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Soil-Adaptive Excavation
Using Reinforcement Learning

Pascal Egli, Dominique Gaschen, Simon Kerscher, Dominic Jud, Marco Hutter

Abstract—In this letter, we present an excavation controller
for a full-sized hydraulic excavator that can adapt online to
different soil characteristics. Soil properties are hard to predict
and can vary even within one scoop, which requires a controller
that can adapt online to the encountered soil conditions. The
objective is to fill the bucket with excavation material while
respecting machine limitations to prevent stalling or lifting of
the machine. To this end, we train a control policy in simulation
using Reinforcement Learning (RL). The soil interactions are
modeled based on the Fundamental Equation of Earth-Moving
(FEE) with heavily randomized soil parameters to expose the
agent to a wide range of different conditions. The agent learns
to output joint velocity commands, which can be directly applied
to the standard proportional valves of the real machine. We test
the controller on a 12-ton excavator in different types of soils.
The experiments demonstrate that the controller can adapt online
to changing conditions without the explicit knowledge of the soil
parameters, solely from proprioceptive observations, which are
easily measurable.

Index Terms—Autonomous Excavation, Reinforcement Learn-
ing, Sim-to-Real

I. INTRODUCTION

HYDRAULIC excavators are omnipresent in various areas
of application such as construction sites, forest busi-

nesses, or mines due to their great versatility. The automation
of such machines has a huge potential to improve efficiency,
productivity, and safety [1].

In this work, we focus on one of the most fundamental
tasks for a hydraulic excavator, which is the excavation of soil.
This is a particularly challenging problem since it includes
the control of the highly nonlinear machine dynamics and its
interaction with soil, which can have very different properties
even within one digging cycle. A prerequisite for efficiently
excavating is minimizing the number of time-consuming load-
ing cycles. Thus, the amount of excavated soil per scoop needs
to be maximized. Since an excavator has limited capabilities in
terms of forces that it can apply to the soil, the optimal digging
path heavily depends on the properties of the ground. In hard
soil, for example, the bucket can only penetrate to a small
depth without stalling or lifting up the machine, resulting in a
shallow but long digging trajectory, i.e., merely scraping on the
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Fig. 1. Excavating soil with abruptly changing properties during the same
scoop with a 12-ton hydraulic excavator. A block of granite is buried in the
first part of the scoop to emulate extremely hard soil.

ground, also referred to as penetrate and drag [2]. Contrary,
in very soft soil, the most efficient digging path is deep and
short because the excavator can penetrate much deeper without
reaching its force limits, i.e., penetrate and scoop [2]. Soil
characteristics are difficult to measure or predict, especially
because they can vary a lot on a site or even within the same
scoop (see Fig. 1). Therefore, a controller is required that
can adapt online to the encountered soil properties, similar
to how human operators proceed, without explicitly knowing
soil parameters.

A. Related Work

Various researchers have addressed the problem of automat-
ing excavation over the past decades. The proposed solu-
tions are manifold, covering trajectory optimization, model-
free approaches, learning from demonstration, and RL-based
methods. However, current solutions still have deficiencies
that make them fall short compared to the efficiency of
human operators. In particular, there is a lack of methods that
can adapt online to varying soil conditions while using the
machine’s full capabilities and that do not rely on expensive
hardware modifications.

Trajectory optimization is a popular approach to finding
the optimal digging path. Purely kinematic solutions were
proposed that optimize for time efficiency, bucket filling, and
other kinematic considerations [3], [4]. While the computation
is quick, the lack of taking into account machine dynam-
ics and external forces resulting from the interaction with
the ground makes these approaches incapable of digging in
different soils without stalling or being inefficient. Lee et
al. [5] combined kinematic path optimization with dynamics-
aware Model Predictive Control (MPC) to track the kinematic
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trajectory. Paired with a disturbance observer that estimates
external forces, the MPC could track the trajectory accurately
in simulation. The joint torques, however, were far below the
physical limitations of the machine during digging, such that
the executed trajectory only minimally deviated from the plan,
which indicates inefficient digging [6], [7]. To account for
different soil properties, dynamics-based trajectory optimiza-
tion approaches that incorporate soil dynamics were proposed.
However, these methods are computationally expensive and
cannot be executed in real-time, i.e., the computation time lies
in the order of minutes to compute one trajectory [8]. Also,
soil parameters need to be known for the optimization. They
can be determined by analyzing the site geologically [9] or
by fitting the soil parameters of the model to measurements
collected during manual operation of the machine [10]. This
makes these approaches incapable of adapting to unexpected
soil properties online.

Another stream of research divides the digging trajectory
into a sequence of four segments based how human operators
perform excavation work: sloped penetration, horizontal drag-
ging, scooping, and vertical lifting. If soil conditions on the
test site are homogeneous, the segments of the parameters can
be manually calibrated [11]–[13]. However, in most applica-
tions, soil conditions vary. Therefore, Sotiropoulos et al. [6]
proposed a controller that maximizes the power transmitted to
the soil during the dragging phase by controlling the boom
joint. This resulted in adaptive digging in different grounds,
required, however, still manually designing the remaining
excavation phases and was not tested on a hydraulic machine
with low control bandwidth and deadzones. Maeda et al.
[14] designed an iterative learning controller with a distur-
bance observer to follow a human-inspired digging trajectory.
This approach assumes that disturbances are similar (near-
repetitive) between excavation cycles, which is generally not
the case. To handle the event of stalling if the required forces
to track the trajectory segments exceed the capabilities of the
machine or an obstacle is encountered, rule-based methods
have been proposed [15], [16]. If stalling is detected, the
digging path is modified with hand-crafted corrections, which
need to be specifically designed for the particular platform
and use case. Instead of following a kinematic trajectory,
Jud et al. [17], [18] defined a sequence of end effector
force references for each digging phase. This resulted in soil-
adaptive digging while respecting machine limits. However, it
required retrofitting expensive high-performance servo valves
to track the desired force references.

Other researchers have proposed behavior-based ap-
proaches. Depending on the state of the excavator, an appro-
priate action is selected from a library of predefined motion
primitives. Tested in simulation [19] and also on a real
machine [2], [7], [20], [21], behavior-based methods could
successfully dig. However, it requires a substantial engineering
effort, specific to a particular machine, to create the behavior
database. Bradley et al. [2], for example, designed 80 different
rules for autonomous excavation.

Also, learning-based approaches have been proposed. Son
et al. [22] used learning from demonstration to find the param-
eters for dynamic motion primitives to imitate the trajectories

of human operators, which were then modulated online to
avoid excessive forces. The modulation, however, only affected
the excavation depth. The endpoint of the trajectory remained
fixed. Especially in hard soil, this leads to inefficient digging
because the bucket is not filled up.

Based on visual representations of the excavation scene,
convolutional neural networks and RL policies have been
trained to find optimal trajectories to excavate rigid objects
[23], [24] or to manipulate granular material accurately [25].
These approaches, however, are purely geometric. Hence,
they cannot adapt to different types of soils if force limits
are exceeded. Park et al. [26] used an echo-state network,
pretrained with a conventional PD controller and then up-
dated online during digging operation to track a desired
trajectory. The adaptation, however, takes multiple dig cycles
and assumes that the soil conditions remain similar. More
recently, the feasibility has been investigated to use RL for
training excavation policies in full-fledged physics simulators,
which combine meshes and particles to simulate realistic soil
properties [27]–[29]. While such simulators can model soil
interactions accurately, they are computationally expensive.
Therefore, to keep training times reasonable, the investigated
scenarios were simplified with fixed soil parameters such that
the agent does not learn to adapt to different soil properties.
Also, the deployment on real excavators has not yet been
demonstrated.

B. Contribution

The contribution of this work is an excavation controller
that can adapt online to varying soil conditions, also if they
change within the same scoop. We leverage RL and an
analytical soil model to train a control policy in simulation
that can be transferred to the real machine. Experiments on a
full-sized hydraulic excavator demonstrate that the controller
consistently achieves bucket filling without stalling or lifting
the machine in different types of soil, while still applying large
forces to the ground. If bucket filling is not possible due to
initializing the bucket too close to the machine or extremely
hard soil, the controller prioritizes avoiding self-collisions over
bucket filling. Our approach does not require soil parameters
to be known explicitly. They are inferred through proprio-
ceptive measurements from hydraulic pressure and kinematic
sensors, which are readily available on modern excavators. The
controller actuates standard proportional valves such that an
expensive modification of the hydraulics is not required.

II. METHOD

We train an RL excavation control policy in simulation
that we can deploy on the real machine. Therefore, we use
the classical RL setup and model the problem as a discrete-
time Markov Decision Process. The agent, in our case the
control policy, interacts with an environment that consists of
the excavator in a simulator and a soil model. The state of
the environment at time step t is represented by st ∈ S. At
every time step, the agent observes ot ∈ O ⊆ S , takes action
at ∈ A and receives a scalar reward rt(st, at, st+1) ∈ R :
S×A×S → R. The agent acts according to a stochastic policy
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Fig. 2. Forces from the analytical soil model acting on the bucket. The angle
between the bottom plate and its velocity is denoted with φ.

π(at|ot). Its objective is to learn a policy that maximizes the
infinite-horizon reward E

[∑∞
t=0 γ

trt
]

by interacting with the
environment. The discount factor γ ∈ (0, 1) trades off between
current and future rewards.

A. Simulation

1) Excavator: The rigid-body dynamics of the excavator
are simulated with RaiSim [30], a fast physics engine devel-
oped for robotics and RL. The excavator’s dynamic model is
exported from CAD, which is only accurate to some extent,
as many parts such as hoses or hydraulic oil are not included
in the model.

As explained later in Section II-C, the agent outputs joint
velocity commands for the arm joints. Therefore, we imple-
ment an explicit PID controller for each joint that outputs joint
torques, given a velocity reference. The PID parameters and
update rate are tuned to achieve practically perfect velocity
tracking. Forces acting on the bucket are compensated by
applying the corresponding torques at the joints, which can
be computed using the translational Jacobians. Torque and
velocity limits are obtained from the real machine and assumed
to be constant over the joint range. The outputs of the PID
controllers are clipped accordingly. This leads to the behavior
that the joint motion is stopped if the torque required to
overcome resistance, e.g., from the soil, exceeds the joint limit.
Additionally, a particularity of hydraulic actuators is that they
can absorb much more force in the direction opposite to the
command. We implement this by changing the torque limits
depending on the desired joint velocity. The remaining joints,
in particular the legs and the cabin turn, are not actuated and
kept in a fixed configuration. The machine is simulated with
a floating base. Its wheels are supported by solid ground with
a friction coefficient of 0.8.

2) Soil: Training the agent to excavate different soils re-
quires a soil model. Existing soil models can be broadly cate-
gorized as particle-based or analytical. While particle-based
models are relatively accurate and simulate many physical
effects, they are computationally expensive, which makes them
hitherto unsuited for training complex policies with RL [27]–
[29]. For this reason, we use a computationally lightweight an-
alytical soil model, which expresses the main excavation forces
in terms of geotechnical parameters. We heavily randomize the
soil parameters to simulate a wide variety of different soils
and thus compensate for the reduced accuracy of the model.

TABLE I
SOIL PARAMETERS AND RANDOMIZATION RANGES.

Parameter Unit Min Max

Cohesion (c) [32] kPa 0 105
Adhesion (ca) [33] kPa 0 c

Soil internal friction angle (Φ) [32] rad 0.3 0.8
Unit weight (γ) [32] kN/m3 17 22
Soil-bucket friction angle (δ) [33] rad 0.2 0.4
Cavity pressure factor (pt) [34] - 0 300

We base our implementation on the thesis of Park [31], whose
model comprises two mechanisms: separation and penetration.

Separation: Separation describes the process of breaking
and displacing soil. Its computation is based on the assumption
of a flat blade moving horizontally through the soil and was
first introduced by Reece [35] in 2 dimensions as the Funda-
mental Equation of Earth-Moving (FEE) and later extended to
3 dimensions, which is more appropriate for excavation [36].
The FEE computes the forces required to break the soil along
a failure surface, determined based on the bucket geometry,
and soil parameters (see Fig. 2). We assume a simplified
bucket geometry, consisting of a triangle and a semicircle,
and compute the separation forces for the secondary separation
plate that builds up as the bucket is filled with soil. Thereby,
we assume that the excavated material is evenly distributed in
the bucket and not compacted. The excavated soil volume is
obtained by integrating the bucket path through the soil. In
addition to Park’s model, we add the gravitational force of the
accumulated material, which acts on its centroid. Even though
Park’s model accounts for the slope of the soil, we assume in
this work horizontal ground for simplicity.

Penetration: Penetration refers to cutting the soil with the
edge or teeth of the bucket. It consists of frictional and
adhesive forces acting on the bottom plate and the bucket edge.
For the bottom plate, the friction is proportional to the passive
earth pressure, as given by Bennett et al. [37]. We use the
model for the coefficient of the lateral earth pressure proposed
by Jaky [38]. The resistive forces acting on the edge can be
computed similarly, except that the pressure is higher because
the soil is actively deformed. As proposed by Park, this can
be modeled using the cavity expansion theory. However, the
exact pressure can only be determined in an iterative fashion.
Therefore, we simplify the model by making use of the fact
that the cavity pressure does not increase indefinitely as the
cavity expands but reaches a limit pressure [34]. We then
assume that the limit pressure is directly reached and introduce
a factor that defines how much larger the cavity pressure is
compared to the passive earth pressure (pt). This factor is an
additional soil parameter that has been determined through
field tests [34].

Instead of defining discrete digging modes like Park, where
either separation, penetration, or both are active, we follow a
similar approach as Bennett et al. [37] and superimpose both
mechanisms. Additionally, we scale the resistance from the
bucket edge with the cosine of the angle φ between the bottom
plate and the bucket motion (see Fig. 2), i.e., if the bucket
moves parallel to the bottom plate, the factor is 1, if it moves
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Fig. 3. Desired terminal state conditions (T1-T5). The policy actuates the four
main arm joints θB , θD , XT , θP . The cabin height remains fixed, while the
cabin pitch and soil height are randomized during training. The wheels are
supported by patches of solid ground. The cabin frame is denoted with C and
the world frame with W .

perpendicular, the factor is 0. Spillage of soil is simulated
by setting the bucket fill volume to 0 if the bottom plate of
the bucket points downwards while not being inside the soil.
The soil parameters’ randomization ranges are obtained from
existing databases (see Table I). Computing the forces from
the analytical soil model is roughly 40 times faster than the
rigid body dynamics of the excavator.

B. Learning Objective

The agent’s objective is to start digging at the location of
initialization and filling the bucket with soil as quickly as pos-
sible while respecting certain constraints. This is achieved by
formulating appropriate rewards and termination conditions.
The agent receives a reward once per time step, whereas if
a termination condition is reached, the training episode is
terminated and reset, and the agent receives once a terminal
reward.

1) Positive Termination: To encourage the agent to fill the
bucket as quickly as possible, we define a terminal state (see
Fig. 3) where we award the agent with +10 if the bucket is
full enough (T1) or +5 if it is too close to the machine (T2).
Additionally, the bucket has to be high enough above the soil
(T3), curled sufficiently to avoid spillage (T4) and the bucket
origin has to be higher than the bucket edge to prevent over
curling (T5). To facilitate learning, we make it at the beginning
of the training easier for the agent to achieve the desired final
state by introducing a curriculum (kj) [39], which is changed
based on the RL update count (j).

TABLE II
REWARD TERMS FOR POLICY TRAINING.

Reward Definition ̸= 0 If C5 ∧

R1 Move down −0.1vWt,z Vn,t < 5%

R2 Filling Vn,t − Vn,t−1 ¬C2
R3 Move up 0.1vWt,z (C1 ∨ C2) ∧ ¬C3
R4 Curl 0.05ωW

t,y (C1 ∨ C2) ∧ ¬C4
R5 Smooth action −0.005∥at − at−1∥1 Always

C1 Full eough Filling ratio Vn,t ∈ [0, 1] > kj0.6 + 0.3

C2 Too close Edge distance to base < 3.0 m

C3 Edge high enough Edge height above soil > 1.0 m

C4 Curled enough Angle to horizon < 0.3 rad

C5 Slow enough Edge vel < 0.4 m s−1

2) Negative Termination: To discourage the agent from
reaching certain states, we define a set of conditions for which
we terminate the episode and give a reward of -1.

Bucket Velocity: Without further optimization, we set the
maximum bucket velocity to 0.5 m s−1, which corresponds to
a reasonable digging speed.

Bucket Motion and Orientation: To avoid pushing the soil
with the lower side of the bottom plate, the angle between the
bucket motion and the bottom plate (φ) has to be positive (see
Fig. 2).

Excavator Base Motion: The episode is terminated if any of
the components of the linear velocity of the excavator’s base
exceed 0.1 ms−1 to prevent stalling by pulling the machine
towards the bucket or lifting it up.

Empty Bucket Above Soil: To restrict the search space of
the agent and focus on exploration close or inside the soil, the
episode is terminated if the bucket is empty and more than
0.5 m above the ground.

Self-Collisions: If the arm collides with any part of the
excavator, the episode is terminated. The legs are spread such
that self-collisions with the legs cannot occur.

Too Deep or Flat: The secondary separation plate must
exit the soil before reaching the bucket’s back. If this is not
enforced, the bucket can penetrate very deep or dig at a very
flat angle (see Fig. 2).

3) Reward: The total reward is given by the sum of the
terms R1-R5. Their definitions and conditions for which they
are non-zero are listed in Table II. To encourage the agent
to start filling the bucket, it receives a reward proportional to
the linear velocity of the bucket edge towards the soil, i.e.,
moving down (vWt,z < 0) if the bucket is filled less than 5 %
(R1). Bucket filling is motivated by a reward proportional to
the normalized amount of added soil volume if the bucket is
not too close to the base (R2, C2). The incentive to reach the
terminal desired state is then provided by giving a reward for
moving the bucket upwards (vWt,z > 0) if it is not already high
enough (R3, C3), and for curling (ωW

t,y), if not already curled
enough (R4, C4), once the bucket is full enough (C1) or too
close to the base (C2). To incentivize the agent to maintain a
margin to the maximal bucket velocity defined by the negative
terminal conditions, we set all the reward terms to 0 if the
bucket velocity exceeds 0.4 ms−1 (C5). To ensure smooth
commands, the L1-norm between two consecutive actions (at,
at−1) is penalized (R5).
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C. Observations and Actions

We chose the agent’s actions to be joint velocities instead
of joint torques. Since the dynamic model of the excavator is
known to be inaccurate, a torque-based policy would not be
easily transferable to the real machine. Additionally, to control
forces, valves operate around zero oil flow. Standard valves
have a large deadband which leads to a bad force tracking
performance such that a more advanced hydraulic setup would
be required [17], [40]. Also, human operators control the oil
flow to the cylinders through the joysticks, which comes close
to controlling the cylinder velocities. We actuate the four
main arm joints (see Fig. 3), hence restricting the digging
motion to 2 dimensions as human operators mainly do it.
As observations, we use quantities that are easily measurable
also on the actual machine. Most importantly, the agent does
not receive any information about the soil properties but
infers the characteristics from proprioceptive measurements. In
particular, joint torque observations enable the agent to sense
the properties of the soil and adapt its behavior accordingly.
We also trained a policy without providing torque observa-
tions, resulting in a very conservative and inefficient controller
operating far below the torque limits. The reason for this is
that the agent avoids deep penetration because it might stall
depending on the soil properties and lacks information to infer
the cause of stalling, i.e., reaching torque limits, which cannot
be deduced from kinematic observations. The position and
velocity of the bucket can be inferred through the joint states,
are, however, provided to accelerate learning and represented
in the cabin frame (see Fig. 3) to be independent of the cabin
turn position. Since we assume flat ground, we can estimate
the height of the soil relative to the cabin by averaging the
wheel heights, which are known from leg kinematics. The
bucket fill volume is then approximated by integrating the
bucket path through the soil. The observations are noise-free,
and actions and observations are normalized with constant
empirical means and standard deviations to accelerate training.
The actions and observations are summarized in Table III.

D. Episode Initialization

At the beginning of every training episode, we initialize
the environment in a randomized state to expose the agent to
different conditions. Specifically, we sample uniform random
soil parameters within the ranges listed in Table I, including
the soil height in the range of [−2.0,−0.5] m relative to the
cabin (see Fig. 3). The arm is initialized in a random state
within the joint limits and less than 0.4 m above the ground.
In 25 % of the cases, the bucket is initialized inside the soil
and we sample a random bucket fill ratio. This helps the agent
explore the state space and accelerates the convergence of the
policy. The excavator itself is initialized with a pitch angle in
the range of ±0.1 rad.

E. Training

We train the agent using a custom implementation of Prox-
imal Policy Optimization (PPO) [41] with General Advantage
Estimation (GAE) [42], which allows for parallelized rollout

TABLE III
POLICY OBSERVATIONS AND ACTIONS. DIMENSION IN BRACKETS.

Observations ot (27) Actions at (4)

Arm joint torques (4) Joint vel. (4)
Arm joint kinematics (pos., vel.) (8)
Previous joint vel. command (4)
Soil height (1)
Bucket fill ratio (1)
Bucket lin./ang. pos./vel. in cabin frame (6)
Cabin pitch ang., pitch ang. rate in arm direction (2)
Angle between bucket vel. and bottom plate (φ) (1)

collection1. The policy and value functions are approximated
using two separate neural networks which receive the same
observations and have linear output layers. The training con-
verges after ~3K updates (~200M samples) and takes around
7 h2 (see Fig. 4).

Fig. 4. Discounted reward during training. Parameters: Policy, value function
hidden layers: 128, 128; Actor initial noise std.: 0.4, lower bound until update
1500: 0.1; Activation: LeakyReLU (α = 0.01); Discount factor: 0.99; Control
∆t: 0.15 s; Max. episode length: 19.95 s; Batch size: 68.1K; Entropy coeff.:
0.0; Learning rate: 5e-4; Value loss coeff: 0.5; Max. grad norm: 0.5; GAE λ:
0.95; Mini-batches: 4; Optimization epochs: 5; Clip range: 0.2

III. EXPERIMENTAL RESULTS3

A. Simulation Experiments

To validate the controller in simulation, we test the policy in
different types of soils, ranging from very soft to very hard (see
Fig. 5). The joint velocity commands from the agent (dashed)
are almost perfectly tracked (solid) due to the well-tuned
joint velocity controllers and perfect actuation with clipped
maximum torque.

Fig. 5a depicts the digging trajectory in soft soil. Since
the ground offers only little resistance, the bucket can be
quickly filled by penetrating deep and curling without reaching
machine torque limits. As per the reward definition, the linear
velocity of the bucket always stays below 0.4 ms−1.

In medium soil (see Fig. 5b), the agent learns to penetrate
less deep to prevent stalling or lifting up the machine. There-
fore, the agent has to drag the bucket at a certain depth to
fill the bucket. During the dragging phase, the dipper joint
operates at its torque limit, which indicates efficient digging
[6]. This is also intuitive, as the dipper joint contributes most
to the horizontal motion of the bucket.

In hard soil (see Fig. 5c), the bucket can penetrate even
less deep. The agent only manages to fill the bucket up to
80 %, even when starting with the arm entirely extended and
dragging over the whole range of motion. It then pulls up

1https://github.com/leggedrobotics/rsl rl
2We use a PC with an AMD Ryzen9 3950x CPU (@4.05GHz), 32GB of

RAM, and an Nvidia RTX 2080s GPU. Experience generation takes place on
the CPU and policy training on the GPU.

3Video of the experiments: https://youtu.be/0TJ6pFBb2kU.

https://github.com/leggedrobotics/rsl_rl
https://youtu.be/0TJ6pFBb2kU
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(a) Soft soil. The final bucket fill ratio is 1. Elapsed time: Total: 10.0 s; In
soil: 5.9 s. Soil parameters: c = 0, ca = 0, ϕ = 0.4, γ = 19e3, δ = 0.4,
pt = 1.

(b) Medium soil. The final bucket fill ratio is 1. Elapsed time: Total: 9.3 s;
In soil: 5.1 s. Soil parameters: c = 15e3, ca = 8e3, ϕ = 0.3, γ = 20e3,
δ = 0.3, pt = 50.

(c) Hard soil. The final bucket fill ratio is 0.8. The agent pulls up the bucket
before it is full to avoid self-collision. Elapsed time: Total: 17.3 s; In soil:
13.2 s. Soil parameters: c = 100e3, ca = 50e3, ϕ = 0.8, γ = 21e3,
δ = 0.5, pt = 250.

Fig. 5. Simulation experiments. Limits: Force/Torque: [−200, 140] kNm,
[−130, 170] kNm, [−100, 190] kN, [−50, 85] kNm; Velocity: [−0.3, 0.3]
rad/s, [−0.6, 0.6] rad/s, [−0.4, 0.4] m/s, [−0.8, 0.8] rad/s

to prevent self-collision as per the definition of the desired
terminal state. All experiments show very smooth velocity
commands with minimal direction changes, which is critical
for a successful transfer to the actual machine.

B. Hardware Requirements and Description

To validate the proposed method in reality, we show exper-
iments on a modified Menzi Muck M545, a 12-ton hydraulic
walking excavator [43], and, to begin with, briefly recapitulate
the requirements. Training the controller in simulation relies
on a kinematic and an approximate dynamic model of the
machine. The agent outputs joint velocity commands, which
requires two different joint velocity controllers for simulation
and deployment. On the M545, we use the standard propor-
tional valves in the main stage of the hydraulics. Automatic
operation is enabled by retrofitting electrically driven valves in
the low-pressure pilot stage. Joint velocity control is achieved

with PID plus feed-forward valve-flow controllers, which
output currents that are applied to the solenoids of the valves.
Joint torques are estimated by measuring the cylinder pressures
and knowing the surface areas of the pistons. The machine’s
orientation with respect to the world is measured with an
Inertial Measurement Unit (IMU). Kinematic joint states of
the arm are measured with IMUs and of the legs with mag-
netostrictive sensors. Today’s modern excavators are already
equipped ex works with the required sensors and valves.
Hence, retrofitting parts is unnecessary for such machines.

C. Hardware Experiments

Fig. 6 shows the results of testing the controller on the real
machine in different scenarios. The bucket is placed manually
above the ground before activating the controller. We repeat
each experiment multiple times to verify the consistency and
report the final bucket fill factor and the elapsed time. Note that
the shovel fill factor is only an approximation as it is computed
by integrating the bucket path through the soil and assumes
that all the material ends up in the bucket. Joint torques and
desired and measured velocities are shown for the bold bucket
path. The other runs are shown in thin lines and show a similar
course (torques and velocities are omitted for clearness of the
plots). The variations arise from differences in the initialization
and soil conditions which slightly change after each dig.

Fig. 6a shows digging in soft to medium soil. The tra-
jectories lie in between soft and medium soil in simulation
(see Fig. 5a and Fig. 5b). Since the joint velocities do not
perfectly follow the commands due to delays and deadzones
in the hydraulic actuation [43], the bucket velocity slightly
exceeds 0.4 ms−1.

In Fig. 6b we place the bucket very close to the excavator.
Since the agent was trained to avoid self-collisions, thus
pulling the bucket up if it is too close to the machine, the
bucket is only partially filled.

To test the controller in hard soil, we buried a block of
granite at a shallow depth because the soil on the test site is
relatively soft. As is shown in Fig. 6c, the bucket can only
penetrate to the depth of the rock and subsequently drags
the bucket over the rock while still applying large forces also
downwards with the boom joint, without lifting up the machine
from the ground, similar to the simulation experiment (see
Fig. 5c). This is essential to rip open hard ground and excavate
efficiently. At the end of the block, the bucket reaches softer
soil and penetrates deeper to build up again large forces to
fill up the bucket quickly. The bucket velocity stays below the
threshold of 0.4 ms−1 except for the moment of transition
between hard and soft soil where the joint velocity controllers
cannot react fast enough.

Finally, we demonstrate that the machine is indeed capable
of lifting itself up if the digging trajectory is not adjusted to
the encountered soil conditions. We manually push the boom
downwards while pulling the dipper towards the machine
on the hard soil, as if we were to excavate a deep, round
trajectory intended for soft soil (see Fig. 7). The joint torques,
in particular also at the boom joint, are so high that the front
wheels of the machine are lifted. The torque of the boom joint
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(a) Soft soil. The bucket is completely filled with each scoop. Elapsed time
mean/std: Total: 9.6/0.53 s; In soil: 6.0/0.20 s.

(b) Soft soil, close to the base. The agent pulls the bucket up before it is full
to avoid self-collision. Bucket fill ratio mean/std: 0.32/0.068. Elapsed time
mean/std: Total: 6.4/0.46 s; In soil: 3.4/0.26 s.

(c) Abruptly changing soil conditions (see Fig. 1). A rock is buried in the first
part of the excavation path. The bucket is completely filled with each scoop.
Elapsed time mean/std: Total: 12.0/0.17 s; In soil: 8.0/0.30 s.

Fig. 6. Hardware experiments. Limits: As per Fig. 5.

exceeds 100 % because we neglect the fact that the torque
limits are position-dependent due to the cylinder-joint linkage
mechanisms.

IV. CONCLUSION AND DISCUSSION

In this work, we presented a controller that can dig adap-
tively in different soil types without stalling or lifting up
the machine. The controller is trained in simulation with
RL, where it learns to excavate by interacting with a large
variety of different soils, just like human operators gain
experience. For fast simulation and massive data generation
with different soils, we use an analytical soil model that
computes the major soil characteristics based on geotechnical
parameters, which we heavily randomize during training.
Unlike other approaches, the proposed method does not require
prior knowledge about the working site’s soil conditions. The
controller can adapt online to varying soil conditions only
based on proprioceptive measurements readily available on
modern excavators. The desired behavior is shaped by defining
simple and intuitive rewards and terminal conditions, which

Fig. 7. Manually trying to excavate a deep round trajectory in hard soil.
We aborted the experiment because the machine was lifted up, which never
happened using the proposed excavation controller.

can be easily adapted depending on particular requirements or
a different platform. The execution of the trained controller
for deployment is computationally extremely cheap, such that
resources can be used for other operations.

This work relies on some assumptions and simplifications.
However, the proposed approach is flexible enough to ad-
dress these in future developments. In particular, we assume
horizontal ground, which can be addressed by adding per-
ception sensors and providing this information as additional
observation to the agent [44]. The analytical soil model used
in this work can account for sloped terrains [31]. Also, the
bucket fill volume can then be estimated more accurately
[17]. Even though we already observed that the agent could
react to changing soil conditions within one scoop, obstacles
such as buried objects can be simulated explicitly by defining
areas with hard soil properties to train the agent to contour
or excavate them. Another simplification concerns the torque
limits, which are assumed to be constant. However, due to
the joint linkage configurations, the actual torque limits are
position-dependent, which can be easily implemented. The
cabin turn position should also be randomized in the future
to account for changing machine stability depending on the
digging direction. These extensions increase the state space,
which will result in an increased training time. However, recent
developments in parallel computing make it possible to train
complex RL policies for real-world robotic problems within
minutes [45].

Besides improving the generalizability, future work will
require using the presented excavation controller in a practical
real-world application, such as for example excavating an
entire building pit. Adaptive digging, as shown in this letter,
can then be combined with other controllers, which have been
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designed to track desired trajectories with high accuracy [46].
Furthermore, excavation speed was not a particular focus of
this work. It should be optimized to maximize the working
efficiency, which becomes important in larger applications.

REFERENCES

[1] V. Chacko, H. Yu, S. Cang, and L. Vladareanu, “State of the Art in
Excavators,” in Proceedings of ICAMechS, 2014, pp. 481–488.

[2] D. A. Bradley and D. W. Seward, “The Development, Control and
Operation of an Autonomous Robotic Excavator,” JINT: Theory and
Applications, vol. 21, no. 1, pp. 73–97, 1998.

[3] Y. Zhang, Z. Sun, Q. Sun, Y. Wang, X. Li, and J. Yang, “Time-
jerk optimal trajectory planning of hydraulic robotic excavator,” AIME,
vol. 13, no. 7, pp. 1–13, 2021.

[4] Y. Yang, P. Long, X. Song, J. Pan, and L. Zhang, “Optimization-Based
Framework for Excavation Trajectory Generation,” IEEE RA-L, vol. 6,
no. 2, pp. 1479–1486, 2021.

[5] D. Lee, I. Jang, J. Byun, H. Seo, and H. J. Kim, “Real-Time Motion
Planning of a Hydraulic Excavator using Trajectory Optimization and
Model Predictive Control,” in Proceedings of IEEE/RSJ IROS, 2021, pp.
2135–2142.

[6] F. E. Sotiropoulos and H. H. Asada, “A Model-Free Extremum-Seeking
Approach to Autonomous Excavator Control Based on Output Power
Maximization,” IEEE RA-L, vol. 4, no. 2, pp. 1005–1012, 2019.

[7] H. Cannon, “Extended Earthmoving with an Autonomous Excavator,”
Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, 1999.

[8] Y. Yang, J. Pan, P. Long, X. Song, and L. Zhang, “Time Variable
Minimum Torque Trajectory Optimization for Autonomous Excavator,”
arXiv, 2020.

[9] Z. Zou, J. Chen, and X. Pang, “Task Space-Based Dynamic Trajectory
Planning for Digging Process of a Hydraulic Excavator with the Integra-
tion of Soil–Bucket Interaction,” IMechE, Part K: Journal of Multi-body
Dynamics, vol. 233, pp. 598–616, 2019.

[10] Y. B. Kim, J. Ha, H. Kang, P. Y. Kim, J. Park, and F. C. Park, “Dynam-
ically Optimal Trajectories for Earthmoving Excavators,” Automation in
Construction, vol. 35, pp. 568–578, 2013.

[11] H. Yoshida, T. Yoshimoto, D. Umino, and N. Mori, “Practical Full
Automation of Excavation and Loading for Hydraulic Excavators in
Indoor Environments,” in Proceedings of IEEE CASE, 2021, pp. 2153–
2160.

[12] R. J. Sandzimier and H. H. Asada, “A Data-Driven Approach to Predic-
tion and Optimal Bucket-Filling Control for Autonomous Excavators,”
IEEE RA-L, vol. 5, no. 2, pp. 2682–2689, 2020.

[13] H. Shao, H. Yamamoto, Y. Sakaida, T. Yamaguchi, Y. Yanagisawa, and
A. Nozue, “Automatic Excavation Planning of Hydraulic Excavator,” in
Proceedings of ICIRA, vol. 5315, 2008, pp. 1201–1211.

[14] G. J. Maeda, I. R. Manchester, and D. C. Rye, “Combined ILC and
Disturbance Observer for the Rejection of Near-Repetitive Disturbances,
With Application to Excavation,” IEEE TCST, vol. 23, no. 5, pp. 1754–
1769, 2015.

[15] H. S. Park, D. V. Dang, T. T. Nguyen, and N. T. Le, “Implementation
of a Virtual Autonomous Excavator,” Transactions of Famena, vol. 41,
no. 3, pp. 65–80, 2017.

[16] M. Dunbabin and P. Corke, “Autonomous Excavation Using a Rope
Shovel,” STAR, vol. 25, pp. 555–566, 2006.

[17] D. Jud, P. Leemann, S. Kerscher, and M. Hutter, “Autonomous Free-
Form Trenching Using a Walking Excavator,” IEEE RA-L, vol. 4, no. 4,
pp. 3208–3215, 2019.

[18] D. Jud, G. Hottiger, P. Leemann, and M. Hutter, “Planning and Control
for Autonomous Excavation,” IEEE RA-L, vol. 2, no. 4, pp. 2151–2158,
2017.

[19] D. Schmidt, M. Proetzsch, and K. Berns, “Simulation and Control of an
Autonomous Bucket Excavator for Landscaping Tasks,” in Proceedings
of IEEE ICRA, 2010, pp. 5108–5113.

[20] T. Groll, S. Hemer, T. Ropertz, and K. Berns, “Autonomous trenching
with hierarchically organized primitives,” Automation in Construction,
vol. 98, pp. 214–224, 2019.

[21] Quang Ha, M. Santos, Quang Nguyen, D. Rye, and H. Durrant-Whyte,
“Robotic Excavation in Construction Automation,” IEEE RAM, vol. 9,
no. 1, pp. 20–28, 2002.

[22] B. Son, C. Kim, C. Kim, and D. Lee, “Expert-Emulating Excavation
Trajectory Planning for Autonomous Robotic Industrial Excavator,” in
Proceedings of IEEE/RSJ IROS, 2020, pp. 2656–2662.

[23] Q. Lu and L. Zhang, “Excavation Learning for Rigid Objects in Clutter,”
IEEE RA-L, vol. 6, no. 4, pp. 7373–7380, 2021.

[24] Q. Lu, Y. Zhu, and L. Zhang, “Excavation Reinforcement Learning
Using Geometric Representation,” IEEE RA-L, 2022.

[25] C. Schenck, J. Tompson, S. Levine, and D. Fox, “Learning Robotic
Manipulation of Granular Media,” in Proceedings of CoRL, 2017, pp.
239–248.

[26] J. Park, B. Lee, S. Kang, P. Y. Kim, and H. J. Kim, “Online Learning
Control of Hydraulic Excavators Based on Echo-State Networks,” IEEE
T-ASE, vol. 14, no. 1, pp. 249–259, 2017.

[27] T. Osa and M. Aizawa, “Deep Reinforcement Learning With Adversarial
Training for Automated Excavation Using Depth Images,” IEEE Access,
vol. 10, pp. 4523–4535, 2022.

[28] K. Matsumoto, A. Yamaguchi, T. Oka, M. Yasumoto, S. Hara, M. Iida,
and M. Teichmann, “Simulation-based Reinforcement Learning Ap-
proach towards Construction Machine Automation,” ISARC, pp. 457–
464, 2020.

[29] I. Kurinov, G. Orzechowski, P. Hamalainen, and A. Mikkola, “Au-
tomated Excavator Based on Reinforcement Learning and Multibody
System Dynamics,” IEEE Access, vol. 8, pp. 213 998–214 006, 2020.

[30] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for
Solving Contact Dynamics,” IEEE RA-L, vol. 3, no. 2, pp. 895–902,
2018.

[31] Borinara Park, “Development of a Virtual Reality Excavator Simula-
tor: a Mathematical Model of Excavator Digging and a Calculation
Methodology,” Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2002.

[32] “Geotech Data,” https://www.geotechdata.info/parameter/, accessed:
2022-02-01.

[33] “Fine Geo Software,” https://www.finesoftware.eu/help/geo5/en/
earth-pressures-01/, accessed: 2022-02-01.

[34] H. S. Yu and G. T. Houlsby, “Finite Cavity Expansion in Dilatant Soils:
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