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Ultrasound-Guided Assistive Robots for Scoliosis
Assessment with Optimization-based Control and

Variable Impedance
Anqing Duan, Maria Victorova, Jingyuan Zhao, Yongping Zheng, and David Navarro-Alarcon

Abstract—Assistive robots for healthcare have seen a growing
demand due to the great potential of relieving medical prac-
titioners from routine jobs. In this paper, we investigate the
development of an optimization-based control framework for an
ultrasound-guided assistive robot to perform scoliosis assessment.
A conventional procedure for scoliosis assessment with ultrasound
imaging typically requires a medical practitioner to slide an
ultrasound probe along a patient’s back. To automate this type of
procedure, we need to consider multiple objectives, such as con-
tact force, position, orientation, energy, posture, etc. To address
the aforementioned components, we propose to formulate the
control framework design as a quadratic programming problem
with each objective weighed by its task priority subject to a set
of equality and inequality constraints. In addition, as the robot
needs to establish constant contact with the patient during spine
scanning, we incorporate variable impedance regulation of the
end-effector position and orientation in the control architecture
to enhance safety and stability during the physical human-
robot interaction. Wherein, the variable impedance gains are
retrieved by learning from the medical expert’s demonstrations.
The proposed methodology is evaluated by conducting real-world
experiments of autonomous scoliosis assessment with a robot
manipulator xArm. The effectiveness is verified by the obtained
coronal spinal images of both a phantom and a human subject.

Index Terms—Medical Robots and Systems, Physical Human-
Robot Interaction, Task and Motion Planning, Optimization and
Optimal Control, Learning from Demonstration.

I. INTRODUCTION

HEALTHCARE and medical assistive robots have re-
ceived increasing research attention due to growing

demand in the market over the past decades [1]. As a typical
modality of healthcare and medical assistive robot, ultrasound-
guided navigator for physical body examination has numerous
applications in clinical practice [2]. Compared with X-rays, ul-
trasound has several advantages, such as no ionizing radiation
and affordable cost. Thus, it is favored in a wide spectrum of
areas such as cardiology, urology, gynecology, etc [3].

In this paper, our focus lies on automating an ultrasound-
guided robotic navigator for scoliosis assessment as shown
in Fig. 1. Scoliosis assessment is a type of physical exami-
nation needed for scoliosis progression screening, as shown
in Fig. 2, for timely spine correction and intervention. To
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Fig. 1. Illustration of the experimental setup with end-effector frame E and
base coordinate frame I labeled where x, y, z−axes are depicted in red, green,
and blue, respectively. The Xarm manipulator is sliding an ultrasound probe
along a human subject’s back for scoliosis assessment.

minimize the number of traditional X-ray scans needed and
the exposure to ionizing radiation, a 3D spinal ultrasound is
used for progression monitoring [4]. The process of image
generation usually requires the human operator to carefully
scan the spine’s profile by sliding an ultrasound probe along
the patient’s back. To ensure that the quality of the ultrasound
image is satisfactory, the operator needs to adjust the pose
of the probe in real-time during the scan procedure such that
the vertebrae (whose presence is normally indicated by the
spinous process) are located in the middle of the image, as
illustrated in Fig. 3. Therefore, the key to the success of 3D
spine image reconstruction is to locate and follow the spinous
process closely while sweeping the probe along the spine’s
curvature. The coronal slice of the resulting 3D reconstruc-
tion is used for the lateral scoliosis curvature measurement.
From a robotic point of view, we identify that automating
scoliosis assessment heavily relies on technical support from
two main research areas, namely, ultrasound-guided navigation
[5] and physical human-robot interaction (pHRI) with variable
impedance control [6].

Ultrasound-based strategies for navigation have been ap-
plied to a variety of medical devices and surgical instruments
due to their minimally invasive intervention properties and
high portability. Until recently, several attempts towards med-
ical procedures through an ultrasound-guided robot manipula-
tor have emerged. It is observed, however, that the majority
of solutions to the probe’s motion generation are neural
network-based controllers whose parameters are trained either
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Fig. 2. Comparison between the normal straight spine (left) and the spine
with scoliosis (right).

by reinforcement learning [5], [7] or human demonstrations
[8]. Yet, data efficiency issues, as well as explainability of the
learning-based controllers, draw a big question mark under the
context of medical applications.

The formalism of our application, a hybrid motion/force
control on a human body, is also analyzed to fall into a cate-
gory of pHRI. Notably, a rich literature on pHRI is dedicated
to enhancing safety and flexibility [9]. Among various perspec-
tives, we aim at endowing the robot with variable impedance
control, which plays a crucial role for a robot to safely
perform contact-sensitive tasks [10], [11] or reliably assist
a human subject for rehabilitation purposes [12]. Compared
with stochastic searching-based techniques such as evolution
strategies [13] or inverse reinforcement learning [14], trans-
ferring variable impedance skills via human demonstrations
provides a more intuitive and straightforward fashion [15],
[16]. In addition, most existing works on impedance regulation
revolve around either robot joint space or end-effector position
[17], while it is usually overlooked to incorporate impedance
regulation for orientation. A comparison with state-of-the-art
methods of robotic ultrasound scanning is shown in Table I.

Previously, we devised a novel algorithm for trajectory
planning based on spinous process localization in ultrasound
images [18]. Although the preliminary results have shown
that a robotic approach is promising for spinal image re-
construction, there is a lack of a principled control theoretic
framework for prioritizing different tasks, such as contact
force, end-effector pose, robot configuration, etc, under ex-
ternal contact constraints. In view of that, in this paper, we
propose a new optimization-based control architecture capa-
ble of considering multiple objectives simultaneously while
respecting a set of equality and inequality constraints. Similar
to [19], our controller has two loops and is implemented
via quadratic programming (QP), which has shown supe-
rior performance in many safety-critical applications, such
as humanoid locomotion [19], aerial manipulation [20], and
flying humanoid [21]. Furthermore, regarding acquisition of
variable impedance gains, we follow the general paradigm of
learning by demonstration [22]. Specifically, to incorporate the
impedance regulation of the probe’s orientation, we propose to
parameterize the demonstrated rotation matrix trajectory such
that the issue of exploiting the covariance matrix for a variable
in a form other than a vector can be alleviated.

To the best of the authors’ knowledge, this is the first time
that the proposed methodology has been used to automate the
probe’s manipulation during scoliosis assessment. The main
contributions of this work can be summarized as follows:

• Development of a new optimization-based control archi-

Fig. 3. Anatomy illustration of vertebrae and its spinous process (left) as
well as the corresponding appearance in ultrasound image (right) where the
red dot denotes the detected spinous process.

TABLE I
COMPARISON WITH STATE-OF-THE-ART APPROACHES.

Contact
Awareness

Control
Constraints

Variable
Impedance

From
Demonstrations

[2] X – – –
[7] – X – –
[8] X – – X
[18] X – – –
Ours X X X X

tecture for autonomous scoliosis assessment;
• Incorporation of impedance regulation via learning by

demonstrations of the ultrasound probe’s manipulation;
• Experimental validation of the proposed theory with spine

phantom models and human subjects1.
The rest of the paper is organized as follows: Section II

presents the mathematical models; Section III presents the
controller design; Section IV describes the results; Section V
presents discussions and gives final conclusions.

II. CONTROL ARCHITECTURE DESIGN

A. Dynamics Modeling

Recall that the joint space dynamics equation of motion
for a fixed-base and open-chain robot manipulator whose
configuration is characterized by the joint angles q ∈ Rn can
be modeled as [23]:

M(q)q̈ + c(q, q̇) + g(q) = τ + J(q)ᵀf , (1)

where M(q) ∈ Rn×n is the mass matrix, c(q, q̇) ∈ Rn
accounts for the Coriolis and centrifugal effects, g(q) ∈ Rn
is the gravity vector, τ ∈ Rn are the joint actuation torques.
When an external wrench f , which is expressed in a frame
that has the same orientation as the world frame I, is exerted
on the robot manipulator, its effects on the robot dynamics are
reflected by the Jacobian matrix J(q) ∈ R6×n that maps the
robot joints velocity q̇ to the linear and angular velocities of
the contact point where f is applied.

When the robot sweeps the ultrasound probe along the
subject’s back, it exhibits a hybrid motion/force behavior.
We consider to model the interaction between the robot
end-effector and the human back with a set of holonomic
constraints. By considering the constraints of the end-effector

1Ethical approval HSEARS20210417002 was given by the Departmental
Research Committee on behalf of PolyU Institutional Review Board.
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Fig. 4. Illustration of the adjustment strategy for the ultrasound probe. From
the heatmap (left) of the original ultrasound image of the spinous process
(right), the deviation (yellow arrow) away from the middle line (green) is
used to laterally guide the probe.

motion explicitly, the robot shall possess higher safety level
during the diagnostic procedure. Specifically, the time deriva-
tives of these constraints are expressed as

Bᵀ
c [v

ᵀ
b ωᵀ

b ]
ᵀ = Gᵀ[vᵀ

E ωᵀ
E ]

ᵀ = Jcq̇ = 0nc
, (2)

where we define Jc = GᵀJ with G = Adᵀ
g−1Bc ∈ R6×nc

being the contact map and Adg = blkdiag(IRE ,
IRE)

being the adjoint transformation matrix2 that maps robot end-
effector body velocity to the linear and angular velocities
expressed in the world frame I with IRE ∈ SO(3) being the
rotation matrix expressing the orientation of the end-effector
frame E with respect to I. vb and ωb are the linear and
angular body velocities that are expressed in the instantaneous
body frame. Bc ∈ R6×nc is the wrench basis with nc
indicating the number of constrained directions of motion (or
equivalently, independent forces) of the robot end-effector. ωE
is the spatial angular velocity of the end-effector such that
ṘE = S(ωE)RE where S is the skew operator3.

Likewise, the equation expressing the unconstrained direc-
tion of motion vu can be written as

Bᵀ
u[v

ᵀ
b ωᵀ

b ]
ᵀ = Gᵀ

u[v
ᵀ
E ωᵀ

E ] = Juq̇ = vu, (3)

where vu denotes the velocity of the unconstrained direction of
motion expressed in the body frame and we define Ju = Gᵀ

uJ
with Gu = Adᵀ

g−1Bu and Bu ∈ R6×6−nc being complemen-
tary to Bc. We then rewrite the robot dynamics equation (1) by
additionally including the contact constraints and decoupling
the external wrench f as a result of non-holonomic constraints
as well as free motion4:

Mq̈ + c + g = τ + Jᵀ
cf c + Jᵀ

ufu, (4a)

Jcq̇ + J̇cq̈ = 0, (4b)

where f c ∈ Rnc denote the forces due to the existence of
the constraints and fu ∈ R6−nc represent the forces that are
caused by allowable directions of motion such as frictions.
The constraints on the acceleration of the end-effector motion
(4b) is obtained by differentiating (2) with respect to time.

2As an abuse of notation, it is not exactly the mapping from body velocity
to spatial velocity.

3Reference frame I is omitted for brevity from now on.
4Dependence on the robot states is dropped for brevity from now on.

B. Task Specifications

In order to make the robot automatically perform scoliosis
assessment, it is necessary to properly determine a vector of
quantities of interest ζ such that by tracking the corresponding
desired values denoted by ζd, the robot is able to function and
achieve the goal. Wherein, each term of the output vector ζ
is called a task in the language of robot control. The selected
tasks that are considered to be relevant to our application are
listed as follows:
• Joints configuration of the robotic manipulator q;
• Linear position due to the unconstrained motion pu;
• Angular position due to the unconstrained motion RE ;
• Contact forces arising from the constraints f c.

The tasks chosen to control are collectively expressed as

ζ = [qᵀ pᵀ
u Rᵀ

E fᵀ
c ]

ᵀ. (5)

The proper design of ζd plays an important role in achieving
scoliosis assessment. The key to the success of the spinal
image reconstruction lies on fine-tuning of the x-direction
movement of the body frame. To this end, we previously
developed a novel fully connected network built upon ResNet
that is suitable for spinous localization. The proposed in [18]
neural network takes as input the raw ultrasound image and
outputs a spatial heatmap that indicates the location of the
spinous process as well as the confidence probability. The
distance between the detected spinous location and the image
center is then used to guide the movement of x-direction of
the body frame such that the ultrasound probe will move
in a way that the vertebrae is always kept in the center
of the ultrasound image, as shown in Fig. 4. Furthermore,
in order to drive the ultrasound probe moving along the
patient’s spine from the waist to the neck, y-direction of
the body frame of the ultrasound probe is empirically set
to be a constant velocity. For the probe’s orientation control,
the desired rotation matrix is determined such that the probe
is normally pointing towards the human back surface. The
reference force profile is empirically set based on the subject’s
body mass index to ensure tight contact with skin [18].

C. Controller Design

Next, we consider the design of a controller for dynamical
system (4) to achieve the aforementioned tasks. The goal here
is to make the quantities of interest ζ track the desired trajec-
tory ζd that is specified by our ultrasound image processor.
In view of high complexity of the multi-input multi-output
system in addition to several constraints that could emerge,
such as control bounds, joint limits, kinematic constraints
etc., we consider to formulate our control problem from
an optimization perspective. Compared with analytic control
law design, optimization-based control strategies exhibit great
potential for customization towards different requirements [24]
and better at explicitly handling constraints [25]. Specifically,
our control method akin to a feedback linearization method is
composed of two loops similar to [20]. In the outer loop, it is
assumed that higher-order derivatives of tasks ζ defined as

v = [q̈ᵀ p̈ᵀ
u ω̇ᵀ

E fᵀ
c ]

ᵀ (6)
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is directly controllable by a so-called virtual input v∗. The
input-output asymptotic stability is guaranteed if there exists
a control signal u∗ such that v∗ can be exactly achieved, i.e.
v = v∗. In principle, any forms stabilizing controller that can
make ζ smoothly track ζd is valid.

Here, the chosen stabilizing controller is designed in the
form of a PID controller due to its simplicity and the virtual
input is designed as:

v∗ =


q̈d −KD

q (q̇− q̇d)−KP
q (q− qd)

p̈du −KD
u (ṗu − ṗdu)−KP

u (pu − pdu)

ω̇dE −KD
R (ωE − ωdE)−KP

ReR
fdc −KP

c (f c − f
d
c)−KI

c

∫ t
0
(f c − f

d
c)dt

 . (7)

Wherein, the rotation error eR between two rotation matri-
ces: the desired rotation matrix Rd

E and current end-effector
rotation matrix RE is defined as [26]

eR =
1

2
(Rᵀ

ERd
E −Rdᵀ

E RE)
∨ ∈ R3, (8)

where (·)∨ denotes the inverse of the skew operator.
For the inner loop, it is responsible to generate control

signals τ for the tracking of the virtual input v∗. Typically,
it is usually very difficult to design an analytical control
law for a multi-input (namely τ ) multi-output (namely v)
system, it is thus considered to leverage optimization-based
techniques as they require less manual efforts compared with
analytical control law design. To do so, we first write the
system dynamics equation of the inner loop in a control-affine
style as follows

v = A(q)u + b(q, q̇), with u = [τᵀ fᵀ
c ]

ᵀ. (9)

It should be noted here that contact force f c is also included
as a part of the control signals u in addition to joint torques
τ , which implies that it is both a task vector and a control
input. And thus the order of its derivative in v is zero. In the
system dynamics, the matrix A(q) and the bias vector b(q, q̇)
that contain all the terms independent of the extended control
input u are given by

A =

 M−1 M−1Jᵀ
c

JuM
−1 JuM

−1Jᵀ
c

0nc×n Inc

 , b =

 Γ

JuΓ + J̇uq̇
0nc

 , (10)

where we denote Γ = M−1(Jᵀ
ufu−c−g). The optimization

problem to be solved in the inner loop is formulated as:

min
u

‖v−v∗‖2W (11a)

s.t. u ≤u ≤ u (11b)
Cf c ≤ 0 (11c)

Mq̈ + c + g =τ + Jᵀ
cf c + Jᵀ

ufu (11d)

Jcq̇+J̇cq̈ = 0 (11e)

The control objective (11a) is designed as a squared weighted
Euclidean norm ‖ ·‖2W where each task priorities can be spec-
ified by W. And the constraint (11b) specifies the bounds on
the control input such as joint torques limits and contact force
magnitude, which are critical when establishing interactions
with humans for medical purposes. The specified upper bound
and lower bound are denoted by u and u, respectively. The

Fig. 5. Illustration of the overall proposed control architecture for autonomous
scoliosis assessment. First, the ultrasound images are processed with a fully
connected network, which outputs the predicted location of the spinous
process. Then the outer loop of the controller sends higher-order derivatives
of the desired values of quantities of interest while the inner loop solves an
optimization problem for robot control commands.

constraint (11c) requests that the contact friction cones FC are
respected by approximating f c ∈ FC with linear inequality.
(11d) impose constraints due to system dynamics while (11e)
correspond to the kinematic constraints as a result of contact
with the environment.

It can be verified that (11) in fact belongs to a Quadratic Pro-
gramming (QP) problem. In general, the standard formulation
of a QP problem is composed of a quadratic-form objective
function of the design variables and a set of linear equality
and inequality constraints:

min
u

1

2
uᵀPcu + qᵀ

cu s.t. Lu ≤ h and Du = z. (12)

By re-arranging the objectives and constraint terms of
(11) towards the general QP formalism of (12), the original
optimization problem (11) can be equivalently written as

min
u

1

2
uᵀAᵀWAu+(b− v∗)ᵀWAu

s.t.

 In+nc

−In+nc

0ᵀ
n C

u ≤

 u
−u
0


[
J̇cM

−1 J̇cM
−1Jᵀ

c

]
u = −Jcq̇− J̇cΓ.

(13)

The correspondence relationship between (11) and (12) is thus
yielded explicitly with the help of (13). As a result, the inner-
loop optimization can be solved fast enough due to the merits
of QP and it is possible to implement real-time optimization-
based robot control. A diagram of the overall robotic system
for scoliosis assessment is illustrated in Fig. 5.

III. IMPEDANCE GAIN RETRIEVAL

In this section, we study the problem of regulating the
impedance gains, namely the stiffness and damping matrices
KD
u , KP

u , KD
R , and KP

R of (7), to guarantee safe and reliable
interaction with the human patients. To this end, we consider to
retrieve the desired impedance gains by resorting to the general
framework of learning by demonstration or imitation learning
since it provides a straightforward and intuitive manner to
transfer human motion skills to robots [27]. Specifically, we
propose to leverage the techniques from probabilistic imi-
tation learning framework, where we can obtain variability
from multiple human demonstrations to regulate the robot
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Fig. 6. Illustration of the learning by demonstration approach for the retrieval
of impedance gains. The desired impedance gain is obtained by estimation of
covariance matrix from multiple demonstrations.

manipulator’s impedance as shown in Fig. 6. To retrieve the
desired impedance profile from the demonstrated trajectories,
the region where the dispersion of the trajectories is high
implies that robots will lower stiffness gains.

One popular approach is to encode variability of the
demonstrated trajectories through Gaussian Mixture Regres-
sion (GMR) [22]. Without loss of generality, we denote ξ to
represent either one of pu, ṗu, and ωE whereas the retrieval
of the orientation stiffness profile will be explained later as the
rotation matrix does not follow the Euclidean distance metric.

Given M demonstrations from an expert, we can collect a
dataset {{dmn , ξ

m
n }Nn=1}Mm=1 with each demonstration length

being N . The input d ∈ R is chosen as time stamps. For
the purpose of generalization or different test speed, we could
simply scale it accordingly.

In order to retrieve the variability of the demonstrated
quantities with GMR from the dataset, we first need to encode
the joint probability distribution of input d and output ξ
with the Gaussian Mixture Model (GMM) representation:
P(d, ξ) =

∑K
k=1 πkN (µk,Σk) where πk denotes the prior

probability of each Gaussian component in total of K Gaus-
sian components with

∑K
k=1 πk = 1, and

µk =

[
µd,k
µξ,k

]
and Σk =

[
Σdd,k Σdξ,k

Σξd,k Σξξ,k

]
. (14)

During the reproduction phase, the conditional distribution
P(ξ(d)) given a query point d is given as

P(ξ(d)) =
K∑
k=1

ηk(d)N (µk|d,Σk|d), (15)

where the weighting term ηk(d), the conditional mean µk|d
and the covariance of a Gaussian component Σk|d are respec-
tively given by [22]

ηk(d) =
πkN (µd,k,Σdd,k)∑K
j=1 πjN (µd,j ,Σdd,j)

, (16a)

µk|d = µξ,k + Σξd,kΣ
−1
dd,k(d− µd,k), (16b)

Σk|d = Σξξ,k −Σξd,kΣ
−1
dd,kΣdξ,k. (16c)

Notably, we are especially interested in retrieving the covari-
ance matrix whose inverse serves as a proxy of the impedance
gains. Therefore, the single peaked covariance of the multi-
modal distribution (15) is approximated with

cov(ξ(d)) =

K∑
k=1

ηk(d)(Σk|d + µk|dµ
ᵀ
k|d)− µdµ

ᵀ
d , (17)

Fig. 7. Snapshot of simulation. The robot in start position (top left) and
end position (top right), where green dot denotes the start point, red line is
reference of end-effector position, and blue line are the real positions of the
end-effector. The plots represent the force tracking performance with red stars
denoting the reference for sinusoidal reference (bottom left) and step reference
(bottom right), respectively.

where the conditional mean value of the approximated single
normal distribution is calculated as µd =

∑K
k=1 ηk(d)µk|d.

Finally, the impedance gains KD
u , KP

u , and KD
R are then set

as the inverse of (17).
It should be noted that special attention shall be paid to the

calculation of the stiffness matrix KP
R for rotation control.

Indeed, the problem is not trivial, if not ill-posed, when
directly applying GMM/GMR to quantifying the aleatoric
uncertainty of a variable in the form of a matrix rather than a
vector, as in our case of rotation matrix. As a workaround, we
propose to parameterize a rotation matrix with its exponential
coordinate, namely R = exp (S(ω)θ) with ω ∈ R3 being a
unit vector and θ ∈ R given by [28]

θ = cos−1
(
tr(R)− 1

2

)
, ω =

1

2 sin(θ)
(R−Rᵀ)∨. (18)

Consequently, with such parameterization of the end-effector’s
orientation, the rotational stiffness matrix KP

R is retrieved by
instantiating ξ with ωθ and then following a similar procedure
as per (14)−(17). By doing so, we can avoid employing
complicated manifold-based regression algorithms to deal with
the manifold-structured rotation matrix data. Arguably, the
eligibility of employing the inverse of the covariance matrix
of ωθ to represent KP

R is evidenced by its compatibility with
our choice of the rotation error as in (8).

IV. RESULTS

A. Numerical Simulation

Before proceeding to conduct real-world experiments, we
first verify the controller’s behavior with a conceptual hybrid
force/motion control task using the PyBullet simulation en-
vironment [29]. The QP problem that needs to be solved in
the inner loop of the control architecture is handled by QP-
solvers in python [30]. The task is designed to be sliding the
robot end-effector along a rigid board while tracking the given
desired contact forces to mimic the real scoliosis test scenario
as shown in the top row of Fig 7. The robot end-effector frame
E and the base frame I are set the same as Fig. 1. The rigid
board is set to be parallel to the x − z plane of I with a
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Fig. 8. Snapshots of real experiment on scoliosis assessment demonstrated
by a medical expert for impedance gains retrieval (top row), execution on the
phantom (middle row), and execution on the human subject (bottom row).

distance of 0.6m away. During performing the sliding task, the
robot end-effector is required to be perpendicular to the board
and the desired rotation matrix Rd

E is chosen as constant:
Rd
E = [[0 0 − 1]ᵀ [0 1 0]ᵀ [1 0 0]ᵀ]. The start position of

the robot end-effector is set to be
[
0.6 0 0.6

]ᵀ
m and

the end position is set to be
[
0.6 0 0.9

]ᵀ
m. We perform

two similar tasks with the robot end-effector moving along a
straight line connecting the start position and the end position
at a constant speed of 0.05m/s. The robot end-effector is
required to operate for 6 s, which results in a total sliding
distance of 0.3m along the positive z−direction of the base
frame. We let the end-effector track two different desired
forces: a sinusoidal reference wave fd1 and a step reference
fd2 . Their designed numerical values are respectively given by

fd1 = 5 sin(πt/3) + 10 N, t ∈ [0, 6] s;

fd2 = 15N, t ∈ [0, 6] s.

The weights of the QP for different tasks of v as discussed
in Section II-B are selected to be

[
0.1 1 1 1

]ᵀ
and the

simulation step increments at a frequency of 1 kHz. It can be
seen from the bottom row of Fig. 10 that the tracking error
ε between the measured and desired force remains relatively
small in both cases with ε < 0.01N, which validates the
performance of the controller in simulation.

B. Experiments

The conducted experiments are about spinal image recon-
struction with a phantom model and a human subject. The
robotic platform used throughout the experiments is an indus-
trial robot manipulator called UFACTORY xArm 6, which is
a fixed-base and serial robot manipulator having six DoFs. At
the end effector, a USB ultrasound probe Sonoptek is mounted.
In addition, in order to enable direct force control, a six-axis
Force/Torque sensor Robotiq FT300 is also installed at the
robot end-effector.

The real experiments are conducted on the Scolioscan Air
platform which is made up of a USB ultrasound probe and

Fig. 9. Multiple demonstrated trajectories of ωθ (top row) and (bottom
row) the retrieved probabilistic trajectories with red ellipses denoting GMM
components, green shallow area denoting the covariance and black line
denoting the mean value.

Fig. 10. Tracking performance of the desired contact force on the phantom
with red dashed line denoting the reference and blue line denoting measured
value from the F/T sensor for 7N (left) and 15N (right), respectively.

a tablet [31]. The USB ultrasound probe captures ultrasound
images at a frequency of 7.5MHz with a depth of 6 cm
and sends raw data at a frame rate of 10 fps to a desktop.
The aperture of the ultrasound probe is in the shape of a
rectangular that has a length of 80mm and width 15mm. The
ultrasound images are organized in size of 640 × 480 pixels.
The tablet is responsible for receiving ultrasound images and
coordinates from the ultrasound probe for 3D reconstruction of
the scanned spine. The robot manipulator xArm is connected
via the TCP/IP protocol with the desktop. We perform the
experiments on the spinal phantom that contains a scoliosis
spine inside as well as on a human volunteer subject; See the
accompanying multimedia file.

For estimating the impedance gains via employing the in-
verse of the covariance matrices, we provide multiple demon-
strations on the phantom as shown in the top row of Fig.
8. The demonstrated trajectories are conveyed via kinesthetic
teaching by a medical expert. The robot manipulator is set
to be in the gravity-compensation mode such that it is light
to drive. The back region, where the adipose tissue is thick,
is expected to have more concentration of the demonstrated
trajectories, implying that higher stiffness of the end-effector
behavior would overcome the adipose’s effects on the ultra-
sound image quality. Similarly, the back region with bumpy
bones is expected to have more dispersion of the demonstrated
trajectories, resulting in a lower stiffness of the end-effector
in order to avoid injuring the patient.

In the experiment, the number of the demonstrated trajec-
tories is determined as M = 5. Here the input is chosen
as temporal stamps. During the human demonstration phase,
the robot has a sampling period of 0.05 s. The demonstration
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Fig. 11. Tracking performance of end-effector position (top row) and
orientation (bottom row) on the phantom with contact force being 7N where
red stars denote the desired value.

Fig. 12. Tracking performance of end-effector position (top row) and
orientation (bottom row) on the phantom with contact force being 15N where
red stars denote the desired value.

duration lasts for 10 s, which results in a total trajectory length
of N = 200 points. In the case of inconsistent demonstration
duration, we simply employ some algorithms for aligning
temporal sequences such as dynamic time warping.

For the processing of the collected dataset, we employ
GMM/GMR for trajectory covariance retrieval as discussed
in Section III. The number of GMM components is chosen
as K = 4. The parameters of the GMM, namely πk, µk,
and Σk, are iteratively updated by means of the expectation
maximization (EM) algorithm until convergence criteria is
satisfied. In the experiment, the iteration stopping criteria for
defining convergence is set to be less than 1e − 4 for the in-
crease of the average log-likelihood value of EM in the current
iteration. Fig. 9 shows the modeling results of demonstrated
orientation trajectories with GMM/GMR under the exponential
parametrization using Octave. Probabilistic modeling of other
demonstrated trajectories undergoes a similar procedure.

During the reproduction phase, our intention is to recon-
struct the spines of the phantom and the human patient. To
do so, for both the phantom and the human subject, we first
spread ultrasound gel over the backs as common practice in a
clinic to avoid the air gap and enhance a tight contact between
the back and the ultrasound transducer. The ultrasound probe
moves at a speed of 0.003m/s.

In the case of the phantom, two experiments are conducted
with the desired contact force set to be 7N and 15N, respec-
tively. The procedure for scanning the spine of the phantom
is shown in the middle row of Fig. 8. And Fig. 10 shows
the tracking performance of different contact forces. It can
be seen that the ultrasound probe can maintain a small force
tracking error with its absolute value smaller than 1N, which
is a typically allowable performance in practice. The tracking
performance of the end-effector pose expressed in the base
frame is shown in Fig. 11 and Fig. 12. The obtained spine

Fig. 13. Tracking performance of end-effector position (top row) and
orientation (bottom row) on the human subject with contact force being 10N
where red stars denote the desired value.

Fig. 14. Spine reconstruction of a scoliosis phantom model with 7N (left) and
15N (middle); Spine reconstruction of a human subject (no signs of scoliosis)
with 10N (right).

image of the phantom is shown in the left and middle column
of Fig. 14. It is reasonable to observe that the case with the
bigger contact force has a more clear spine image.

In the case of testing with a human subject, the desired
contact force usually depends on the Body Mass Index (BMI).
Here we empirically set it to be 10N. The procedure for
scanning the spine of the human subject is shown in the bottom
row of Fig. 8. The corresponding tracking performance of the
end-effector pose expressed in the base frame is shown in Fig.
13, where is error is negligible in terms of our application.
And the obtained spine image of the human subject is shown
in the right column of Fig 14. The quality of the image is
clear enough for medical personnel to measure the curvature
of the volunteer’s spine.

V. DISCUSSIONS AND CONCLUSION

In this paper, we presented a control architecture for au-
tonomous scoliosis assessment with a robotic manipulator. The
proposed control architecture is composed of two loops, an
outer loop that outputs the virtual control signal and an inner
loop that tracks the virtual control signal. Compared with de-
signing control laws analytically, the employed optimization-
based control strategy is easier to specify. Furthermore, it has
been shown that the formulated optimization problem is in fact
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a form of QP, which can be solved very fast. Compared with
reinforcement learning-based motion generation, our approach
offers principled control synthesis and presents a more reliable
and explainable behavior for the robot. Also, the convergence
issue would prohibit reinforcement learning from deployment
in the real world [32]. And such concern will be more severe
under the medical treatment context.

Regarding the gains profile for impedance regulation, we
resorted to the general framework of learning by demonstra-
tions where the inverse of the retrieved covariance matrices
were set as the desired impedance gains. For learning stiffness
of the rotation matrices, we proposed to re-parameterize the
rotation matrix with the exponential coordinate such that naive
GMM/GMR could be applied directly without the need of
extending it to manifold-structured data.

The effectiveness of the proposed approach is verified with
both simulation and real experiments. Specifically, we success-
fully applied our approach to a phantom and a human subject
for scoliosis assessment. Although the proposed approach can
function well for the spine scanning with ultrasound, certainly
there is still room for future work to improve the platform for
real deployment. For example, now it still requires a medical
assistant to spread the ultrasound gel for the usage of the
platform. This procedure could also be automated by the robot
manipulator to increase autonomy level. Also, to locate the
position of the spinous process more precisely, other forms of
sensory information like thermal images could be incorporated
for sensor fusion in addition to ultrasound images [33].
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