ,

δJ =
∑
l∈L

δJl = 2dTδx+ δxTHδx
(6)

Here, d and H are the gradient and the Hessian of the overall
problem. Since this is a simple minimization problem of a
quadratic function, its minimizer can be obtained by solving
the following linear system of equations.

Hδx+ d = 0 (7)
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Once δx is obtained, the pose of each node is update as
follows:

pn ← pn + δpn,

qn ← q

(
δqn
∥δqn∥

, ∥δqn∥
)
qn

(8)

where q(η, θ) is a quaternion expressing a rotation around
η with an angle θ. The above procedure is repeated for a
specified number of times or until the cost reduction δJ
becomes smaller than a threshold. The most computationally
demanding part is computation of the linear equation (7). The
Hessian H generally possesses a sparse structure reflecting
the topology of the posegraph. An effective solution known
to date is to use a sparse direct solver such as CHOLMOD
for computing (7). In order to achieve further improvement
of computational efficiency, in the next section we propose
a multi-resolution approach which decomposes the original
minimization problem into a hierarchy of smaller problems.

III. MULTI-RESOLUTION TRANSFORMATION OF
POSE-GRAPHS

A. Multi-resolution Representation of Posegraph Transforma-
tion

In the following, a multi-resolution representation of pose-
graph transformation, which constitutes the foundation of the
proposed method, is described. There are two basic ways for
parametrizing the transformation of a posegraph: absolute and
relative. The absolute parametrization considers the absolute
pose of each node (i.e., pose with respect to the global
coordinate frame) as an independent variable. The relative
parametrization, on the other hand, considers a serial chain
that connects the nodes from the first to the last one, and treats
the relative pose between consecutive nodes as independent
variables. Apart from these two basic parametrizations, a serial
chain-based multi-resolution (MR) parametrizations has been
proposed in [18] and in [20]. In the following, we propose an
alternative spanning tree-based MR parametrization.

In the first step, consider a spanning tree of a posegraph.
More specifically, we consider a breadth-first-search tree. The
selection of the root node of the spanning tree is arbitrary.
Unless there is some special reason, one can simply choose
the first node in the posegraph as the root node. Let Nd be a
subset of nodes whose depth in the spanning tree is d. Then
N0,N1, . . . ,ND defines a partition of the whole node set N ,
where D is the maximum depth. Let us further partition the
depths 0, 1, . . . , D into multiple levels I0, I1, . . . , IL. Here, I0
consists of every second depth Nd, I1 of every fourth, and so
on in an interleaved way. This means every level encompasses
every second of those Nd not included in previous levels.
Finally, the highest level IL includes all depths not included
in the lower levels. Formally, each level is defined as follows:

Ii :=

{
{d | d ≡ 0 (mod 2i), d ̸≡ 0 (mod 2i+1)} (i < L)

{d | d ≡ 0 (mod 2i)} (i = L)

(9)

For example, if L = 2, we have I0 = {1, 3, 5, . . . }, I1 =
{2, 6, 10, . . . }, and I2 = {0, 4, 8, . . . }. A simple example

of partitioning is illustrated in Fig. 1(a). Moreover, actual
partitioning of Intel dataset is visualized in Fig. 1(b). When
d ∈ Ii, we say that d (and also any n ∈ Nd) belongs to the
i-th level. For i < L, depths that belong to the same level
are assigned serial indices starting from 0 and they are called
blocks of that level. For example, N10 belongs to the 2nd
block of level 1. All depths that belong to the maximum level
are assigned the block index 0.

From the definition of breadth-first-search spanning tree, the
depth of every node is equal to the length of the shortest path
from the root node to that node. This indicates that every pair
of nodes connected by a link either belong to the same depth
or belong to adjacent depths. Moreover, from (9), no adjacent
depths belong to the same level. From these two facts, we can
conclude that nodes that belong to different blocks of the same
level are disjoint. For example, in Fig. 1(a), depths 3 and 5 are
two different blocks of level 0. Here, no link of the posegraph
connects N3 and N5 directly. This characteristic is utilized for
parallelization of the solution algorithm presented in Section
III-C.

For a node n ∈ Nd, its supernode is defined as its nearest
ascendant in the spanning tree which belongs to a higher level
than n. From (9), for any node n whose level is i < L, its
supernode is uniquely defined. Nodes that belong to the L-th
level do not have supernodes.

Now, let n be a node that belongs to the i-th level and n′ be
its supernode which belongs to the i′-th level. By definition,
i < i′ ≤ L holds. In the multi-resolution parametrization, the
change of pose of n is expressed as follows:

δxn =

[
I −(pn − pn′)×

O I

]
δxn′ + δx̂n

=: An,n′δxn′ + δx̂n

(10)

The first term in the right hand side of (10) expresses the
extrapolation of the change of pose of the supernode n′ to that
of n; it expresses how much n moves when n′ moves by δxn′

while the relative pose between n and n′ in the spanning tree is
fixed. The second term is added to the first to make additional
modification to the change of pose. Note that unless n′ is in
the highest level, δxn′ is given by δxn′ = An′δxn′′ + x̂n′ ,
where n′′ is the supernode of n′. In this manner, in the
MR parametrization, the change of pose of each node is
expressed as a superposition of x̂n, x̂n′ , x̂n′′ , . . . . In Fig. 2, the
concept of the proposed parametrization is illustrated using
an analogy of mechanical linkage. For ease of illustration,
a single path from the root node to a certain leaf node in
the spanning tree is shown, where indices indicate depths. In
the figure, movement of different levels (level 0, 1, and 2)
are expressed as mechanical links with different colors. The
movement of Node 4 is transmitted to Nodes 5, 6, and 7
via a link representing the level-2 movement. Similarly, the
movement of Node 6 is transmitted to Node 7 via a level-1
link.

Now, let us define δxi as a concatenation of all δxn of
nodes that belong to the i-th level. Since the supernodes of
these nodes all belong to the i+1-th level or higher, from the
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Fig. 1. Partitioning of nodes into levels and blocks.
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Fig. 2. Illustration of hierarchical pose transformation.

transformation described above, we have

δxi = AiδxL:i+1 + δx̂i. (11)

Here, δxi1:i2 = [δxT
i1
, . . . , δxT

i2
]T, and Ai can be constructed

from An,n′s defined in (10).

B. Multi-resolution Transformation

When iterative methods such as the Gauss-Seidel method
is directly applied to posegraph optimization, it generally
requires a large number of iterations for convergence. This is
because it requires many iterations for a local change of pose
and its influence on the cost of neighboring links to propagate
over the graph to cause macroscopic change of pose. The MR
parametrization described in the previous section facilitates
quick propagation of pose change through higher (coarser)
levels, and at the same time, enables small adjustment of poses
through lower (finer) levels.

In the following, we show that the MR parametrization
transforms the gradient and the Hessian of the original min-
imization problem (6). Let us reorder the components of δx
so that it expressed as

δx =
[
δxT

L δxT
L−1 . . . δxT

0

]T
(12)

In the MR parametrization, δx̂i instead of δxi becomes the
decision variable. Therefore, the new decision variable is
defined as:

δx̂ =
[
δxT

L δx̂T
L−1 . . . δx̂T

0

]T
(13)

Given δx̂, one can obtain δx by applying (11) recursively from
i = L−1, . . . , 0. Now, consider transforming the original cost

Algorithm 1 MR-PGO: outer loop
1: Initialize x
2: loop niter times
3: Approximate J at x and compute d and H
4: Compute δx by using Algorithm 2
5: if δJ is small enough then
6: break
7: end if
8: update x by δx using (8).
9: end loop

10: return x

minimization problem (6), whose decision variable is δx, to
another minimization problem with respect to δx̂. Consider
the following transformation:δxL:i+1

δxi

δx̂i−1:0

 =

 I O O
Ai I O
O O I

δxL:i+1

δx̂i

δx̂i−1:0

 =: Gl

δxL:i+1

δx̂i

δx̂i−1:0


(14)

This transformation replaces δx̂i with δxi. By sequentially
applying this transformation from i = L − 1 to i = 0, we
obtain the transformation from δx̂ to δx.

δx =

[
L−1∏
i=0

Gl

]
x̂ =: Gδx̂ (15)

Using this transformation, the original minimization is trans-
formed to

min
δx̂

2d̂Tδx̂+ δx̂TĤδx̂ (16)

where d̂ = GTd, Ĥ = GTHG.

C. Detail of the Proposed Algorithm

The pseudocode of the proposed multi-resolution posegraph
optimizer (MR-PGO) is shown in Algorithm 1 and 2. Algo-
rithm 1 shows the outer loop of the Gauss-Newton method,
while Algorithm 2 shows the inner loop, where δx is computed
based on the MR parametrization. The maximum iteration
count of Algorithm 1 is specified by the parameter niter. The
basic idea of Algorithm 2 is to apply the block Gauss-Seidel
method to the transformed equation (16). In Lines 1-3, the
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Algorithm 2 MR-PGO: inner loop
1: for i ∈ 0, 1, . . . , L− 1 do
2: d← GT

i d, H ← GT
i HGi

3: end for
4: loop nGS times
5: for i ∈ L,L− 1, . . . , 0 do
6: δδx̂l ← LINSOLVE(Hi,i,−di)
7: for i′ ̸= i do
8: di′ ← di′ +Hi′,iδδx̂i

9: end for
10: δx̂i ← δx̂i + δδx̂i

11: end for
12: end loop
13: for i ∈ L− 1, . . . , 0 do
14: δxi ← AiδxL:i+1 + δx̂i

15: end for
16: return δx

transformation of the gradient and the Hessian is computed.
In Lines 4-12, the G-S iteration is performed. The number
of iterations is fixed and given by nGS. It will be shown in
numerical examples that setting nGS to as small as 1 can
achieve good convergence. In each iteration, from i = L
to i = 0, a sub-equation corresponding to the i-th level is
solved (Line 6) and the gradient of other levels is updated
(Lines 7-9). Here, LINSOLVE(A, b) solves a linear system
of equations Ax = b for a symmetric positive definite matrix
A and a coefficient vector b and returns the solution x. A
sparse direct solver CHOLMOD is used to implement this
routine to fully exploit the sparsity of the Hessian, Moreover,
as described in Section III-A, nodes that belong to different
blocks of the same level are disjoint. Thanks to this property,
each Hi,i with i < L is a block-diagonal matrix. Therefore,
there is no need to solve LINSOLVE(Hi,i,−di) in Line 6
as a single linear equation, but it can be broken down into
smaller equations corresponding to blocks and computed in
parallel. This is a unique advantage of the proposed spanning
tree-based approach.

IV. NUMERICAL EXAMPLES

The proposed method were compared with g2o [8] and
SE-Sync [15] using public and custom datasets. The pro-
posed algorithm was implemented as a C++ program. Multi-
thread parallelization based on OpenMP is used for parts of
the algorithm that can be executed in parallel, as described
earlier. For all solvers, Microsoft Visual Studio was used as
a C/C++ compiler, Intel MKL Lapack/BLAS was used for
linear algebraic computation. For the proposed method and
g2o, SuiteSparse CHOLMOD was used for a linear solver.
The executables were run of a Windows computer with AMD
Ryzen 9 5950X CPU with 16 cores and 32 parallel threads.
The proposed method and g2o perform spanning tree-based
initialization prior to iterative optimization, while SE-Sync
performs chordal initialization.

The name, size and space (SE2 or SE3) of datasets used
for evaluation are summarized in Table I. Among them, the
original Rim dataset included non-positive definite Hessians,

which make the optimization problem infeasible. Therefore,
before evaluation, this dataset was sanitized by replacing all
Hessians with 100I (I is the identity matrix). For some
datasets, posegraphs before and after optimization are visual-
ized in Fig. 3. In these figures, black dots indicate nodes, while
red lines indicate links. For each dataset, the upper and lower
figures indicate the posegraph before and after optimization.

The sparsity pattern of the Hessian matrices of the datasets
is visualized in Fig. 4 and Fig. 5. Figure 4 shows the sparsity
pattern of the original Hessian H , which reflects the topology
of the posegraph. Fig. 5, on the other hand, shows the sparsity
pattern of the transformed Hessian Ĥ in (16). In addition
to the transformation from H to Ĥ , reordering of rows and
columns is applied so that nodes are sorted with respect to
level in the descending order. Nodes in the same level are
further sorted with respect to block index in the ascending
order. In each figure, blocks are indicated by squares with a
color unique to each level. It can be observed that each level
presents characteristic block-diagonal structure, which can be
utilized for parallelization.

The lower part of Table I summarizes the total computation
time and final cost of the methods compared. For the proposed
method, the number of the G-S iterations was set as nGS = 1,
and the number of outer iterations was fixed to niter = 10.
The SE-Sync solver optimizes an objective function that is
different from the one used in g2o. Therefore, the value
of cost produced by SE-Sync together with its equivalent
value of the g2o cost are shown in the table. The latter
is computed by reloading the posegraph optimized by SE-
Sync on g2o. The converted cost for 2D datasets are not
listed due to minor technical issue. For datasets with moderate
sizes, all method performed well, while g2o generally showed
least computation time. For large datasets such as Grid3D,
Globe10k, and Globe100k, the computation time of g2o and
SE-Sync increased dramatically. In these cases, the proposed
method with L = 2, 4 performed better in terms of total
computation time. However, the proposed method showed
poorer rate of convergence with greater L, and as a result,
the solution did not converge close enough to the optimum
within 10 iterations. It must also be noted that evaluation of
pure algorithmic efficiency becomes difficult for large datasets
because file I/O and memory allocation take large portion of
total computation time.

In the following, the proposed method in three different
settings of resolution levels (L = 0, 2, 4) and g2o are compared
in terms of rate of convergence and computation time per
iteration. Figure 6 shows the reduction of cost in the first 15
iterations. The convergence rate of first several iterations are
roughly equal for all methods. In close observation, however,
the convergence of the proposed method tends to slow down
near the optimal solution, and this tendency becomes more
significant with greater values of L. As L becomes larger,
the original system of equations is decomposed into a greater
number of smaller blocks. This, together with the fact that only
one subiteration of block Gauss-Seidel is performed, seem to
have contributed to this slight deterioration of convergence.

Figure 7 shows computation time for one iteration (average
of 100 iterations). For the proposed method, a breakdown of
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Sphere City10000 Rim Torus3D Grid3D Globe100k

Fig. 3. Posegraphs before and after optimization

TABLE I
COMPARISON OF COMPUTATION TIME AND OPTIMAL COST

Intel Sphere City10000 Rim Torus3D Grid3D Globe10k Globe100k
num. of nodes 1,228 2,500 10,000 10,195 5,000 8,000 10,000 99,856
num. of edges 1,483 4,949 20,687 29,743 9,048 22,236 20,899 200,395
space SE2 SE3 SE2 SE3 SE3 SE3 SE3 SE3

proposed L = 0
comp.time [s] 0.077 0.631 1.194 2.954 1.440 20.73 12.49 130.3
cost 214.17 727.24 511.986 5978.59 14576.77 49216.79 6131.69 40254.69

proposed L = 2
comp.time [s] 0.085 0.342 0.950 1.703 0.640 2.497 3.37 71.9
cost 230.29 829.89 523.40 6957.23 14896.57 51300.87 7389.12 41430.71

proposed L = 4
comp.time [s] 0.096 0.317 0.974 1.676 0.586 1.575 2.54 53.56
cost 255.11 1355.69 575.93 7719.90 16365.64 59070.62 10790.95 57623.52

g2o comp.time [s] 0.0089 0.170 0.196 1.744 0.406 8.60 9.19 133.0
cost 215.83 727.15 511.98 5925.96 14574.76 49204.03 6131.63 40254.50

SE-Sync
comp.time [s] 0.186 0.748 11.86 8.06 1.48 8.09 9.82 476.029
cost (native) 393.7 1687.01 638.62 9107.58 24227 84319 9456.98 63952.6
cost (g2o chi2) - 858.81 - 6312.96 14916.03 51627.72 6417.82 40654.49

computation time is also shown. Here, ‘prepare’ indicates the
amount of time spent for calculating the gradient and Hessian
and computing the multi-resolution transformation. Labels
‘lv0’, ‘lv1’... indicate time spent for computing the linear
equation of each level. As shown in Fig. 5, in most examples,
each level contains not more than 30 blocks, whereas the
computer used for evaluation was capable of running 32
parallel threads. This means that for each level, all sub-
equations were computed in parallel, and consequently, the
bottle-neck of computation time is the size of the largest block
in each level. It would have taken longer time if the algorithm
was run on a CPU with a smaller number of cores.

For small problems such as Intel, g2o performs faster than
the proposed method. This is because for a small problem,
the linear equation can be solved in quite a small amount of
time without any transformation, and the transformation of
the gradient and the Hessian requires almost as much time as
solving the equation itself. For larger problems such as Rim,
Torus3D, and Grid3D, the proposed method outperforms g2o
in terms of computation time for single iteration. It can be
seen that reduction in computation time for solving linear
equations is so significant that the total computation time
including preparation is much smaller than that of g2o. It
was also an interesting finding that the computation time of

g2o varied greatly between datasets having similar sizes. For
example, although Rim and Grid3D are almost the same size,
the computation time per iteration of the latter was ten times
greater. One possible reason is that the supernodal factorization
technique used in CHOLMOD did not work well for datasets
having a certain sparsity pattern. For the proposed method, by
contrast, the computation time per iteration regularly increased
with respect to the size of the problem. This is considered
to be a favorable characteristic for estimating the overall
computation time before applying optimization to a new large-
scale dataset.

V. CONCLUSION

This paper proposed a method for posegraph optimiza-
tion that utilizes a spanning tree-based multi-resolution
parametrization of posegraph transformation. Experimental
results using open data set showed that the proposed multi-
resolution strategy significantly reduces computation time
while limiting the deterioration of convergence speed to an
acceptable level. At the point of submission, the proposed
algorithm is being prepared to be made publicly available as
an open-source software library.
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