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Abstract—This paper presents a novel interaction planning
method that exploits impedance tuning techniques in response
to environmental uncertainties and unpredictable conditions
using haptic information only. The proposed algorithm plans
the robot’s trajectory based on the haptic interaction with the
environment and adapts planning strategies as needed. Two
approaches are considered: Exploration and Bouncing strategies.
The Exploration strategy takes the actual motion of the robot
into account in planning, while the Bouncing strategy exploits the
forces and the motion vector of the robot. Moreover, self-tuning
impedance is performed according to the planned trajectory to
ensure compliant contact and low contact forces. In order to show
the performance of the proposed methodology, two experiments
with a torque-controller robotic arm are carried out. The first
considers a maze exploration without obstacles, whereas the
second includes obstacles. The proposed method performance is
analyzed and compared against previously proposed solutions
in both cases. Experimental results demonstrate that: i) the
robot can successfully plan its trajectory autonomously in the
most feasible direction according to the interaction with the
environment, and ii) a compliant interaction with an unknown
environment despite the uncertainties is achieved. Finally, a
scalability demonstration is carried out to show the potential
of the proposed method under multiple scenarios.

Index Terms—Compliance and Impedance Control, Integrated
Planning and Control, Planning under Uncertainty.

I. INTRODUCTION

FLEXIBLE materials naturally deform when interacting
with the surrounding environment. This behavior enables

us to exploit environmental constraints, facilitating ‘blind’ ex-
plorations through physical interaction, e.g., insertion tasks [1],
[2] or pipe inspection [3]. For instance, running a wire inside
the cable raceways hidden in a wall becomes a very simple
task, which can be accomplished by using a flexible stick and
pushing it from an external tip. In other words, the elastic
behavior allows solving the maze even without ‘planning’ the
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Fig. 1. Maze exploration concept: the robotic arm carries out an exploration
task in an unknown and constrained environment, planning the trajectories
while interacting with it. The impedance parameters are adaptively tuned
online according to the direction of the motion: the robot is stiffer along the
principal axis of the stiffness ellipsoid (u1), and more compliant in the others
(u2,u3). The arrows’ length represent the Cartesian stiffness and damping
values.
trajectory. Such elastic behavior (i.e., reacting and accommo-
dating to changes in the environment) can be replicated by a
robot in autonomous tasks despite existing uncertainties and
missing of visual data.

Traditional solutions rely on trajectory planners to deal with
uncertainties, avoiding unexpected contacts with obstacles
such as RRT [4] or PRM [5]. These approaches need to build
or estimate a highly accurate environment model. However,
the more complex the environment, the more challenging is
the modeling of the environment, which makes these solutions
impractical. On the other hand, allowing contacts with the
environment and planning based on haptic information enables
the robot to perform better and more autonomously in complex
environments. In this context, planners based on contact forces
have been proposed [6], [7]. Although the environmental
uncertainty is significantly reduced by considering contact,
those planning methods are computationally expensive and
require building/having a map of the environment. Trajectory-
scaling [8] or admittance behavior [9] are computationally less
expensive and can flexibly react to the external world. How-
ever, these solutions may not be suitable for exploration/path-
finding tasks in which the environment can change signifi-
cantly.

Regarding the problem of physical interaction with unstruc-
tured environments, impedance controllers [10] are known to
be an effective way to regulate the interaction forces when a
contact occurs. In particular, variable impedance control [11],
[12] can yield soft contacts between the robot and the en-
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vironment/human when necessary. This can be advantageous
in human-collaborative scenarios, since the compliance in-
troduced by the controller allows the person to modify the
robot’s trajectory [13]. On the other hand, in the impedance
control scheme, high stiffness may be required to achieve
high precision or interaction forces [14]–[16]. For instance,
in a collaborative sawing task [17], the stiffness values were
higher in the direction of sawing, to create cutting forces, and
lower in others, to comply with the task constraints. Therefore,
it is necessary to tune the impedance profiles of the robots
based on the actual task, human, and environmental states.
In such a way, robots can respond to modeling/environment
uncertainties or unexpected changes [18], [19].

This paper proposes a novel interaction planner that shapes
the trajectory and the direction of maximum stiffness without
prior knowledge of the environment, only exploiting real-
time haptic interaction, being naturally compliant to the
environmental constraints. This method regulates the haptic
interaction with the external world by an active impedance
control scheme. One of the most significant benefits of our
method is that it does not require prior knowledge/map of the
environment. Furthermore, our interaction planner adapts two
planning strategies based on the robot state. The Exploration
strategy plans by considering the actual concurrent motion of
the robot, while the Bouncing strategy employs the interaction
forces and previous motion vector of the robot. On the other
hand, the second strategy reacts when the robot gets stuck by
the environmental constraints. The main components of the
proposed approach are the novel interaction planner and our
self-tuning impedance technique, previously presented in [20].
The interaction planner, which deploys the robot’s motion and
estimated forces, is responsible for planning the exploration
trajectory by interacting with the environment. The self-tuning
impedance method renders a stiffer profile in the direction of
its primary motion while still being compliant along the other
axes. This method allows the robot to adapt to environmental
changes and avoid unnecessarily high interaction forces when
in contact with rigid materials.

We validate the proposed approach with experiments on
a real system using the Franka Emika Panda robotic arm.
To do so, we built a modular maze to create different paths
with rigid environmental constraints to evaluate the robot’s
performance during autonomous path generation and tracking.
The proposed method was additionally compared to fully stiff
and compliant cases using the same Exploration and Bouncing
logics.

The paper is structured as follows: Sec. II and III present
preliminaries and the proposed interaction planning strategy.
Sec. IV discusses the experimental setup and the experiments.
Finally, discussion and conclusion are addressed in Sec. V.

II. PRELIMINARY

A. Cartesian impedance controller

An active impedance control can be implemented through
torque sensing and actuation [21], with the robot joint torques
τττ ∈ Rn calculated as:

τττ = MMM(((qqq)))q̈qq+CCC(((qqq,,, q̇qq)))q̇qq+ggg(((qqq)))+ τττext, (1)

τττext = JJJ(((qqq)))T FFFc + τττst, (2)

where n is the number of joints, qqq ∈ Rn is the joint angles
vector, JJJ ∈R6×n is the Jacobian matrix, MMM ∈Rn×n is the mass
matrix, CCC ∈ Rn×n is the Coriolis and centrifugal matrix, and
ggg ∈ Rn is the gravitational vector. τττext ∈ Rn represents the
external torques and τττst ∈ Rn is the secondary task torques
in the null-space of JJJ. The Cartesian forces FFFc ∈ R6 are
calculated as:

FFFc = KKKc(xxxd− xxx)+DDDc(ẋxxd− ẋxx), (3)

where KKKc ∈ R6×6 and DDDc ∈ R6×6 represent, respectively, the
Cartesian stiffness and damping matrix. xxxd and xxx ∈ R6 are
the Cartesian desired and actual poses, while ẋxxd and ẋxx ∈ R6

represent their corresponding velocity profiles.

B. Self-tuning impedance unit

Hereafter, we introduce the basic principles of the self-
tuning impedance controller, originally presented in [20], that
is going to be employed with the method proposed in this
work. This adaptive controller allows the robot to accurately
track the desired motion along the motion vector, but also
allows flexibility along the other directions to make the robot
adapt to external unintended disturbances (e.g., obstacles).
Being more stiff in the principal direction of the movement,
and more compliant in the others can be achieved by tuning the
major axis of the Cartesian stiffness and damping ellipsoids in
the direction of interaction, i.e., deriving the Cartesian stiffness
and damping matrices (symmetric and positive definite) as
follows:

KKKc =UUUΣΣΣkUUUT , (4)

DDDc =UUUΣΣΣdUUUT , (5)

where the diagonal matrix ΣΣΣk and ΣΣΣd are the desired stiffness
and damping factors along the direction of the vector compos-
ing the orthonormal basis UUU , whose first column represents the
motion vector, calculated as xxxd,t − xxxd,t−1 and defined as u1 in
Fig. 1, and the remaining ones (i.e., u2 and u3) are shaped so
as to compose an orthonormal basis. ΣΣΣk and ΣΣΣd are defined
by:

ΣΣΣk = diag(kmax,kmin,kmin), (6)

ΣΣΣd = diag(dmax,dmin,dmin), (7)

where kmax is the maximum controllable stiffness and dmax =
2ζ
√

kmax [22] its corresponding damping value. Likewise, kmin
and dmin are the minimum stiffness and damping coefficients.

III. METHOD

A. Interaction planner

In this study, we consider the case where the robot is not
given any prior knowledge about the environment it needs to
interact with. Additionally, no external sensors are used (e.g.,
camera or depth sensor), and the only information the system
can rely on are represented by the robot’s internal torque sens-
ing, which is used to estimate the external interaction forces.
Considering these conditions, in this work we propose an
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Fig. 2. System framework: The framework is composed of 3 modules,
Cartesian impedance controller, self-tuning impedance unit, and interaction
planner. The self-tuning impedance unit and interaction planner rely on
sensing robot state, i.e., external forces and robot pose.

interaction planner that is able to plan the desired trajectories
based on the interaction with the environment. The proposed
interaction planner mainly consists of two strategies, i.e.,
Exploration and Bouncing. The robot autonomously switches
between the two, based on the sensed contact forces. This
planner was inspired by [23], where planning trajectories are
achieved by scaling the desired velocity based on contact
forces. Such approach enables flexible trajectory planning
without prior knowledge on the external environments. We
have exploited and extended this algorithm for the presented
Bouncing strategy. This strategy has a wider range of scaling
factors [−1...1], which allows us not only to avoid obstacles,
but also to plan a trajectory towards the goal flexibly by
considering interaction forces and motion vector.

1) Exploration: in this state, the robot is in free space
or, if in contact with the environment, is still able to move
along the desired motion (subject to the relative environmental
perturbations). The desired direction of the motion is modified
only when the contact with the environment reaches the values
of certain force thresholds, meaning that the robot needs to
deviate its trajectory to be able to explore the surrounding
environment, as illustrated in Fig. 3.

To this end, the Exploration algorithm, whose pseudo-code
is reported in Alg. 1, calculates the new desired pose xxxd based
on the actual pose xxx and on the sensed external forces FFFext.
The algorithm is in charge of detecting two poses, namely
rrrlow and rrrhigh, that are then used to compute the new motion
direction, r̂rrnd and its relative increment ∆∆∆rrrnd. The above-
mentioned poses are calculated by assigning the actual robot
pose xxx in two different time frames, triggered by two external
forces thresholds. The first, rrrlow, is retrieved when the robot
external forces go beyond a first threshold named Fth low.
While the contact force exceeds Fth low, the algorithm checks
if the external forces go beyond the second threshold, Fth high.
These thresholds are set empirically. When this is the case,
the actual robot pose is assigned to the second pose, rrrhigh.
From these values, the new motion vector rrrnd is computed, and
then normalized as r̂rrnd so as to avoid significant incremental
changes. Lastly, the increment to the previous desired pose,
xxxd,t−1, is calculated as in line 13, where vconstE is the desired
velocity, and ∆T represents control loop time.

2) Bouncing: this second strategy was implemented to
substantially change the direction of the motion when the robot
gets stuck by environmental constraints. When the robot is in

Fig. 3. Interaction planner Exploration state: (left) shows the phase when FFFext
exceeds Fth low, and thus rrrlow is stored. (middle) shows the phase when FFFext
exceeds Fth high, and thus where rrrhigh is stored. (right) shows the new motion,
r̂rrnd, based on the displacement caused by the contacts with the environment.

Algorithm 1 Exploration algorithm
Input: xxx,FFFext
Output: xxxd

Control loop :
1: if (Fth high is not detected) then
2: if (Fth low is not detected) then
3: if (FFFext >= Fth low) then
4: rrrlow = xxx {Fth low is detected}
5: end if
6: end if
7: if (FFFext >= Fth high) then
8: rrrhigh = xxx {Fth high is detected}
9: end if

10: end if
11: rrrnd = rrrhigh− rrrlow

12: r̂rrnd =
rrrnd

‖rrrnd‖2
13: ∆rrrd = r̂rrnd ∗ vconstE ∗∆T
14: xxxd,t = xxxd,t−1 +∆rrrd

contact with the environment perpendicularly, the Exploration
algorithm presented above is unable to find the movable
direction because it relies on the displacement caused by two
different contacts with the environment, in order to plan a
new trajectory. As a representative example, we can consider
an L-shaped constraint that has limited possible directions of
movement, as illustrated in Fig. 4.

To address this issue, the new direction that needs to be
computed cannot rely anymore on two consecutive poses,
but the robot needs to be steered to another direction, i.e.,
bouncing from the contact point. To determine the bouncing
direction, we consider the normalized external forces vector
F̂FFext ∈ R6 when the robot gets stuck by environmental con-
straints, and the unit vector r̂rrtrend ∈R3 , that is the robot motion
vector derived as rrrtrend = xxxt − xxxt−m,

where m represents the number of time steps in the past
that are considered. The larger this values is set, the bigger
the robot’s motion trend becomes. The desired velocity vconstB,
is scaled by the scaling factor α , β ∈ [−1...1] which are
calculated as line 5 and 9 in Alg. 2, where φ(x)∈ [−π...π] and
φ(y) ∈ [−π...π] are angles between F̂FFext(x) and r̂rrtrend, as well
as F̂FFext(y) and r̂rrtrend respectively. The angle between external
forces and motion vector is calculated by:

φ = arccos
(
< F̂FFext, r̂rrtrend >

‖F̂FFext‖‖r̂rrtrend‖

)
. (8)
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Fig. 4. Interaction planner Bouncing state: (left) shows the phase where a
robot is trapped by environmental constraints. At this point, by considering
the sensed external forces and the motion trend vector, the robot finds a new
direction as shown in (right).

Algorithm 2 Bouncing algorithm
Input: rrrtrend,FFFext
Output: xxxd

Initialization :

1: F̂FFext =
FFFext

‖FFFext‖2

2: r̂rrtrend =
rrrtrend

‖rrrtrend‖2
3: φ(x) = getAngleBetween(F̂FFext(x), r̂rrtrend)
4: φ(y) = getAngleBetween(F̂FFext(y), r̂rrtrend)
5: α = (1−|cos(φ(x))|)
6: if (F̂FFext(x)< 0.0) then
7: α =−α

8: end if
9: β = (1−|cos(φ(y))|)

10: if (F̂FFext(y)< 0.0) then
11: β =−β

12: end if
Control loop :

13: ∆rd(x) = α ∗ vconstB ∗∆T
14: ∆rd(y) = β ∗ vconstB ∗∆T
15: xxxd,t = xxxd,t−1 +∆rrrd

Furthermore, the scaling factor was designed to be larger when
two vectors are perpendicular while it becomes smaller when
two vectors are on the same axis.

B. Finite state machine

A Finite State Machine (FSM) is also implemented to enable
the robot to change its strategy according to its state. The FSM
consists of the following states: Exploration, Bouncing, and
Error. The default robot behavior resides in the Exploration
state, where the robot can navigate through the environment.
On the other hand, the FSM shifts to the Bouncing state if the
robot is considered to be trapped by the constraints. To switch
between the two states, the following equation is introduced:

∆d = ‖xxx− xxxt−h‖2 (9)

where ∆d is the displacement and h is the sampling time. If
∆d < Rth, where Rth is the displacement threshold, the FSM
shifts into the Bouncing state to continue the exploration task.

After the interaction forces decrease, the FSM switches back
to the Exploration state once again. Additionally, the Error
state is implemented since we assume that the interaction
between the robot and the rigid environment can generate
large interaction forces. When these forces become excessively
large, the exploration task gets aborted.

IV. EXPERIMENTS AND RESULTS

A. Experiment setup and description

The software architecture was developed with the robotics
middleware Robot Operating System (ROS) using C++ as
client library. The experimental setup included a Franka Emika
Panda robotic arm, three different mazes placed in front of
the robot, representing environmental constraints, and a peg
(Diameter: 30mm - Length: 55mm) mounted at the robot end-
effector. The maze parts and the peg were designed and 3D
printed with rigid plastic material (PLA). The mazes were
constructed from components that could be disassembled and
were built combining linear, curved, and L-shaped parts.

In order to validate the presented method, we conducted
several experiments, in which the robot had no prior knowl-
edge about the environment it had to interact with. The first
two experiments (Sec. IV-B) demonstrate the performances of
the interaction planner with the adaptive impedance controller
without and with cluttered conditions, i.e., causing interaction
resistance. In the third experiment (Sec. IV-C), the robot
performs the exploration task in other two mazes. The maze
designs were different from the one in the first two experiments
in order to show the scalability of the proposed method.
A video of the experiments is available in the multimedia
extension1.

B. Maze exploration experiment

In the first experiment, the performance of the maze explo-
ration task was evaluated in three scenarios: high impedance,
low impedance and self-tuning impedance conditions. In the
first two cases, the diagonal stiffness values were set to
constant values on the three Cartesian axes, i.e., 1000 N/m
for the high impedance scenario, and 300 N/m for the low
impedance one. In the latter, the value was selected so as to
let the robot follow the desired pose of the robot while still
keeping a high level of compliance with the environment.

In the self-tuning impedance scenario, the robot’s
impedance controller achieved a Cartesian impedance profiles
along the direction of the motion (xy plane). The maximum
controllable stiffness along the primary motion axis was set
to kmax = 1000 N/m, while the minimum controllable stiffness
was set to kmin = 300 N/m. The values of both kmax and kmin
were set to align with the high and low impedance scenarios
for a fair comparison.

We follow the FSM states sequence to describe the exper-
iments. After the robot is sent to the starting position, the
Exploration state takes place. In the Exploration state, an
interaction with the environment was expected to happen, and
therefore the self-tuning impedance unit was enabled. As the

1The video can also be found at https://youtu.be/DDqosdN2274

https://youtu.be/DDqosdN2274
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robot came into contact with the environment, the interaction
planner changed the desired pose by shaping the desired
velocity vconstE, which was set to 0.04 m/s, when external
forces exceeded the two forces thresholds set to Fth low = 5 N
and Fth high = 7 N. Those forces threshold values were set with
relatively high values, so as to mitigate the influence of the
signal noises. Consequently, the impedance tuning allowed the
robot to be rigid only in the direction of the primary motion
and compliant in all the other directions, thus ensuring to make
a compliant contact with the rigid environment which is the
crucial information for our interaction based planner. At the
very end of the maze, an L-shaped corner was set up and the
robot was trapped in a state where it was unable to move.
This is because the interaction planner in the Exploration
state modifies the trajectory based on the displacement caused
by the environment, and the robot was unable to detect a
movable direction colliding perpendicularly to the surface
of the environment. Here, following (9), with Rth = 1 mm
and h = 500 ms, the FSM shifted to the Bouncing state,
since ∆d < Rth. In the Bouncing state, the robot determined
the possible direction of motion by scaling vconstB, which
was set to 0.05 m/s, based on two vectors i.e., F̂FFext and
r̂rrtrend. The sampling time steps to update r̂rrtrend was set to
m = 2000. Fig. 6 shows the experimental result of exploration
task with the three impedance profiles described above. In
all the scenarios, the proposed interaction planner enabled the
robot to complete the exploration task based on the contacts
with the environment. However, it was observed from the
results that the interaction behavior appears different for each
impedance profile. To compare the results among the different
controllers, we also define the expected completion time (CT),
assuming the optimal collision-free path exploration at ẋd ,
and its exploration distance (ED). For the maze configuration
illustrated in Fig. 5 these two values are 26.0 s and 1.06 m,
respectively.

Fig. 6 (left) shows the data obtained while maintaining high
impedance profiles (1000 N/m). Although, this setup showed
high desired pose tracking capability (∆xxxmax ≈ 0.04 m), where
∆xxx is the tracking error, the high impedance profiles resulted
in higher average interaction forces Favg ≈ 23 N due to the
rigid contact with the environment. In terms of performances,
the actual CT was equal to 31 s and ED 1.16 m.

Fig. 6 (middle) shows the plots of the trial with low
impedance profiles (300 N/m). Despite this setup provides
compliance, relatively higher Favg ≈ 18 N were observed
due to the larger value of ∆xxxmax ≈ 0.10 m. The possible
cause of larger ∆xxx is as follows. For low impedance profiles,
the interaction forces gradually increased. Since the force
thresholds used by the proposed interaction planner to change
the trajectory was set to relatively high values, this allowed for
a larger ∆xxx before changing the trajectory. Another drawback
given by the lower impedance profiles, was that the robot was
unable to compensate for ∆xxx due to its lower tracking ability
for desired pose, thus highlighting a less desirable behavior.
Moreover, the actual CT was 36 s and ED was 1.13 m.

Fig. 6 (right) depicts the data employing the self-tuning
impedance method. kmax = 1000 N/m was set along the
primary motion axis while kmin = 300 N/m was set in the

Screws

Fig. 5. Experimental setup: (top) is the maze path for the first experiment.
(bottom) is the maze with a cluttered condition by screws for the second
experiment.

other axis. Since the high impedance was maintained in the
motion direction, the error was as small as the high impedance
profiles. Furthermore, Favg ≈ 11 N were lower than the low
impedance profiles because of the low impedance in non
primary motion direction and the smaller ∆xxxmax (≈ 0.04 m).
Additionally, the actual CT was 32 s and ED was 1.13 m. CT
is comparable to the stiff case, and 11% lower with respect
to the compliant one. On the other hand, ED is comparable
to the compliant case and 2.5% lower with respect to the stiff
case. Taking into account the optimal values, the increase in
CT is 23% while for ED is 7%. These considerations demon-
strate the exploration efficiency of our algorithm despite our
interaction planner seeks real-time haptic interaction/collision
with unknown environments.

In the second experiment, the setup was modified by
adding cluttered condition, to add soft resistance to the robot
interaction. Possible applications of the proposed method,
e.g., insertion tasks/pipe inspection, where some degree of
resistance is expected to occur due to the cluttered conditions.
It is desirable for a robot to be capable of performing the
task regardless of such disturbances. As shown in Fig. 5,
the robot performed an exploration task in the same maze
as in the first experiment but with screws added along the
path. As illustrated in Fig. 7, the experimental result showed
that the task was completed only by self-tuning impedance
scenario. Figs. 7 (left) and (middle) are the data with high
and low impedance profiles, respectively. In high impedance
scenario, the sum of interaction forces increased gradually
and reached the maximum force threshold (60 N). Hence,
the FSM transited to Error state which aborted the robot’s
task execution. In low impedance case, due to lower tracking
capability, the robot’s motion was disturbed by screws as
shown in larger ∆xxxmax ≈ 0.07 m. Approximately at t = 8 s,
the interaction planner shifted to Bouncing behavior due to
small actual pose change and generated high interaction forces.
Eventually, the robot’s task execution was aborted because of
the high interaction forces (> 60 N). Fig. 7 (right) shows
the robot’s behavior in self-tuning impedance scenario. The
stiffness ellipsoid design was robust to disturbances in the
direction of motion, while being compliant in other directions,
thus suppressing high interaction forces.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

33N 24N 13N

Fig. 6. Comparison of three impedance profiles during exploration task: the upper row shows the maze path and the robot’s trajectory. The red dash line
shows the desired trajectory while the green line plotted the actual trajectory. The blue arrow shows the motion vector of the robot. Additionally, snapshots of
the real robot’s behavior at a similar point in the maze are provided. The red marker visualizes stiffness ellipsoid while the yellow arrow shows the interaction
forces. The green dot represents the desired pose of the robot. High impedance (left) shows high interaction forces compared to the other impedance profiles.
Low impedance (middle) shows larger ∆xxx. This is also visualized in the snapshots as the desired pose was far from the actual end-effector position. Self-tuning
impedance (right) shows smaller ∆xxx as in the case of high impedance and interestingly, interaction forces smaller with respect to the low impedance case.
Moreover, the execution time of self-tuning impedance is comparable to high impedance while low impedance showed a slightly longer time.

60N65N
6N

Fig. 7. Comparison of three impedance profiles during exploration task in cluttered condition: as depicted in the first row, the maze path was cluttered by
screws. In high impedance (left) and low impedance (middle) scenarios, robot’s motion was aborted due to high interaction forces (> 60 N). The self-tuning
impedance scenario (right) showed its robustness as it completed the task execution. The interaction forces were significantly lower with self-tuning impedance
compare to the other impedance profiles as visualized in the snapshots.

C. Algorithm scalability

In the third experiment, the robot performed an exploration
task in two other mazes. The maze designs were different
from the one in the first experiment in order to show the
scalability of the proposed method. When a robot performs
tasks in unstructured environments or pHRC scenarios, a
robot’s work space is expected to have a wide variety of
environmental models. Therefore, it is desirable for a robot

to be capable of performing the task despite various changes
of the environment model as the maze was reconstructed in
multiple ways. As shown in Figs. 8 and 9, the results of this
experiment showed that the proposed planner with self-tuning
impedance method can successfully perform the exploration
tasks regardless of its variance in the environmental model.
In the left side of the figures, the maze paths and the robot’s
trajectory are plotted. It can be seen that the trajectory was
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T4 - End
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T3 - Bouncing

T2 - ExplorationT1 - Start

RVIZ
TBA

T1

T2

T3 T4

maze 2

Fig. 8. To show the algorithm scalability with different constrained environments, the interaction planner has been tested with mazes with different features.
Here, maze 2 is constructed mainly by curved parts. As can be inferred by the xy plane plot (left), the interaction planner frequently changed the motion
direction r̂rrnd, so as to adapt to the continuous changes of the maze path. On the right four different frames show the real robot and its 3D visualization
enriched with impedance values (red ellipsoid) and interaction forces (yellow arrow).

T1 – Exploration (1)

T3 - Bouncing

T2 – Exploration (2)

T4 - End

T1

T2

T3

T4

maze 3

Fig. 9. Similarly as Fig. 8, maze 3 shows another scenarios where the U-shape requires dynamic changes of the trajectory. Nevertheless, the presented
interaction planner was able to successfully execute the exploration task.

adapted for each maze and the robot was following with
∆xxxmax ≈ 0.04 m in maze 2 and ∆xxxmax ≈ 0.06 m in maze 3. The
right part of the figure shows four frames of the real robot’s
behavior and its 3D visualization enriched with information
about its desired pose planned by the interaction planner (green
dot), and about the stiffness ellipsoid that was changing its
shape/direction accordingly.

V. CONCLUSION AND DISCUSSION

This study presented a novel method to plan the robot’s
trajectory based on interaction with the environment and tune
impedance profiles accordingly. The robot had to execute
exploration tasks without prior knowledge of the environment.
It performed the task within the FSM by changing its strategies
according to robot’s state. The proposed interaction planner
mainly used Exploration and Bouncing strategies to perform
trajectory planning. The experimental results have shown
that the presented interaction planner can successfully plan

trajectories in feasible directions. In addition, a compliant
interaction was ensured by tuning impedance despite unex-
pected changes in the environment. The forces thresholds of
the interaction planner should be predefined at reasonable
values. This part is not yet automated and was adjusted
through preliminary trials. However, it was not in the focus of
this study because we considered interacting only with rigid
environment, and hence, the concern was mainly signal noises.

The strength of the proposed method relies in the adaptation
capabilities to the environmental changes, not relying on
learning techniques [7], [24] in both interaction planner and
self-tuning impedance. In this study, the robot was required
to execute exploration tasks without prior knowledge of the
environment. Additionally, several variations of environment
models were prepared as in the third experiment. In such a
scenario, a robot needs continuous model adaptation in the
learning scheme which may not be practical due to scarce data
availability. In contrast, our proposed method completed ex-
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ploration tasks in several maze paths only by interacting with
the environment without the need for such model adaptation.

In addition, we were able to exploit the impedance de-
sign in the exploration tasks. The geometric ellipsoid of
the self-tuning impedance method is similar to the one of
human impedance design which elongates impedance only
in the required directions [25]. The second experiment well
demonstrated the advantage of our impedance design. In high
impedance scenario, since the impedance was also high in
the unnecessary axis, the robot generated large energy by
interacting with rigid environments which resulted in aborting
the task execution, while lower stability against disturbances
was observed in low impedance scenario. In self-tuning
impedance scenario, by maintaining the high impedance at
the contact point, this strategy helped to stabilize the system
against disturbances. The stability of the system can be ana-
lyzed by the tank-based system passivity observer as already
demonstrated in other applications of variable impedance con-
trol [26]. Furthermore, the interaction planner and self-tuning
impedance unit were closely related in a sense that impedance
was tuned according to the planned trajectory. In this way,
a compliant interaction was ensured during collisions. This
behavior, planning trajectory and impedance simultaneously,
is mimicking human behavior of contact tasks [27]. Therefore,
our proposed framework has shown robustness for robotic
autonomous exploration task in unknown environments. In
future works, we will consider the extension of our proposed
methodology to 3D mazes and explore its adaptation to bio-
inspired haptic-based navigation approaches based on the
behavior of vision-impaired insects and animals such as worms
and moles.
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