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Abstract—In this paper, we present a global navigation satellite 

system (GNSS) aided LiDAR-visual-inertial scheme, RailLoMer-

V, for accurate and robust rail vehicle localization and mapping. 

RailLoMer-V is formulated atop a factor graph and consists of two 

subsystems: an odometer assisted LiDAR-inertial system (OLIS) 

and an odometer integrated Visual-inertial system (OVIS). Both 

the subsystem exploits the typical geometry structure on the 

railroads. The plane constraints from extracted rail tracks are 

used to complement the rotation and vertical errors in OLIS. 

Besides, the line features and vanishing points are leveraged to 

constrain rotation drifts in OVIS. The proposed framework is 

extensively evaluated on datasets over 800 km, gathered for more 

than a year on both general-speed and high-speed railways, day 

and night. Taking advantage of the tightly-coupled integration of 

all measurements from individual sensors, our framework is 

accurate to long-during tasks and robust enough to grievously 

degenerated scenarios (railway tunnels). In addition, the real-time 

performance can be achieved with an onboard computer.  

 
Index Terms—train, multi-sensor, localization and mapping,  

I. INTRODUCTION 

RECISE rail vehicle localization and long-term railroad 

environment monitoring is of critical importance for 

safety operation on railway. The current positioning 

strategy is still dominated by trackside systems, which not only 

lack efficiency and accuracy for real-time applications, but also 

require large civil investment for construction and successive 

maintenance. In addition, the power supply of typical section 

needs to be cut off for infrastructure maintenance, and the 

trackside systems work not properly for high-speed railway 

maintenance vehicles.  

Recent advances in sensor technology and railway signal 

standardization have prompted research of onboard sensors. 

With the flexibility of installation and accurate positioning in 

open districts, the global navigation satellite system (GNSS) 

have attracted many researchers. Besides, the track geometry, 

IMU, odometer can supplement the system at GNSS outages. 

However, these approaches merely acquire the train state data 

without consideration of the environmental information. To 

cope with this problem, integration with perception sensors, is 

also required, and many previous works have employed mobile 

mapping system (MMS). As a direct-georeferencing method, 

 
 

 
Fig. 1. Overview of the proposed RailLoMer-V system. (a) is 

an example of maintenance vehicle equipped with RailLoMer-

V system. (b) and (c) denotes two typical environments, with 

(b) the day view of general-speed railway and (c) is the night 

view of high-speed railway tunnel. (d) and (e) is the respective 

colored-mapping and LiDAR mapping result of (b) and (c). 

MMS-based solution requires a series of post processing and 

survey-grade instruments. Therefore, they are not satisfactory 

for real-time rail vehicle location and large deployment.  

Different from commonly used unmanned aerial vehicles 

(UAV) and unmanned ground vehicles (UGV), researchers are 

pretty open in choosing localization sensors and computation 

units for rail applications. With the framework of estimating 

train state and mapping the surrounding in the meantime, 

simultaneously localization and mapping (SLAM) is a 

promising approach towards rail vehicle localization and 

environment monitoring problems. However, a number of 

difficulties affect the application of SLAM on rail vehicles. 
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1) Long-Time Constrained Motions: the rail vehicles are 

constrained to move along planar trajectories, leading to 

spurious information gain to the unobservable directions for 

IMU biases. This potential observability issue will result in 

large scale drift for many Visual-inertial approaches.  

2) Repetitive Features: shown in Fig. 1 (b) and (c), the 

mainly observable features are the repetitive rail tracks and 

suspension clamps, which is challenging for feature tracking 

based methods. 

3) No Revisited Places: many SLAM approaches employ 

the place descriptor to detect revisited places, and correct the 

accumulated drifts atop the detected loops. However, there are 

no revisited places for trains, which put forward higher 

requirements for low drift pose estimation. 

To tackle these challenges, we propose RailLoMer-V, an 

accurate and robust system for rail vehicle localization and 

mapping. RailLoMer-V fuses multi-modal information with a 

tightly-coupled manner. Our design of RailLoMer presents the 

following contributions: 

1) We propose a framework that tightly fuses LiDAR, IMU, 

rail vehicle wheel odometer, camera, and GNSS through 

sliding window based factor graph formulation. 

2) We fully leverage the geometric information of sensor 

measurements, where plane constraints from extracted 

rail tracks and vanishing point are utilized to increase 

system accuracy and robustness. 

3) Our framework is evaluated with data gathered over a year, 

covering various scales, weathers, and railways. 

To the best of the authors’ knowledge, RailLoMer-V is the 

first solution to real-time and large-scale rail vehicle SLAM. 

Some of the mapping results are shown in Fig. 1, denoting the 

capability of handling diverse railroad scenarios. 

II. RELATED WORK 

Prior works on train localization methods and LiDAR-visual-

inertial SLAM are extensive. In this section, we briefly review 

works on train localization and LiDAR-visual-inertial SLAM. 

 

A. Train Positioning Solutions 

The most common train positioning system is based on 

trackside sensors, such as a Balise [1], [2]. This system divides 

the railroad into individual blocks, where a Balise is placed at 

the beginning of each block. When a train passes over it, the 

Automatic Train Control (ATC) system detects and locates that 

a train is within that block. Considering its large capital 

investment and low localization efficiency, many researchers 

seek to supplement the limitations with either onboard sensors 

or feature matching based methods. 

The onboard sensors include radio frequency identification 

(RFID) [3], Doppler radar [4], GNSS receivers [5], IMU [6], 

and the tachometer or odometer [7]. The feature-matching 

methods first establish the feature database, then the real-time 

positions can be acquired through matching with the database. 

Such database consists of track signature, digital track line, or 

laser scan features [8]. 

The potential of SLAM for rail vehicles localization and 

mapping has not been well investigated. One of the early works, 

RailSLAM, jointly estimated the train state and validated the 

correctness of initial track map based on a general Bayesian 

theory [9]. The performance of Visual-inertial odometry on rail 

vehicles have been extensively evaluated in [10], [11], 

indicating that the Visual-inertial odometry is not reliable for 

railroad applications. But the LiDAR-visual-inertial based 

SLAM is still an open problem for railway applications. 

  

B. LiDAR-Visual-Inertial SLAM 

To increase system robustness against sensor failures, fusion 

of multi-modal sensing capabilities has been explored in many 

scholarly works. These schemes can be categorized into either 

loosely-coupled [12], [13] or tightly-coupled approaches [14]–

[16]. And the geometric structures can be employed to further 

avoid degeneracy at self-repetitive districts. Huang et.al. extract 

point and line features from images, and use LiDAR to assign 

depth information as well as scale correction [17]. Compared 

with point-only approaches, their method greatly reduces the 

feature ambiguity and achieves accurate estimation accuracy. 

The detected line segments can be also used to find vanishing 

point [18] for additional rotation constraint. Wisth et.al. 

propose to utilize line and planar primitives from LiDAR and 

track them over multiple scans [19]. The lightweight expression 

of the features allows for real-time execution on limited 

computation resource.  

From the discussion of the literature, we can see that the rail 

vehicle SLAM has not been well solved and evaluated. And this 

paper seeks to achieve real-time, low-drift and robust odometry 

and mapping for large-scale railroad environments with 

geometric structure assisted LiDAR-visual-inertial SLAM. 

III. PROBLEM STATEMENT 

We seek to estimate the trajectory and map the surrounding of a 

rail vehicle with multi-sensor measurements, in which the state 

estimation procedure can be formulated as a maximum-a-posterior 

(MAP) problem. 

We denote �∙�� , �∙�� , �∙�� and �∙��  as the world, body, 

camera and odometer frame. In addition, we define �∙���  as the 

transform from world frame to the IMU frame. We use both 

rotation matrix � and quaternion 
 to represent rotation. Besides, 

we denote ⊗ as the multiplication between two quaternions. �∙�̂ 

is denoted as the estimation of a certain quantity.  

 

A. State Definition 

The train state at time � is defined as follows: 

�� = ��� , �� , 
� , ��, ��, ��� �1� 

where � ∈ ℝ�, � ∈ ℝ�, and 
 ∈ SO�3� are the position, linear 

velocity, and orientation vector. �� and �� are the usual IMU 

gyroscope and accelerometer biases. And � is the scale factor 

of the odometer. 
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Fig. 2. The system framework of our approach, with the graph structure illustrated in the dashed box. Given the input LiDAR point 

cloud and monocular image, we extract the point, line, and vanishing point for each image, and track image frames with scale 

corrected by assigned depth information. Besides, the rail tracks are detected and extracted, with the rail track planes as plane 

constraints. All the measurements are jointly optimized with a sliding window based graph formulation.

B. Maximum-a-Posterior Problem  

Given the measurements !" and the history of states #", the 

MAP problem can be formulated as: 

#"∗ = argmax#*
+ �#"|!"� ∝ +�#.�+/�!"|#"�0 �2� 

If the measurements are conditionally independent, then (2) 

can be solved through least squares minimization:   

#∗ = argmin#*
4 4‖6�‖7

"

�89
�3� 

where 6� is the residual of the error between the predicted and 

measured value.  

 

C. Sliding Window Based Optimization 

To ensure the real-time performance of the optimization 

scheme, we exploit keyframes to establish sliding windows. For 

a sliding window of :;  keyframes, the optimal states are 

obtained through minimizing:  

min# <=6>=7 ? 4=6ℐA=7 ? 4 6ℒA ? 4=6CA=7
DCE

�89

DℒE

�89

DE

�89
?  

4 =6ℳA=7 ? 4=6GA=7 ?
DGE

�89

DℳE

�89
4=6HA=7 ?
DHE

�89
4=6IA=7J
DIE

�89
�4� 

where 6> is the prior factor marginalized by Schur-complement 

[20], 6ℐA is the residual of IMU/odometer preintegration result. 6ℒA  and 6CA define the residual of LiDAR and plane constraints. 6ℳA , 6GA , and 6HA  denote the residual of reprojection, line 

segment, and vanishing point terms. The residual of global 

positioning system is 6IA. 

IV. METHODOLOGY 

The system overview and the constructed graph is shown in 

Fig. 2, we now describe the measurements and residuals of the 

factors in detail. 

A. IMU/Odometer Preintegration Factor 

The raw accelerometer and gyroscope measurements, LM and NO , are given by: 

LM" = L" ? ���*P� ? ��* ? Q� , 
NO " = N" ? �R* ? QR �5� 

where Q� and QR are the zero-mean white Gaussian noise, with Q� ∼ U�V, W�7� , QR ∼ U�V, WR7 � . The gravity vector in the 

world frame is denoted as P� = X0,0, Z[\. And the model of 

odometer sensor is given by: 

]�*�M� = �� ? Q^_ �6� 

where ]�* denotes the scale factor of the odometer modeled as 

random walk, with Q^_ ∼ U�V, W^_7 �. Then the pose estimation 

can be achieved through synchronously collected gyroscope 

and odometer output, and the displacement within two 

consecutive frames k and k+1 can be given as: 

�O�*
�*ab = ��*

�*ab ? Q�c �7� 

where Q�c  is also the zero-mean white Gaussian noise. Based 

thereupon and the preintegration form in [20], we can formulate 

the discrete form of preintegrated IMU/odometer information 

between k and k+1 efO�Aab
�* , gh�Aab

�* , iO�Aab
�* , jh �Aab

�* k as: 

fO�Aab
�* = fO�A

�* ? gh�A
�*l ? 12 m�iO�A

�*��LM� n �o �A�l7 

gh�Aab
�* = gh�A

�* ? m�iO�A
�*��LM� n �o �A�l 

iO�Aab
�* = iO�A

�* ⊗ p 112 �NO � n �o RA�lq 

jh �Aab
�* = jh �A

�* ? m riO�A
�*s mh�A

�A]M�A�M�Al �8� 

Finally, the residual of preintegrated IMU/odometer data 

elf�*ab
�*  lg�*ab

�*  lu�*ab
�*  l��  l�� lj�*ab

�*  l]�k\
is given as: 
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 6ℐ�vh�*ab
�* , w� = 

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡���* {��*ab� n ��*� ? 12 P�∆"7 n  ��*� ∆"} n fO�*ab

�*

���*/ ��*ab� ? P�∆" n  ��*� 0 n gh�*ab
�*

2 ~/
�*� 0�9 ⊗ /
�*ab� 0 ⊗ riO�*ab
�* s�9�7:���*ab  n  ��*  ��*ab  n  ��*  

���* r��*ab� n ��*� ? ��*ab� ��*ab
�*abs n jh �*ab

�*
]�*ab  n  ]�* ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

�9� 

where X∙[7:� is used to take out the last four elements from a 

quaternion. ��*ab
�*ab  is the displacement between odometer and 

the IMU measured by a total station. 

 

B. LiDAR-Related Factors 

Since the range measuring error in the axial direction is large 

for short-distance, we first remove the too close points from 

LiDAR. Then we apply the IMU/odometer increment model to 

correct LiDAR point motion distortion with linear interpolation. 

We follow the work of [21] to extract two sets of feature 

points from denoised and distortion-free point cloud. The edge 

features �  are selected with high curvature and the planar 

features �  are with low curvature. Then we take the fused 

feature points to perform scan registration with the edge and 

planar patch correspondence computed through point-to-line 

and point-to-plane distances: 

�ℰ* = �/�"� n �9��0 × /�"� n �7��0�
��9�� n �7��� �10� 

��* = /�"� n �9��0� r/�9�� n �7��0 × /�9�� n ����0s
�/�9�� n �7��0 × /�9�� n ����0� �11� 

here �"�  represents the scan point in the global frame. ��9�� , �7��� and ��9�� , �7�� , ����� are from the 5 nearest points 

of a current edge or planar feature point sets in the global frame. 

Suppose the number of edge and planar correspondences is :� 

and :� in the current frame, the residual can be calculated using: 

6ℒ* = 4��ℰA�7
D�

�89
? 4�����7

D�

�89
�12� 

We notice that the LiDAR-only odometry with LiDAR of 

limited FoV is over-sensitive to the vibrations caused by the 

joint of rail tracks and the rail track turnouts, where errors may 

appear in the pitch direction. Besides, the two rail tracks are not 

of the same height at turnings, and the LiDAR-only odometry 

will keep this roll divergence even in the following straight 

railways. Illustrated in [22], the planar features from segmented 

ground can effectually constrain the roll and pitch rotation. 

However, the angle-based ground extraction is not robust for 

railways as the small height variations will be ignored by the 

segmentation, which will generate large vertical divergence for 

large-scale mapping tasks.  

We hereby employ the rail track plane to provide ground 

constraints. We first detect the track bed area using the LiDAR 

sensor mounting height and angle. With the assumption of the 

LiDAR is centered between two rail tracks, we can set two 

candidate areas around the left and right rail tracks and search 

the points with local maximum height over the track bed. Two 

straight lines can then be fixed using random sample consensus 

(RANSAC) [23] method. Finally, we exploit the idea of region 

growing [24] for further refinement. As a prevailing 

segmentation algorithm, region growing examines neighboring 

points of initial seed area and decides whether to add the point 

to the seed region or not. We set the initial seed area within the 

distance of 5 m ahead of the LiDAR, and the distance threshold 

of the search region to the fitted line is set to 0.07 m, which is 

the width of the track head.  

We are now able to define a plane with the two sets of rail 

track points using RANSAC. And the ground plane � can be 

parameterized by the normal direction vector �� and a distance 

scalar �� , � = X��\ , ��[\ . Then the correspondence of each 

ground point between two consecutive scan k and � ? 1 can be 

established by:    

��*ab = ��*
�*ab��*  �13� 

��*
�*ab = �����*

�*ab �14� 

where ��*aband ��* is the same point expressed in frame �" 9 

and �"  with the corresponding transformation defined by 

��*
�*ab = ¡��*

�*ab , ��*
�*ab¢ . Based thereon, the ground plane 

measurement residual can be expressed as: 

6C* = �" 9 n ��*ab
�* �" �15� 

 

C. Visual-Related Factors 

Different from UAVs or UGVs with arbitrary movements, 

the rail vehicles are limited to highly-constrained motions, such 

as long-time consistent velocities, constant linear accelerations 

at accelerate or braking stage, and no rotations. According to 

[25], moving with constant acceleration or without rotating can 

introduce locally unobservable IMU biases, generating ill-

conditioned or even rank-deficient information matrix and 

result in significant scale drift for VINS. Therefore, we leverage 

the IMU bias estimated by LiDAR-inertial odometry at the 

initialization stage, and associate relative depth information to 

extracted feature points on image keyframes. The scale drift can 

then be corrected by odometer aided VINS and the scale 

correction optimization in [17]. 

Since more scale correction is added, the £ n ¤ translational 

accuracy can be significantly improved. However, the 

rotational error is still not evitable, and we introduce two 

additional structure constraints for further refinement.  

We can extract the line segments with LSD [26] as shown in 

Fig. 3. Assuming ¥ = X¦9, ¦7, ¦�[�  is the projection of a line 
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feature on the image plane [27], and § as the midpoint of the 

line feature, the line feature reprojection error can be defined as: 

6G* = §�¥
¨¦97 ? ¦77

�16� 

Besides, the rotation drift can be effectually constrained with 

detected vanishing point as illustrated in [28]. We hereby utilize 

the vanishing point to constrain the camera orientation. Suppose ©"�  is the attitude of the detected vanishing point in the �-th 

frame, and the corresponding vanishing point error can be 

expressed following [18]:  

6H* = ©"� × /���*©"�0 �17� 

 

Fig. 3. Extracted LSD (left) and vanishing point (right) from a 

single frame. 

 

D. GNSS Factors 

The accumulated drifts of the system can be corrected using 

RTK measurements. The GNSS factor is added when the 

estimated position covariance is larger than the reported GNSS 

covariance in [29]. However, we find that the reported GNSS 

covariance is not trustworthy sometimes, and may yield blurred 

or inconsequent mapping result. We hereby model the GNSS 

measurements ª"� with additive noise, and the global position 

residual can be defined as: 

6I* = ���*���* n ��� n  ��*�  

? 12 P�∆"7 n  ��*� ∆"� n fO�*ab
�* �16� 

where ���  is the transformation from the receiver antenna to the 

IMU, which can be obtained from installation configuration. 

Note that we only consider the single point positioning (SPP) 

result as input due to the inconsistent 4G communication 

quality for long railroads.  

 

E. Map Management 

To reduce the mapping blurry caused by frequent GNSS 

aided optimization, We propose a submap-based two-stage 

map-to-map registration, which first creates submaps based on 

local optimization, then leverage the GNSS information for 

submap-to-submap registration using the normal distribution 

transform (NDT) [30]. In practice, 30 keyframes are maintained 

in each submap, which can reduce the mapping blurry caused 

by frequent correction. 

 
1 https://www.xsens.com/mti-680g 
2 http://www.whmpst.com/en/imgproduct.php?aid=29 

V. EXPERIMENTS 

A. Hardware Setup 

We conduct a series of experiments with various kinds of 

maintenance vehicles on two railroads: one is a freight traffic 

railway for general-speed trains, the other is a manned traffic 

railway for high-speed trains. According to the safety principle 

on the railroad, we can only carry out the former experiments 

in the daytime, and the latter in the midnight. 

The overview of the system installment and hardware setup 

is shown in Fig. 4, including a Hikvision camera, a Livox 

Horizon LiDAR, and a MTi-680G 1  integrated navigation 

system. Additionally, the system also incorporates a wheel 

odometer. All the sensors are hardware-synchronized with a u-

blox EVK-M8T GNSS timing evaluation kit using GNSS pulse 

per second. Besides, we employ an onboard computer, with i9-

10980HK CPU (2.4 GHz, octa-core), 64GB RAM, for real-time 

processing. All our algorithms are implemented in C++ and 

executed in Ubuntu Linux using the ROS [31] 

The details of the four datasets are listed in TABLE II. And 

the ground truth is kept by the post processing result of a 

MPSTNAV M39 GNSS/INS integrated navigation system 2 

(with RTK corrections sent from Qianxun SI). 

We evaluate the proposed framework with R2LIVE, FAST-

LIO2, LiLi-OM, Lio-Livox3, and VINS-Mono. For ablation 

study, we define RailLoMer-V w/o GNSS, RailLoMer-V w/o 

ODO, and RM-LVI as no GNSS factor, no odometer factor, and 

the LiDAR-visual-inertial part of our proposed system. 

 

 
(a)                                          (b) 

Fig. 4. Illustration of two kinds of installment based on different 

types of maintenance vehicles. (a) is the longitudinal-way on 

the general-speed railway maintenance vehicle. (b) is the 

lateral-way on the high-speed railway maintenance vehicle. 

And the red, green, blue box indicates Hikvision camera, Livox 

Horizon LiDAR, and MTi-680G, respectively.  

  

TABLE II 

DETAILS OF ALL THE SEQUENCES FOR EVALUATION 

Name Duration (sec) Distance (km) 

General-speed railway sequence gathered at daytime 

HQ-Long 1325 25.2 

HQ-Short 423 6.3 

High-speed railway sequence gathered at midnight 

CH-Long 715 6.5 

CH-Short 336 2.4 

CH-Tunnel 475 4.2 

3 https://github.com/Livox-SDK/LIO-Livox 
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TABLE III 

ACCURACY EVALUATION FOR ALL THE SEQUENCES  

      Absolute Trajectory Error (ATE) RMSE [m] / MAX [m], with - and indicates meaningless result. 

             HQ-Long         HQ-Short   CH-Long          CH-Short     CH-Tunnel 

            R2LIVE - / -    6.36 / 32.68 4.35 / 7.47 2.32 / 5.53 27.59 / 79.81 

FAST-LIO2 - / - 8.53 / 29.73 5.56 / 8.64 4.06 / 9.7    39.68 / 107.54 

LiLi-OM 447.5 / 1896.93 7.95 / 31.5 5.23 / 9.67 3.51 / 5.17 18.57 / 64.21 

Lio-Livox - / -   18.97 / 48.46 7.58 / 12.77 5.42 / 6.66 32.68 / 98.57 

VINS-Mono - / - 142.47 / 288.6 145.7 / 293.63 17.63 / 35.4 - / - 

RailLoMer-V 0.36 / 1.8   0.35 / 0.84 0.49 / 1.43 0.45 / 1.47 0.57 / 2.95 

RailLoMer-V w/o GNSS 299.58 / 866.57  2.35 / 4.53 2.1 / 3.52 0.96 / 1.77 3.67 / 6.55 

RailLoMer-V w/o ODO 1.64 / 5.41  1.47 / 2.11 0.73 / 1.71 0.47 / 1.82   8.08 / 39.49 

RM-LVI 349.65 / 1078.5  2.48 / 5.56 2.37 / 4.72 1.24 / 3.8 11.33 / 47.68 

      
 

 
(a) FAST-LIO2                             (b) LiLi-OM                             (c) Lio-Livox                              (d) RailLoMer-V 

Fig. 5. The trajectory evaluation on HQ-Long for various methods. 

B. Evaluation 

We now present a series of evaluation to qualitatively and 

quantitatively analyze our proposed framework, and TABLE III 

summarizes the root mean square error (RMSE) and maximum 

positioning error (MAX) metrics of various methods.  

1) Benchmarking Results: Our system can achieve 

decimeter grade accuracy for all the sequences. However, the 

performances of other approaches are not admirable. For the 

small-scale test, the incorrectly initialized gravity vector 

accelerates the vertical error accumulation. The maintenance 

vehicle starts at a big turning in CH-Short. As the two rail tracks 

are not of the same height at turning, the gravity vector cannot 

be initialized correctly, and the selected methods all work not 

properly without additional constraints. For the large-scale test, 

the vision-only method shows terrible performance with 

constant velocity. This highly-constrained motion results in 

insufficient axis excitement, and generates great scale drift.  

2) Robustness Towards Direction of Motion: Different 

from unmanned ground vehicles (UGV) or automated vehicles, 

which are always moving forward while data gathering, the rail 

vehicles also comprise a long-time backward motion. And we 

employ HQ-Long, a backward motion only sequence, to study 

the effect of motion direction. Presented in TABLE III and Fig. 

5, the filter-based algorithm R2LIVE and FAST-LIO2 see an 

enormous divergence in 6-DoF on this sequence. However, the 

optimization-based algorithms are insensitive to this influence. 

 
Fig. 6. Visual illustration of the repetitive structures in the high-

speed railway tunnel. 

3) Robustness Towards Degeneracy: Shown in Fig. 6, the 

tunnels of high-speed railway are with smooth man-made walls, 

repetitive rail tracks and suspension clamps. We believe these 

districts as one of the most difficult scenarios for SLAM, and 

we challenge our system with CH-Tunnel, comprised of three 

consecutive tunnels (with the longest 1.7 km long). With the 

assistance of odometer and GNSS, the longitudinal divergence 

and accumulated errors can be well-eliminated, and our 

proposed system can maintain an accurate trajectory. On the 

contrary, the other methods either ‘stops’ or ‘moves backward’ 

towards grievously degenerated scenarios. 

4) Weather Influence: The general-speed railway datasets 

are collected in the summer. whereas the high-speed railway 

datasets are gathered in the winter. Since the rail tracks become 

wet and slippery in the winter midnight, the wheel slip is 

unavoidable, and the proposed RailLoMer-V system has a 

relatively low performance in the winter.  
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(a) HQ-Long                                                                                 (b) HQ-Short 

 
                                       (c) CH-Long                                                                                      (d) CH-Short 

 
(e) CH-Tunnel                                                                                     (f) CH-Tunnel 

Fig. 7. The real-time mapping result of each sequence. (a) and (b) are from the general-speed railway experiment, with the color 

coded by height variations. (c) and (d) are the high-speed railway experiment mapping aligned with Google Map. (e) and (f) 

presents the novelty of tunnel experiment. 

 

5) Ablation Study: It is seen that the odometer can well 

constrain the longitudinal displacement at degenerated areas, 

and the RailLoMer-V w/o GNSS has a better performance than 

RailLoMer-V w/o ODO in CH-Tunnel. However, the odometer 

contribution is not evident for feature-rich districts, and the 

RM-LVI sees a similar accuracy with RailLoMer-V w/o GNSS 

for the other sequences. 

6) High Precision Map Construction: We show that our 

proposed method is accurate enough to build large-scale map of 

railroad environments. The real-time mapping is shown in Fig. 

7, in which the clear and well-matched result with the satellite 

image indicates that our proposed method is of high precision. 

 

TABLE IV 

THE AVERAGE TIME CONSUMPTION IN MS 

     OLIS OVIS Fusion 

        HQ-Long 33.7 34.1 52.5 

HQ-Short 28.8 31.6 37.6 

CH-Long 30.3 33.2 45.2 

CH-Short 29.5 31.5 39.6 

CH-Tunnel 27.4 30.7 39.4 
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C. Runtime Analysis 

The average runtime for processing each scan in different 

scenarios is shown in TABLE IV, denoting the proposed system 

capable of real-time operation for all conditions. Besides, the 

time has not seen a large growth with increased distance. 

VI. CONCLUSION 

We have proposed RailLoMer-V, an accurate and robust 

localization and mapping framework for rail vehicles in this 

paper. Our system fuses measurements from LiDAR, camera, 

IMU, train odometer, and GNSS with a tightly-coupled manner. 

Besides, we leverage additional geometric structure constraints 

to cope with the highly-repeated environments. Our proposed 

system shows decimeter grade positioning accuracy through 

evaluations over various illumination conditions, different 

scales, and degenerated districts.  

We hope that our experimental work and evaluation could 

inspire follow-up works to explore more intelligent systems for 

railroad applications, especially for facility and environment 

monitoring. From our four-year experience staying with various 

railroad maintenance vehicles, a small advance towards 

automation will save tremendous amount of manpower for 

construction and maintenance. 
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