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Kinematic Control of Redundant Robots with Online
Handling of Variable Generalized Hard Constraints

Amirhossein Kazemipour∗, Maram Khatib∗, Khaled Al Khudir∗∗, Claudio Gaz∗∗∗, Alessandro De Luca∗

Abstract—We present a generalized version of the Saturation in
the Null Space (SNS) algorithm for the task control of redundant
robots when hard inequality constraints are simultaneously
present both in the joint and in the Cartesian space. These hard
bounds should never be violated, are treated equally and in a
unified way by the algorithm, and may also be varied, inserted
or deleted online. When a joint/Cartesian bound saturates, the
robot redundancy is exploited to continue fulfilling the primary
task. If no feasible solution exists, an optimal scaling procedure is
applied to enforce directional consistency with the original task.
Simulation and experimental results on different robotic systems
demonstrate the efficiency of the approach.

I. INTRODUCTION

A robot manipulator is redundant with respect to a given
task when the number of its joints is larger than that strictly
needed to perform the task. The additional degrees of freedom
allow for a greater flexibility in the execution of the primary
task. Such redundancy is usually employed for achieving
secondary goals, such as avoiding collisions with workspace
obstacles, maximize manipulability, stay away from kine-
matic singularities, or minimize energy consumption [1]. The
presence of joint and Cartesian inequality constraints is a
critical issue in redundancy resolution. Robots should comply
with hard constraints on position, velocity and acceleration in
their joint motion, typically coming from actuator limitations.
Inequality constraints on the Cartesian motion may be present
because of the nature of the task, or sometimes suddenly
appear due to the unstructured environment in which robots
operate.

There are many ways to handle joint and Cartesian con-
straints in kinematic control of robots. Classical methods
use artificial potentials [2], with a number of control points
chosen along the kinematic chain being pushed away from the
critical boundaries [3] and the associated control action taking
place in the null space of the Jacobian of the primary task.
This method is simple and effective, but highly parameter-
dependent. Moreover, oscillatory behaviors may arise when
activating/deactivating the evasive maneuvers in the proximity
of the constraints [4]. In order to mitigate this undesired
effect, the null-space projection term or the activation function
may be designed in an incremental way [5], [6]. Nonetheless,
the selection of suitable gains is still required. Furthermore,
when multiple tasks are present, incorporating the avoidance
scheme into the original Stack of Tasks (SoT) will give to each
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Figure 1: The KUKA LWR IV robot used for experimental evaluation. The
world frame is placed on the lab floor. The desired end-effector task, the
initial (solid orange), intermediate (shaded blue), and final (shaded orange)
robot configurations of the first experiment are shown.

inequality constraint a different priority [5]–[8]. A framework
dealing with adaptable Cartesian constraints with task scaling
has been recently presented in [9]. However, this method is
not able to manage a SoT with different priorities.

In order to deal with joint positional constraints, a com-
mon approach is to transform hard joint bounds into soft
constraints, by adopting a suitable cost function whose min-
imization will keep the joint motions close to the center
of their admissible ranges [10]. Alternatively, a weighted
pseudo-inverse technique can be used [11], which further
penalizes joint motions when they approach their limits. These
techniques, however, do not guarantee that the hard inequality
constraints will be always satisfied, and so they may result in
unfeasible solutions. Recently, constrained optimization has
been applied to the inverse kinematics of redundant robots,
transforming the given tasks into a Least Squares (LS) problem
and looking for solutions within a feasible convex set. A
general formulation within this paradigm, which extends the
priority framework also to inequality tasks, has been presented
in [12].

The LS formulation has the advantage of explicitly in-
cluding hard bounds into a numerically solvable Quadratic
Programming (QP) problem. It allows to incorporate both joint
and Cartesian motion limits as inequality constraints [13], [14].
However, these numerical approaches are computationally
slower than analytical solutions [15]. Moreover, the feasibility
of the task cannot be enforced, and the solution will be
realizable only if the original (equality) task is compatible
with the set of inequality constraints. Otherwise, the relaxation
of these constraints in a least square sense leads to a physical
violation of the hard limits. As an alternative to the previously
mentioned QP approaches that minimize squared ℓ2-norms,
using the ℓ1-norm minimization with suitable penalties offers
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a computationally efficient solution for hierarchical robot task
control [16].

The Saturation in the Null Space (SNS) algorithm intro-
duced in [17] is capable of resolving part of the issues
raised earlier, by linking QP to the SoT approach. This
framework provides a simple yet efficient solution to resolve
robot redundancy at velocity, acceleration, or torque levels that
can be combined into a single solver [18]. If strictly needed,
the SNS method utilizes a suitable task-scaling mechanism to
recover feasibility of robot motion with respect to inequality
constraints while preserving the geometric part of the primary
equality task. This scaling strategy can be further extended
in a predictive manner, by utilizing a model predictive con-
trol (MPC) approach to incorporate future evolution of the
task [19]. In the original SNS algorithms, the inequality
constraints on joint motion are regarded as hard bounds (i.e.,
they cannot be relaxed in a least-squares sense) and treated
out of the SoT. So far, Cartesian bounds have not been treated
explicitly, but rather approximated in the joint space as soft
constraints. Accordingly, there is no guarantee that the robot
will strictly comply also with the hard Cartesian constraints.
On the other hand, in [20] both joint and Cartesian inequality
constraints have been taken explicitly into account in the SoT
for torque-controlled manipulators. In this approach, hard joint
limits should always be given the highest priority over all
other constraints. However, when both Cartesian and joint
constraints are violated, the algorithm becomes unreliable
because other lower priority limits will be treated as soft
constraints.

Building on our preliminary results in [21], we generalize
the original SNS algorithm in [17] with the following contri-
butions.

• A single augmented vector is defined that considers all
joint and Cartesian inequality constraints explicitly. This
vector can be adapted online, without any parameter
tuning phase, to follow any desired modification (addition
or removal) in the set of task constraints.

• In the proposed algorithm, presented here at the velocity
command level, all joint/Cartesian inequality constraints
are treated equally. Accordingly, the hard bounds are al-
ways respected strictly. This is independent of the primary
task (or of the SoT and its related priority management,
when considering multiple equality tasks).

• The primary task ẋ is relaxed optimally by keeping its
geometric direction, if and only if no feasible solution
exists. Differently from [17], if ẋ exceeds any Cartesian
constraint, it is saturated to its associated limit.

• The algorithm applies the saturation technique in both the
joint and the Cartesian space, unlike [17].

The resulting control algorithm can be viewed as a general
tool that can be easily used in any robot application, such
as human-robot collaboration tasks [22]. Its main feature is
in fact an overall efficiency and the adaptability to time-
varying hard constraints that may be generated or deleted
online based on sensor information. The validation of the
basic algorithm is carried out with different simulations and
experiments (illustrated also in the accompanying video).

The rest of the paper is organized as follows. Section I intro-
duces the framework for incorporating generalized constraints.
In Sec. III, the new kinematic control algorithm is presented at

the velocity command level. Simulation results on a planar 6R
manipulator and experiments on the 7R KUKA LWR IV robot
results are reported and discussed in Sec. IV. Conclusions are
summarized in Sec. V.

II. PROBLEM FORMULATION

Consider a robot manipulator with n joints and a single m-
dimensional (primary) task, with m < n, to be performed by
its end effector (EE) and defined by

x = f(q), J(q) =
∂f(q)

∂q
, (1)

where q ∈ Rn is the joint position vector and the m× n task
Jacobian matrix J has less rows than columns. Assuming that
the robot is commanded by a kinematic control law at the
velocity level, we solve the inverse kinematics as

q̇ = J#(q)ẋ, (2)
where J# is the Moore–Penrose pseudoinverse of J . The
command (2) is the minimum norm joint velocity correspond-
ing to the desired task velocity ẋ. It is the preferred solution
in the absence of the constraints, either in the joint or in the
Cartesian space, that we shall consider next.

Define the position, velocity, and acceleration limits of each
joint, j = 1, . . . , n, respectively as

Qmin
j ≤ qj ≤ Qmax

j ,

V min
j ≤ q̇j ≤ V max

j ,

Λmin
j ≤ q̈j ≤ Λmax

j .

(3)

Accordingly, inequality constraints can be defined at the
velocity level for each joint as

Q̇min,j =

max

{
Qmin

j − qj

T
, V min

j ,−
√
2Λmax

j

(
qj −Qmin

j

)}
,

Q̇max,j =

min

{
Qmax

j − qj

T
, V max

j ,
√
2Λmax

j

(
Qmax

j − qj
)}

,

(4)
where T is the sampling time. The velocity constraints in (4)
is obtained by satisfying three requirements [17]: (1) the joint
range limits should not be exceeded in the next sampled time
instant; (2) the absolute joint velocity should be less than its
specified limit; (3) the joint should be able to stop its motion
before it reaches its closest joint range limit, assuming the
maximal acceleration bound is respected.

Consider next r generic Cartesian control points distributed
along the robot body, each of dimension dcp,i ∈ {1, 2, 3}. Note
that dcp,i represents the number of Cartesian directions along
which we constrain the motion. Accordingly, each control
point (for i = 1, . . . , r) can be limited in motion either in
all directions (in 3D case, it means dcp,i = 3) or in selected
directions only i.e., dcp,i < 3. The desired position, velocity,
and acceleration limits for each control point i can be defined
as

Pmin
cp,i ≤ pcp,i ≤ Pmax

cp,i ,

V min
cp,i ≤ ṗcp,i ≤ V max

cp,i ,

Λmin
cp,i ≤ p̈cp,i ≤ Λmax

cp,i ,

(5)
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where pcp,i ∈ Rdcp,i is the position of the i-th control point.
As done before for the joint space, the linear constraints for
each control point can be defined, at the velocity level, as
Ṗmin

cp,i =

max

{
Pmin

cp,i − pcp,i

T
,V min

cp,i ,−
√
2Λmax

cp,i

(
pcp,i − Pmin

cp,i

)}
,

Ṗmax
cp,i =

min

{
Pmax

cp,i − pcp,i

T
,V max

cp,i ,
√
2Λmax

cp,i

(
Pmax

cp,i − pcp,i

)}
,

(6)
To take into account all the inequality constraints in (3)

and (5) while executing the desired task ẋ, we define the
augmented vector (of dimension n+

∑r
i=1 dcp,i)

a =
(
qT pT

cp,1 pT
cp,2 . . . pT

cp,r

)T
, (7)

and the augmented (n+
∑r

i=1 dcp,i)× n matrix

A =
(
I JT

cp,1 JT
cp,2 . . . JT

cp,r

)T
, (8)

where I is the n×n identity matrix and Jcp,i is the dcp,i×n
Jacobian of the i-th control point position. Therefore, at a time
instant t = tk = kT , it is possible to define the generalized
inequality constraints at the velocity level as

bmin(tk) ≤ ȧ(q, q̇) ≤ bmax(tk), (9)
where bmin and bmax are the general limits augmented vectors
and defined as

bmin =
(
Q̇min,1 . . . Q̇min,n ṖminT

cp,1 . . . ṖminT

cp,r

)T

,

bmax =
(
Q̇max,1 . . . Q̇max,n ṖmaxT

cp,1 . . . ṖmaxT

cp,r

)T

.

(10)
Satisfying the generalized inequality constraints in (9) leads

to impose the original position and velocity bounds in a strict
sense, taking into account the acceleration limits. Note that,
when the robot control law is defined at the velocity level,
acceleration limits can be treated only as soft constraints.

Accordingly, the problem we intend to solve can be for-
mulated as a QP subject to linear equality and inequality
constraints as follows

min
q̇∈Rn, s∈[0,1]

1

2
q̇T q̇ +

1

2
M(1− s)2

s.t. Jq̇ = sẋ, bmin ≤ Aq̇ ≤ bmax

(11)

The parameter M ≫ 1 serves as a penalty factor and can be
used to favor the maximization of the task scaling factor s
(ideally, s = 1) over the minimization of the squared norm of
the joint velocity ∥q̇∥2.

III. THE GENERALIZED SNS ALGORITHM

We have revisited the original SNS algorithm in [17] so as
to cover also the generalized constraints (9). We highlight here
the main introduced differences.

The pseudo-code of the proposed scheme is presented as
Algorithm 1. The method starts by initializing: a projection
matrix P = I , a null-space joint velocity vector q̇N = 0, a
scaling factor s∗ = 0, a null-space augmented velocity vector
ȧN = null, and an augmented saturation matrix Alim = null.

On the basis of the minimum norm velocity solution, the
current commanded joint velocity is given by

q̇ = q̇N + (J P )
#
(ẋ− J q̇N ) , (12)

Algorithm 1 Generalized Saturation in the Null Space (GSNS)

q̇N ← 0, s∗ ← 0, P ← I, Alim ← null, ȧN ← null
2: repeat

limits violated← FALSE
4: q̇ ← q̇N + (J P )# (ẋ− J q̇N )

ȧ← Aq̇
6: if ∃h ∈

[
1 : n+Σr

1dcp,i
]
: (ȧh < bmin,h) ∨ (ȧh > bmax,h)

then
limits violated← TRUE

8: α← A (J P )# ẋ
β ← ȧ−α

10: sk ← getTaskScalingFactor(α,β)
k ← {the most critical constraint}

12: if sk > s∗ then
s∗ ← sk

14: q̇∗
N ← q̇N , P ∗ ← P

end if
16: Alim ← concatenate(Alim,Ak)

ȧN ←
{

concatenate(ȧN , bmax,k) if (ȧh > bmax,k)

concatenate(ȧN , bmin,k) if (ȧh < bmin,k)

18: P ← I − (Alim)# (Alim)
if rank(JP ) < m ∧ k ̸∈ {primary task} then

20: q̇ ← q̇∗
N + (J P ∗)#

(
s∗ẋ− J q̇∗

N

)
limits violated← FALSE

22: end if
end if

24: q̇N ← (Alim)# ȧN
until limits violated = TRUE

26: q̇SNS ← q̇

Algorithm 2 Optimal task scaling factor
function GETTASKSCALINGFACTOR(α,β)

2: for h← 1 : n+Σr
1dcp,i do

Lh ← bmin,h − βh
4: Uh ← bmax,h − βh

if αh < 0 ∧ Lh < 0 then
6: if αh < Lh then

sh ← Lh/αh
8: else

sh ← 1
10: end if

else if αh > 0 ∧ Uh > 0 then
12: if αh > Uh then

sh ← Uh/αh
14: else

sh ← 1
16: end if

else
18: sh ← 0

end if
20: end for

s← min sh
22: return s

end function

which attempts to execute the desired task as efficiently as
possible (with the lowest possible velocity norm) by enforcing
the velocity of some overdriven joint/Cartesian constraints
to saturation, thereby keeping the entire augmented velocity
ȧ in (9) within the desired constraints box. If the solution
in (12) is acceptable under the constraints (9), the algorithm
terminates and outputs this velocity for controlling the robot
at the current time instant tk. On the other hand, if it violates
one or more of the hard generalized constraints, the algorithm
repeats the loop until an admissible solution is found. This
is accomplished by first calling Algorithm 2 to determine the
most critical constraint k, which corresponds to a constraint
that has the smallest scaling factor sk, among all limits (see
Figure 2). Next, only the k-th joint/Cartesian constraint is
saturated to its limit during each iteration, and ȧN and Alim
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Figure 2: The task scaling factor associated with each constraint is computed
in Algorithm 2. The factor is maximum (equal to 1 for the original task) when
the corresponding velocity falls within the admissible interval, i.e., bmin,h ≤
ȧh ≤ bmax,h. In all other cases, the scaling factor is less than 1, and the
constraint becomes more critical as the associated velocity moves further away
from the boundaries of the interval.

are updated accordingly. Then, the solution (12) is recomputed,
and the procedure is repeated.

At line 18, the projection matrix P is constructed according
to the current saturated constraints as

P = I − (Alim)
#
(Alim) , (13)

where Alim incorporates the generalized active constraints.
At line 16, Ak corresponds to the k-row of the augmented
matrix A defined in (8). At the current iteration, if the most
critical constraint is associated with the k-th joint, then the k-th
row of the identity matrix In×n is extracted and augmented
to Alim. For the Cartesian constraints, a similar procedure
is followed. For instance, if the most critical constraint is
associated with the x-direction of the k-th control point, then
the corresponding row of its Jacobian matrix Jx

cp,k is taken
out and concatenated to Alim.

At the end of each iteration, the algorithm checks if the
robot is still redundant in executing the primary task under
the currently active set of constraints (rank(JP ) ≥ m). This
check fails when the task redundancy of the robot is exhausted,
and there is no way to perform ẋ under the given constraints.
In this case, the solution with the highest task scaling factor
obtained so far (the value sk that is closest to 1) is applied

q̇ = q̇∗
N + (J P ∗)

#
(s∗ẋ− J q̇∗

N ) . (14)
This choice preserves the geometry of the task, although it
scales down the task speed by the (optimal) factor s∗.

Note that, if the current most critical constraint is associated
with ẋ, i.e., k ∈ {primary task}, e.g., when a control point
coincides with the end-effector, then there is no need to
scale down the task since its violated part is saturated to its
limit, i.e., by modifying ȧN and Alim accordingly. In this
way, differently from [17], Algorithm 1 is able to saturate
the constraints in both the joint and the Cartesian space.
Finally, we remark here that the proposed algorithm can be
used to manage easily multiple Cartesian tasks with equal
priority. This is essential for collision avoidance purposes
when avoiding any obstacle in the work space is considered
as a Cartesian task, e.g., in [3].

IV. NUMERICAL RESULTS

The efficiency of the new algorithm has been evaluated in
simulations, on planar manipulators, and with experiments on
a KUKA LWR IV robot (n = 7), see Figs. 1 and 3. For
the presented case studies, a stabilizing feedback action is

integrated into the desired EE velocity ẋ of the primary task
to compensate for any numerical errors as

ẋ = ẋd +Kp(xd − fee(q)), (15)
where xd(σ) is the desired parametrized Cartesian path, σ(t)
is the timing law of the path parameter, fee(q) is the robot
direct kinematics, and Kp > 0 is the (diagonal) control gain
matrix of dimension m. A suitable rest-to-rest timing law is
considered in each case. The actual motions of the robots are
shown in the accompanying video.

A. Simulations

1) 6R planar manipulator: A verification of Algorithm 1
has been done first through a MATLAB simulation. The EE of
a 6R planar manipulator should track a 2D linear path (m = 2)
in Tinterval = 10 [s] with a 5th-order polynomial timing law,
see Fig. 3. The control gain matrix is set to Kp = diag{5, 5}
and the sampling time is T = 1 [ms]. The initial robot
configuration is chosen as

q0 =
(
30 −30 −30 60 −30 −30

)T
[deg]. (16)

In this example, the joint limits in (3) are equal and
symmetric for all joints j = 1, . . . , 6, where

Qmax
j = −Qmin

j = 90 [deg],

V max
j = −V min

j = 15 [deg/s],

Λmax
j = −Λmax

j = 30 [deg/s2].

(17)

As for Cartesian constraints, we considered r = 5 control
points (each with dcp,i = 1) along the robot body, located at
the joints i = 2, . . . , 6. The Cartesian limits in (3) are the
same for all control points, and are imposed only along the
y-direction:

Pmax,y
cp,i = −Pmin,y

cp,i = 1 [m],

V max,y
cp,i = −V min,y

cp,i = 0.5 [m/s],

Λmax,y
cp,i = −Λmin,y

cp,i = 1 [m/s2].

(18)

The EE begins its motion on the desired path without initial
errors. As shown in Fig. 4, the position error is kept to zero
throughout the task execution, except when the task scaling
is active (i.e., s∗ < 1) to comply with the saturated phases
occurring in the joint and Cartesian motion —see Figs. 5 and 6.
The robot is capable of completing the primary task while
satisfying all hard inequality constraints (many of which are
saturated).

2) Hyper-redundant planar manipulator: In order to assess
the computational efficiency of our algorithm, we have con-
sidered a hyper-redundant planar robot with n revolute joints,
with n varying from 20 to 200. We have chosen a link length
of lj = 6/n [m], so that the total length of the robot is equal
to that of the previous 6R planar robot. The robot starts from
rest in the stretched configuration q = 0, and its EE needs
to track a 2D linear path in Tinterval = 5 [s] with a 5th-
order polynomial timing law. In order to induce a large number
(n − m) of joint/Cartesian saturations during task execution,
the joint position limits are chosen as

Qmax
j = −Qmin

j =
800

n
[deg], (19)

while the remaining joint and Cartesian constraints are the
same as in (17) and (18).
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Figure 3: Simulation. The 6R planar arm is shown in its initial (black) and final
(gray) configurations. The robot joints (and the end effector) are represented
by red circles. The desired end-effector path is the blue line, to be traced from
right to left. The Cartesian position bounds are indicated by the two dashed
red lines. The dotted green lines are the paths of the chosen control points
during task execution.
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Figure 4: Simulation. The end-effector x and y position errors and the
associated task scaling factor.

For comparison, we benchmarked our algorithm (GSNS)
against a state-of-the-art QP active-set solver qpOASES [23],
which solves the optimization problem as stated in (11). The
simulations were conducted using MATLAB R2022a on an
Intel Core i9-10900k CPU 3.7 GHz and 64 GB of RAM.
The average execution time needed by the two algorithms are
shown in Fig. 7. It can be clearly recognized that the GSNS
consistently performs faster than qpOASES; the difference in
execution times becomes larger as the number of degrees of
freedom increases.
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Figure 5: Simulation. Evolution of the position and velocity of the joints
during task execution. The bounds on the joint motion are indicated by the
dashed grey lines.
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Figure 6: Simulation. Evolution of the position and velocity of the control
points along the y-direction. The Cartesian bounds on the motion of the
control points are indicated by the dashed grey lines.
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Figure 7: Simulation. Comparison of execution time for GSNS and a local
QP solver (qpOASES).

B. Experiments with the KUKA LWR robot

The proposed Algorithm 1 has been implemented in C++
to perform experimental evaluations with a KUKA LWR IV
robot (n = 7). A position control mode through the KUKA
FRI library is used, with sampling time T = 5 [ms]. The
results of two experiments are presented.

1) Cartesian constraints at the elbow: In the first experi-
ment, the desired EE task is to track three times a 3D circle
(m = 3), starting on the path with the initial joint configuration

q0 = (13.50 − 7.76 55.16 79.70 0 − 6.19 0)T [deg].

Defining the world frame on the lab floor (see, Fig. 1), the
desired circular path is centered at C = (0 0.5 1.5)T [m],
with a radius of 0.25 [m]. The timing law on the path has a
trapezoidal velocity profile, with maximum acceleration σ̈ =
0.15 [m/s2] and cruise velocity σ̇ = 0.15 [m/s]. The control
gain matrix is set to Kp = diag(30, 30, 30). The robot joint
limits are set to
Qmax = −Qmin = (170 105 170 120 170 85 170)

T
[deg],

V max = −V min = (20 22 20 26 26 36 36)
T

[deg/s],

Λmax = −Λmin = (30 30 30 30 30 30 30)
T

[deg/s2].

A single control point of dimension d1 = 2 is considered at
the robot elbow (joint 4), which has to satisfy the temporal
constraints

pcpx,1 ≤ 0.15 [m], 16 ≤ t ≤ 22 [s],

pcpy,1 ≤ 0.2 [m], 5 ≤ t ≤ 10 [s],
(20)
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(a) (b) (c)

Figure 8: First experiment. (a) The motion executed by the end effector (in black) coincides with the desired circular path (dashed green). The position of
the robot elbow (blue traces) satisfies the temporal constraints (20), both on the x-axis (b) and on the y-axis (c).

Figure 9: Second experiment. The end-effector motion (in blue) coincides with
the desired circular path (dashed green) in the first and third rounds, while
its position saturates the temporal constraint (22) during the second round.

and the permanent constraints
−0.1 ≤ ṗcpx,1 ≤ 0.1, −0.1 ≤ ṗcpy,1 ≤ 0.1 [m/s],

−0.5 ≤ p̈cpx,1 ≤ 0.5, −0.5 ≤ p̈cpy,1 ≤ 0.5 [m/s2].
(21)

Figure 8 shows how the robot executes the desired task by
complying with the Cartesian constraints. In Fig. 11(a), the
errors on the primary task are zero, except when no feasible
solution exists under the considered hard constraints. In this
case, the robot task is scaled down, i.e., s∗ < 1, while keeping
the EE velocity direction tangent to the desired path. In fact,
the EE motion in Fig. 8 keeps nicely the geometry of the
original path.

The corresponding evolution of the joints in Fig. 11(b) sat-
isfies the hard joint limits at all times. The frequent saturation
in position of joints 2, 3 and 6, as well as of all joint velocities
(except for joint 7) clearly illustrates how Algorithm 1 exploits
the available joint motion capabilities. The motion of the
robot elbow (control point) is shown in Fig. 11(c). When the
inequality constraints (20) are activated/deactivated (i.e., the
shadowed areas), the elbow reacts properly and saturates, if
necessary, to stay in the limits.

Figure 10a depicts the execution time of our algorithm
(GSNS) and a local QP solver (qpOASES), solving the op-
timization problem stated in (11) with the penalty factor of
M = 103. Both algorithms are implemented as C++ codes.
The results indicate that GSNS achieves a higher computa-
tional speed than qpOASES. Figure 10b shows the number
of iterations performed by GSNS at each instant during task
execution. As it can be seen, the execution time of the GSNS

rises with the increase in the number of iterations. However,
the GSNS average execution time is only 18µs, which is over
an order of magnitude faster than that of qpOASES, running
at 283µs.
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Figure 10: First experiment. Panel (a) shows the comparison of execution
times for GSNS and a local QP solver (qpOASES). The number of iterations
for GSNS over time is shown in panel (b).

2) Cartesian constraints at the end-effector: In the second
experiment, a different single control point of dimension d1 =
2 is chosen, placed coincident with the robot end effector. The
primary task of dimension m = 3 requires the EE to follow
three times a circular path as in the previous scenario, but the
circle is rotated around the y-axis through its diameter so as
to align with the xy-plane. The initial joint configuration is
chosen as
q0 = (13.19 − 8.59 54.78 89.04 − 0.069 − 10.09 0)T [deg],

with the robot starting on the desired path. In this second case,
we raise the maximum velocity and acceleration along the EE
trajectory to σ̇ = 0.65 [m/s] and σ̈ = 0.65 [m/s2], respectively.
This is to push the robot closer to its physical limits. Ac-
cordingly, we use the (symmetric) joint limits provided by the
manufacturer

Qmax = (170 120 170 120 170 120 170)
T
[deg],

V max = (100 110 100 130 130 180 180)
T
[deg/s],

with Qmin=−Qmax and V min=−V max.
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Figure 11: First experiment. (a) Error components on the primary task and the
related optimal scaling factor. (b) Joint positions and normalized velocities. (c)
The elbow (control point) position and normalized velocity components. The
shadowed areas in pink represent the activation period of the constraints (20).
Dashed lines indicate the associated bounds.
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Figure 12: Second experiment. (a) Error components on the primary task and
the related optimal scaling factor. (b) Joint positions and normalized veloc-
ities. (c) The end-effector (control point) position and normalized velocity
components. The shadowed area in pink represents the activation period of
the constraint (22). Dashed lines indicate the associated bounds.
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Joint acceleration limits are set to Λmax
j = −Λmin

j =
300 [deg/s2], for j = 1, . . . , 7. The temporal constraint

pcpy,1 ≤ 0.6 [m], 2.5 ≤ t ≤ 4.5 [s], (22)
is imposed to the control point together with the permanent
constraints

−0.7 ≤ ṗcpx,1 ≤ 0.7, −0.7 ≤ ṗcpy,1 ≤ 0.7 [m/s],

−1.5 ≤ p̈cpx,1 ≤ 1.5, −1.5 ≤ p̈cpy,1 ≤ 1.5 [m/s2].
(23)

Figure 9 shows the execution of the task using Algorithm 1.
In Fig. 12(a), the errors on the EE task increase around
t = 2 [s], where the task scaling factor is applied in order
to be able to satisfy the velocity limits of joints 1, 2 and 6
(see Fig. 12(b)). The EE error along the y direction between
t = 3 and t = 4 [s] is large, because of the simultaneous
activation of the (hard) temporal constraint (22), which is in
fact inconsistent with the primary task. In this case, there
is no use in scaling down the task as done instead in the
former event. Moreover, while the EE position saturates at
the imposed maximum limit in the y-direction, a complete
fulfilment of the other task components along the x and z
axes is still kept, see Fig. 12(c).

V. CONCLUSIONS

We have presented a generalized null-space saturation algo-
rithm for the kinematic control of redundant robots to realize
a primary task under hard inequality constraints in the joint
and Cartesian spaces. All hard constraints are equally enforced
and the task is automatically scaled in an optimal fashion
when no feasible solution exists. The presented case studies
have proven the efficiency of the approach to handle any
possible simultaneous (de-)activation of joint and/or Cartesian
inequality constraints without any oscillatory behavior. The
ability to handle time-dependent constraints makes the method
easy to be integrated in any sensor-based strategy, e.g., for
online/dynamic collision avoidance in human-robot collabora-
tive applications [22]. As for the original SNS algorithm [17],
one can consider moving the commands to the acceleration
level, making them suitable for torque-controlled robotic sys-
tems. However, a proper extension of the velocity-based SNS
technique to acceleration or torque levels requires further
investigation since the task-scaling strategy at the acceleration
level is not always sufficient to ensure the satisfaction of the
geometrical path due to the additional kinematic terms that
arise. Furthermore, the problem of hierarchical task control
is not addressed in this work. Nevertheless, similar to the
original SNS, the presented algorithm can be extended to
include multiple operational tasks with priorities, keeping the
entire set of hard inequality constraints out of the stack of
equality tasks.
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