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A Wearable Smart Glove and Its Application
of Pose and Gesture Detection to
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Abstract—Advances in soft sensors coupled with machine learn-
ing are enabling increasingly capable wearable systems. Since hand
motion in particular can convey useful information for developing
intuitive interfaces, glove-based systems can have a significant
impact on many application areas. A key remaining challenge
for wearables is to capture, process, and analyze data from the
high-degree-of-freedom hand in real time. We propose using a
commercially available conductive knit to create an unobtrusive
network of resistive sensors that spans all hand joints, coupling
this with an accelerometer, and deploying machine learning on a
low-profile microcontroller to process and classify data. This yields
a self-contained wearable device with rich sensing capabilities for
hand pose and orientation, low fabrication time, and embedded
activity prediction. To demonstrate its capabilities, we use it to
detect static poses and dynamic gestures from American Sign Lan-
guage (ASL). By pre-training a long short-term memory (LSTM)
neural network and using tools to deploy it in an embedded context,
the glove and an ST microcontroller can classify 12 ASL letters
and 12 ASL words in real time. Using a leave-one-experiment-out
cross validation methodology, networks successfully classify 96.3%
of segmented examples and generate correct rolling predictions
during 92.8% of real-time streaming trials.

Index Terms—Wearable Robotics, gesture detection, soft sensors
and actuators, embedded systems, facial expressions, posture.

I. INTRODUCTION

W EARABLE devices have many applications ranging
from health monitoring and analysis to virtual and aug-

mented reality. These devices must be robust, have a small
form factor, and provide significant information content such as
postures or motion. This is particularly challenging for wearable
devices focused on the hand and wrist, due to the many joints and
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Fig. 1. The self-contained wearable system is based on a commercially
available conductive knit glove. Wires are added to the back to create strain
sensors. The board contains an accelerometer, and performs all signal processing,
real-time neural network evaluations, and communications.

degrees of freedom that must be captured simultaneously. This
also raises a secondary challenge of interpretation and analysis,
requiring methods to classify or understand this complex sensory
data in real time.

Due to the many application domains for smart gloves, there
have been a variety of innovative approaches to capturing postu-
ral or force information. These include research and commercial
devices based on strain, capacitance, and piezoresistance. For ex-
ample, stretchable electronics can provide high-resolution strain
sensing [1], and small soft capacitive sensors can detect micro-
gestures from small postural changes [2]. Combining such
techniques with learning pipelines can yield capable systems;
neural networks can accurately reconstruct hand poses based on
capacitive sensing [3], or identify grasp types and modalities
from a high-resolution knitted piezoresistive glove [4]. Multiple
modalities can also aid hand gesture classification, such as by
combining muscle activity with pressure-sensitive arrays [5]
or with soft electronics that measure strain and pressure [6].
Commercial gloves such as the Manus system [7] can also
provide high-fidelity pose information for virtual reality or other
applications, although they are typically expensive and require
intricate electronics.

Such gloves showcase promising sensory technologies and
learning architectures, but various challenges remain. These
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include scalable and accessible fabrication, and the ability to
classify data online with small wearable microcontrollers.

Taking a step towards these goals, this paper presents the
smart multi-modal glove system shown in Fig. 1. It features
on-board classification, and is based on a commercially avail-
able glove. We sensorize its strain-sensitive conductive knit
to form 16 resistive sensors spanning the hand’s degrees of
freedom. We combine this pose information with an accelerom-
eter on the back of the hand. A small STM32 microcon-
troller processes signals and evaluates a neural network in real
time.

To demonstrate the capabilities of the glove, we perform
rolling time-series classification of 24 letters and words from
American Sign Language (ASL) [8]. This vocabulary has been
explored for wearable systems by many past research endeavors,
such as [9]–[11]. It offers impactful applications such as im-
proving communication between people or inspiring alternative
human-computer interfaces, especially involving deaf partici-
pants or challenging auditory environments. The vocabulary also
includes both static poses and dynamic motions. Past work has
often focused on only one of these dimensions or has not been
implementable on microcontrollers, which limits the wearability
and practicality.

The current work builds on past research and develops an em-
bedded learning system that leverages both strain and accelera-
tion sensing to perform real-time pose and gesture classification.
In particular, its key contributions include:
� Sensorizing a commercially available strain-sensitive

glove for ease of fabrication and adding an accelerometer,
to capture both hand pose and gesture information;

� Developing a neural network pipeline to detect time-series
events, which is pre-trained and then embedded on a mi-
crocontroller to run in real time;

� Preliminary experiments using a vocabulary of 24 ASL
words and letters, including static and dynamic gestures;

� Classification performance results evaluated on unseen
sessions of wearing the glove, using offline segmented
examples or online rolling predictions.

The remainder of this paper first focuses on sensorization
and electronics. It then describes the learning pipeline including
the experimental protocol, network, and training. Results then
investigate rolling gesture classification. The paper concludes
with a discussion and future directions.

II. RELATED WORK

With advances in soft or compliant strain sensors, there has
been significant growth in the availability and focus on wearable
devices [12]. This includes the development of commercial solu-
tions [13]. Due to the use of hands for manipulation, communica-
tion, and more, there is a strong focus on developing smart gloves
to detect hand poses and interactions [14]. Many previous ap-
proaches focus on applying soft or compliant sensors to a glove
to allow the deformation of each degree of freedom of the hand
to be measured. This includes capacitive [15], resistive [16],
ionic [17], or even bi-modal sensing approaches [18]. Although
these have shown significant potential for pose reconstruction
and motion detection, there are remaining challenges regarding
scalability of the number of sensors and fabrication.

Knitted sensorized gloves are particularly attractive since they
do not require post-processing or the further addition of sensors
to the structure. This has the potential to make the fabrication

process rapid and repeatable, and also for the number of sensors
or sensory inputs to be high. Previous work has demonstrated the
capabilities of custom knit-based strain sensors [19], identifying
how fabric and knit parameters can change the properties of the
sensor [20]. Advances in digital knitting systems have enabled
many customized sensorized gloves. This includes systems that
allow selecting specific yarns to design sensor characteristics
and regions on the knitted surface of the glove [21]. Such flexi-
bility to customize knitted regions or patterns has been shown to
enable a variety of applications [22]. Additional approaches in-
clude processing yarns to allow the formation of sensors through
knitting, such as electrospun fibers [23] or highly conductive
polymers [24].

While digital knitting can leverage custom materials and form
factors, using “off-the-shelf” gloves can provide an even lower
barrier for fabrication and utility. The current work builds on
an initial exploration of adapting a commercial glove to create
a mesh network of resistive sensors [16]. Compared to this
past study, the current work increases the capabilities by adding
on-board signal processing and machine learning, enhances the
ability to capture dynamic motions, simplifies fabrication by
using fewer sensors, and explores a new application domain. The
presented device can be a stand-alone wearable system rather
than one that streams sensor data to a laptop. It also omits adding
pressure-sensing infrastructure in favor of a more streamlined
glove based on the commercial knit. It adds an accelerometer
to capture orientations and motions relative to the world, rather
than only sensing in a hand-centric frame. Finally, a new learning
pipeline and experimental paradigm demonstrate applicability to
real-time gesture and pose detection.

III. FABRICATION AND ELECTRONICS

The deployed system can be considered as three main as-
pects: the sensorized resistive glove and accelerometer, custom
electronics with ST technologies for data acquisition and clas-
sification, and a neural network running on the microcontroller.
This section focuses on sensors and electronics, while the next
sections discuss the learning pipeline.

A. Resistive Knit

This work uses a commercially available knitted conductive
glove designed to work with capacitive touch screens, namely
the Original Sport glove by Agloves [25]. Due to the silver
threads within the knit, the glove has a resistance of approxi-
mately 5 Ω/cm that varies when a strain is applied. Due to the
knit pattern, the material can undergo approximately 70% strain
without permanent deformation. Adding electrode connections
to this “off-the-shelf” glove enables rapid creation.

As explored in [16], the sensing properties of the knit can
be characterized by mounting a section of the material in an
Instron machine and cyclically applying 0-50% strain. Since
the knit pattern is directional, the resistance response curve
depends on the strain direction as shown in Fig. 2. It exhibits
high sensitivity to strain along the knit, and low sensitivity to
strain across the knit. This is suitable for detecting common
hand deformations, since the interphalangeal finger joints cause
bending along the knit. Additionally, since the glove is fully
conductive, self-collisions between parts of the hand will cause
significant resistance changes regardless of bending direction.
The response along the knit exhibits high repeatability between
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Fig. 2. The response of the glove material was characterized using 80 cycles
of straining either along or across the knit. Adapted from [16].

Fig. 3. Wires are connected to 17 points on the back of the hand to form strain
sensors on each finger segment and the hand, including a common ground. An
accelerometer is also on the PCB on the back of the hand. (a) depicts the locations
schematically, while (b) shows the connection method.

testing cycles as shown by the shading in Fig. 2, which indicates
that resistance varies consistently during stretching. However, it
also exhibits high hysteresis; this is likely due to the nonlinear
behavior of the knitted fibers. The average response and recovery
times were found to be 0.35 s and 0.8 s, respectively; this is
sufficient for the gesture detection currently explored, but may
hinder the use of the glove in applications that require faster
responses.

B. Glove Sensorization

To enable hand pose identification, we use this conductive
glove to form strain sensors spanning all joints of the hand. A
connection is made by simply weaving approximately 2 cm of
stripped wire through the knit in a rough loop as shown in Fig. 3.
Measuring the resistance between two such connections forms
a strain sensor due to the knit’s strain-sensitive response. In
contrast to [16] which considered all pairs of read-out points, the
current work simplifies processing while still detecting motions
of all joints by only considering the resistance between each
of 16 read-out points and a common ground. Connections are
placed on each finger segment to maximize the information
content.

Wires are attached to the microcontroller with sufficient slack
to not hinder finger motion. In the future, they could also be
hidden and protected by a non-conductive glove layer.

C. Electronics Design

To achieve low-noise readings from the strain sensors in a
compact form that can be easily worn on the hand, a custom

electronics board was designed. It incorporates the strain sensor
reads-outs, an ST microcontroller, and a 3-axis accelerometer.
At the heart of the board is an STM32H7 microcontroller, which
performs data acquisition, signal processing, and real-time neu-
ral network evaluation.

The readout for the 16 strain sensors has been designed to
maximize stability and sampling frequency. The strain sensors
in the glove are connected between a constant current source
and ground. The voltage drop generated by this current depends
on the sensor resistance. It is amplified, adjusted for offset, and
acquired by the STM32H7 analog-to-digital converter (ADC).
Two digital-to-analog converters (DACs) of the STM32H7 are
used to control the analog front-end that regulates the amount
of current generated and the amount of offset removed from the
measurement.

To use the same circuitry for all sensors, two 16-channel
switches iteratively connect to each sensor; this multiplexing
thus performs sequential acquisition. This circuit, together with
the STM32H7, allows for the current and offset voltage to be
specified for each single sensor within fixed boundaries. This
can maximize the resolution of measurements for a range of
sensors which may not be homogeneous, may have different
sensitivities, or may have different base resistances.

The 3-axis accelerometer connects to the STM32H7 via I2C.
All data acquisition, signal processing, and computation is

performed on-board. The board also contains a Bluetooth mod-
ule, although the current tests used a USB connection to report
classification results and for power. Simply activating the wire-
less transmission option and adding a small battery allows the
device to be untethered and self-contained.

IV. GESTURE VOCABULARY

The chosen vocabulary consists of poses and gestures rep-
resenting 24 letters, words, or phrases of ASL. This highlights
the capabilities of the sensorized glove to detect both static and
dynamic gestures, and demonstrates a potential application that
could make human interactions more natural by translating ASL
into text or speech in real time.

Fig. 4 illustrates the 11 static poses and 13 dynamic gestures.
ASL naturally showcases the necessity of detecting both hand
pose and motion. Certain pairs of vocabulary entries, such as I
and J or A and Sorry, have the same pose but different dynamics.
Other sets, such as Eat, Home, and Thank You, have subtle
differences in hand poses, orientations, or motion directions.
Some gestures such as Please or Yes are periodic motions that
could have varying numbers of repetitions. Most of the letters are
static poses without motion. Altogether, the chosen vocabulary
thus probes the system’s ability to combine pose and motion
information for multi-class gesture detection.

V. TRAINING DATA COLLECTION

To train a classifier for this task and explore its robustness,
we performed 7 training experiments. These spanned multiple
days, and the glove was always removed between experiments.
Between same-day sessions, it was removed for an average
of 1.4 hours. This allows us to explore the robustness of the
classifier across episodes of use, including effects such as the
glove being worn or stretched differently on the hand, general
wear-and-tear, and varying hand temperatures or moisture levels.
The current study involved a single ASL novice; this is sufficient
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Fig. 4. A vocabulary of 24 ASL letters and words was selected, which requires identifying a range of poses and dynamic motions. This yields an informative
corpus for evaluating the combination of strain-based pose information and accelerometer-based motion information featured by the embedded glove system.

Fig. 5. The pipeline processes collected training data to create a neural network that can classify segmented examples or streaming real-time data.

to demonstrate feasibility of the wearable system, but future
work should expand the subject pool. Each experiment recorded
10 trials of each letter or word, with blocks recorded sequentially.
This provides 70 total examples of each gesture.

Data was recorded continuously throughout the experiments.
A 2.5 s cue was presented for each trial, which started shortly
after the correct starting position was achieved. A rest pose was
assumed once the cue ended. The status of the gesture cue was
recorded along with each data sample, creating square waves of
ground truth labels. Raw ADC values were recorded from the 16
strain channels and the 3 acceleration channels via USB serial
at 100 Hz.

This data was then processed and used for training and eval-
uation as described by Fig. 5 and the following sections.

VI. DATA PROCESSING AND FEATURE EXTRACTION

To create training data for the classifier, recorded data is
segmented into labeled examples, conditioned, and transformed
into feature vectors. Data augmentation is also used to improve
the robustness and accuracy of the trained network, especially
when applied to real-time streaming data.

A. Segmentation Into Labeled Examples

Based on the stream of ground truth labels, a 2 s window
centered around each trial is extracted. This yields positive
gesture examples with 200 timesteps each. In addition, examples
of not making any gesture are important for the network to learn,
and such unstructured activity may be highly variable. Examples
are extracted as 2 s windows in three possibly overlapping
locations: ending 1 s before a trial label starts, starting 1 s after
the label ends, and centered between successive trials. Overall,
each 10-trial block of a word/letter yields 10 positive examples
and 29 baseline examples.

B. Data Augmentation

Although the network will be trained on extracted labeled
examples, it will ultimately be evaluated in a streaming fashion
by classifying rolling windows of real-time data. In addition,
dynamic gestures may be performed at different speeds. To help
address this, data augmentation is used to improve the network’s
robustness to the timing of gestures.

Time-shifted synthetic examples aim to encourage the network
to accommodate examples that are not perfectly centered in its
classification window. For each window of a positive example,
3 new windows are defined that are shifted earlier and 3 new
windows are defined that are shifted later. Each shift is a random
duration between 50 ms and 400 ms. The same procedure is
applied to each baseline window as well, but with only 1 shifted
window in each direction.

Time-scaled synthetic examples aim to improve robustness to
varying gesture speeds. Compressing and dilating time is used
to represent faster or slower gestures; the timestamps from the
entire experiment are scaled by a chosen factor, and then the
data is resampled with linear interpolation to restore a 100 Hz
sampling rate. The 200 samples centered around the original
centered sample of a window is then used as the new synthetic
example. This procedure is performed 6 times for each window
of a positive example: 3 times that scale time by a random
factor between 0.8 and 0.95, and 3 times that use a random
factor between 1.05 and 1.2. Note that the entire experiment
is resampled for each augmentation, since extra data on each
side of the original window will be needed when speeding up
the gesture. This augmentation is not performed for baseline
examples, as the features are generally not time dependent. Note
that the current pipeline does not address scaling of acceleration
magnitudes to more completely simulate varying gesture motion
speeds.

C. Feature Extraction: Smoothing and Normalization

Data within each original or augmented window is then pre-
processed to generate features. To simplify the pipeline and al-
low the network to uncover useful characteristics, processed data
is passed to the network directly instead of manually defining a
reduced set of features. Both strain and accelerometer data are
used, since the ablation results of Section VIII confirm that both
provide valuable information.

Firstly, each strain channel is smoothed by a moving mean
with a trailing window spanning 0.1 s (10 timesteps). This helps
remove any high-frequency noise or outliers.

To make the classifier robust to short-term or long-term drift
in the strain sensors while also avoiding calibration routines,
the strain values are dynamically normalized on a rolling basis.
For each 2 s window, the minimum and maximum values across
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all strain channels are computed, and then all values are shifted
down by this minimum and scaled by this range. The new strain
values in each window will thus be between 0 and 1. Jointly
shifting and scaling all channels by the same factor preserves the
relative magnitudes between channels. Computing these offsets
and factors on a rolling basis can accommodate drifts throughout
experiments or across days due to effects such as the glove’s
hysteresis or fit on the hand, while avoiding tuned factors or
dedicated calibration periods.

For the accelerometer, recorded data is shifted and normalized
according to the bounds of the ADC outputs. Constant values are
used here instead of a rolling approach since both absolute and
relative magnitudes embed useful information, such as motion
speeds and the direction of gravity.

Feature matrices were then created from each window by
concatenating all 16 strain readings with the 3 accelerometer
readings. This yields a 200 x 19 matrix for each labeled example,
with its values ranging between 0 and 1.

VII. NEURAL NETWORK TRAINING

To classify the time series data, we use a long short-term
memory (LSTM) recurrent neural network. Since LSTMs have
feedback connections to process sequences of data, they are
well-suited to our task of classifying poses and motions.

The network accepts a 200 x 19 feature matrix representing
a sequence of strain and accelerometer readings. It then has a
single LSTM layer of size 100, a 20% dropout layer, and a dense
output layer with softmax activations. The output has 25 classes:
the 24 letters and words, and a baseline class representing that
no gesture is being made.

This architecture was designed to be relatively lightweight to
facilitate evaluation on a resource-limited microcontroller, but
the size of the single layer was chosen to be large enough to dis-
cover useful characteristics in the time-series feature matrices.
The dropout layer aims to reduce overfitting during training.
Alternative structures can be explored in the future, but the
current pipeline is demonstrated to be sufficient for an initial
exploration of the glove’s capabilities.

We use a leave-one-experiment-out 7-fold cross validation
strategy for training and evaluation. All examples from an
experiment are used as the test set, such that the network
will be tested on data from an episode of wearing the glove
that did not influence the training at all. Each experiment is
iteratively treated as the holdout experiment, so 7 different
networks are trained. Using each experiment as a test set instead
of using randomized k-fold cross validation helps avoid data
leakage between training and testing sets, since data within a
session is likely correlated along such aspects as user behavior
or glove properties. The selected procedure aims for a more
robust evaluation by simulating performance that would be
expected on a new day of using the glove without network
retraining.

Each test set has 52,08 examples. This includes 31,20 pos-
itive examples that are originals, time-shifted augments, or
time-scaled augments. The set also includes 20,88 original or
time-shifted baseline examples. The remaining 6 datasets are
then split into training and validation sets, with the validation
set having the same size as the test set. This corresponds to
the training set having 26,040 examples. The random split into
training and validation sets is implemented to maintain the
original proportions of labels.

While the above procedure includes all data augmentation
examples, analogous networks were also trained on corpuses
that left out time-shifted examples and/or time-scaled examples.
This facilitates evaluation of how the data augmentation impacts
performance. Similarly, networks were trained using only strain-
based features (200 x 16 inputs) or only accelerometer-based
features (200 x 3 inputs) to facilitate ablation results exploring
the impact of multiple modalities.

Each network was trained for 50 epochs using a batch size
of 32. The network and training process were implemented in
Python 3.9 using version 2.5 of TensorFlow and Keras.

A. Embedded Deployment

The ST CUBE-AI software converts the pre-trained network
to embedded code for the STM32 microcontroller. While the
current network is lightweight enough to be loaded directly, the
software offers options to trade off memory usage, speed, and ac-
curacy; this can be critical if using a more resource-constrained
device or a larger network. To optimize memory, input and output
buffers can be allocated in the same space as activations by
overwriting data once it is no longer needed; this has no expected
impact on accuracy, but may decrease speed. Dense layers can
also be compressed via floating-point quantization by generating
lookup tables, but this may decrease accuracy. Section VIII-C
explores these options.

VIII. RESULTS AND DISCUSSION

We consider three scenarios to evaluate the system: clas-
sifying segmented examples, streaming classifications using
recorded data to simulate real-time behavior, and the embedded
implementation on the microcontroller. Throughout the discus-
sion, distributions are often summarized as μ± σ, where μ is
the mean and σ is the standard deviation.

A. Performance on Segmented Examples

As described in Section VII, networks were trained us-
ing leave-one-experiment-out cross validation. Using data aug-
mentation and both strain and acceleration features, training
and validation set accuracies averaged 99.2% ± 0.2% and
99.1% ± 0.3%, respectively. Each network was then evalu-
ated on the segmented examples from its held-out experiment
performed at a different time after glove removal. Accuracies
on these test sets averaged 96.3% ± 2.1%, and the blue bars
of Fig. 6 illustrate the individual results. Some variation is
expected due to effects such as how the glove is positioned
and stretched, skin conductivity, or user behavior. The relatively
consistent performance across all held-out experiments is thus
promising and suggests that overfitting was mitigated. Future
investigations with multiple users and longer-term wear-and-tear
should further explore this generalizability.

Fig. 6 also summarizes ablation studies that probe aspects of
the presented learning pipeline. Removing data augmentation
decreased test set accuracy to 85.0% ± 7.3%. Using time-
shifting alone yielded 93.5% ± 3.3%, and time-scaling alone
yielded 94.2% ± 3.2%. Combined with the results of the full
pipeline, this suggests that both types of augmentation improved
robustness and in complementary ways.

Only using strain-based features yielded test set accuracies
averaging 85.0% ± 7.5%, and only using acceleration-based
features yielded 79.2% ± 3.0%. This suggests that both types
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Fig. 6. Each experiment was iteratively left out of the training process, and
networks were evaluated on the left-out trials. The second bar of each group
uses the full pipeline; others explore removing augmentation or features.

of features provide useful information for classifying static and
dynamic gestures, and that the network successfully leveraged
these complementary modalities.

B. Performance on Streaming Data

1) Simulating Real-Time Behavior: While classification of
segmented examples is a good indication of performance, the
networks will ultimately be used in a rolling fashion on stream-
ing data. To simulate this using recorded data, a feature matrix
is created for every timestep of the experiment at 100 Hz, using
trailing 2 s windows. To mimic the microcontroller’s ability to
evaluate the embedded network at 5 Hz, every 20th matrix is
classified and a zero-order hold is applied between the results.

To help filter spurious predictions such as during a static pose
at the beginning of a dynamic gesture, we maintain a trailing
rolling window of four predictions (0.8 s). A filtered prediction
is outputted if all of them agree.

When a user makes a gesture, the streaming predictions would
ideally create a single pulse of correct labels lasting one or
more timesteps. To assess this, we compare rising edges of the
predicted label sequence with the sequence of ground truth cues.
If a rising edge is between 1.5 s before the start of the ground
truth label and 2 s after it ends, then the edge is associated with
that cue. Each true gesture may thusly be matched with 0, 1, or
many rising-edge predictions.

2) Aggregated Streaming Performance: Averaging across all
holdout experiments, the filtered networks made a single, cor-
rect rising-edge prediction during 91.2% ± 8.0% of the cued
windows. Multiple predictions, all for the correct gesture, were
made during 1.6% ± 2.3% of the cues. There were no tri-
als in which only incorrect predictions were made, although
4.1% ± 6.9% of the trials had both correct and incorrect predic-
tions. 3.1% ± 3.6% of trials were missed altogether.

Fig. 7 illustrates these results and explores the impact of
parts of the learning pipeline. The first four bars demonstrate
that adding either type of data augmentation converts many
trials that were missed or incorrect into trials that have a single
correct prediction, and using both yields the best performance.
This suggests that augmentation successfully improved network
robustness in the streaming scenario, consistent with the results
observed for the segmented examples.

Comparing the fourth and fifth bars indicates that filtering
rolling classifications eliminated many spurious incorrect pre-
dictions and some redundant correct predictions. The filter thus
successfully created smoother and more reliable results.

Fig. 7. Classifying a rolling buffer at every timestep simulates real-time
performance, then results summarize the predictions that would have been made
while each true gesture was performed. The center outlined bar represents the
full selected pipeline, while the others ablate various aspects.

The final two bars summarize the performance when using
only accelerometer-based or strain-based features. This de-
creases the percent of trials with a single, correct prediction
to 55.0% ± 20.2% or 71.7% ± 14.5%, respectively. This cor-
roborates the conclusion that both modalities provide valuable
and complementary information about the gestures.

3) Confusion Results: Fig. 8 further explores performance
of the full pipeline by considering each gesture separately. The
main section forms a confusion matrix focusing on the ideal
case of a single rolling prediction per gesture; each cell reports
the percent of trials in which the true gesture of the row yielded
a single rising edge of predictions for the column gesture. The
remaining possibilities are to have multiple, mixed, or missed
predictions for a gesture; these are summarized by the extra
four columns on the right, so each row sums to 100%. Results
aggregate all 7 classifiers evaluated on their respective hold-out
experiments, so each row summarizes 70 true gestures.

Results are promising for robust streaming performance,
highlighting that there were no cases of a gesture only being
associated with incorrect predictions. It is also interesting to
note that certain gestures yielded noticeably more missed or
redundant predictions. For example, single brief gestures often
have more missed trials, possibly since a small portion of the 2 s
window actually contains the gesture; these include Home, Eat,
Thank You, Like, and Hello.

Certain gestures also had more instances of mixed correct and
incorrect predictions. To expand on this case, Fig. 9 reports the
number of times that each label was predicted during each true
gesture. Note that each row no longer sums to the total number
of true gestures, since varying numbers of predictions may be
made for each one. However, the results can provide insight into
which gestures were confused by the network. For example, the
matrix shows that J often included incorrect I predictions, but I
was never incorrectly classified as J. As demonstrated by Fig. 4,
these use the same hand pose but I is static while J involves a
brief motion. Thus, the erroneous predictions were likely during
the initial static phase of the J gesture and then followed by
correct predictions, leading to the observed mixed results. This
particular case also suggests that the network successfully used
accelerometer data to differentiate the two gestures.

The top row indicates 124 total false positives. This is accept-
able for the current application, considering that classifications
were performed at 5 Hz over a total of 4.47 hours.
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Fig. 8. The main confusion matrix summarizes when gestures yielded a single
rising edge of streaming predictions. The extra four columns on the right
summarize when multiple or no predictions were made. Values are percents
of the 70 gesture trials represented by the row.

C. Online Results

Additional tests demonstrated feasibility of deploying the
pipeline on a self-contained embedded wearable system.

1) Embedded Deployment: The smoothing, normalization,
and feature extraction procedures were implemented in the real-
time embedded context. The network trained while holding out
experiment 7 was then converted as described in Section VII-A.
Evaluating the network requires 9,622,900 multiply-accumulate
operations. Optimization options were tested via CUBE-AI.
To measure inference time, it deployed the network on the
microcontroller and evaluated 10 random inputs with values
uniformly distributed between [0, 1]. To measure correctness,
it evaluated the network on a laptop using 10,000 random inputs
and compared outputs with the original Keras model. Table I
summarizes the results. Accuracy considers which class has the
highest probability, while RMSE considers the probabilities di-
rectly. Note that only marginal resource impacts are observed for
this network since only its input and output layers are affected.
Based on these results, a network with compression factor 8 was
deployed; this reduces memory without significantly impacting
speed or accuracy.

2) Performance: Online results were obtained by performing
each gesture 10 times and observing the streaming classifica-
tions. Prior to the experiment, the user could briefly practice
each gesture while watching the output. Future evaluations can
be more comprehensive, but the current study was designed
to demonstrate that the embedded system can successfully im-
plement the pipeline and validate the leave-one-experiment-out
simulated streaming results.

The network made predictions at approximately 5 Hz as
expected. Considering raw rolling classifications across all 240
gestures, 89.2% of trials yielded only the correct prediction.
5.8% of trials yielded mixed correct and incorrect predictions.
2.1% and 2.9% of trials had only incorrect predictions or no

Fig. 9. The matrix presents absolute counts of streaming classifications during
each true gesture. Each row spans 70 true gesture trials, but the rows may have
a different sum since multiple or no predictions can be outputted during each
trial. The top row represents false positives.

TABLE I
EMBEDDED NETWORK DEPLOYMENT OPTIONS

predictions, respectively. When filtering rolling classifications,
86.7% of trials yielded only the correct classification, and 1.7%
of trials yielded mixed correct and incorrect predictions. 1.3%
and 10.4% of trials had only incorrect predictions or no predic-
tions, respectively.

This performance is comparable with the offline streaming re-
sults. Qualitatively, the network was often sensitive to small pose
changes, especially regarding contact between fingers which
create large resistance changes. Additionally, the 2 s classifi-
cation window coupled with the previously observed response
times of the knit can cause some prediction delays.

These results demonstrate that the pipeline was successfully
deployed in the embedded context. Future work can investigate
improving performance by expanding the training corpus, ad-
justing the network structure, tuning filter windows, or exploring
optimal strain sensor placements.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a wearable smart glove that utilizes a
strain-sensitive resistive knit for postural information and an
accelerometer for motion. A small custom PCB and a micro-
controller read sensors, perform feature extraction, and run a
pre-trained neural network. The system is used to classify sign
language poses and gestures in real time.

This work demonstrates the potential of combining novel
soft sensors with state-of-the-art microcontrollers and machine
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learning. However, future work can further characterize the
capabilities, limitations, and learning pipeline design.

Future studies should expand the subject pool to evaluate
robustness and generalizability, such as whether the network can
be plug-and-play for new users or whether a tuning procedure
should be added (either offline or online). They could also
explore factors such as the user’s ASL experience level, hand
size, or skin conductance. Insights from cross validation may
guide structural adjustments to improve robustness. Adjusting
the classification windows or filtering may also reduce latency.

Exploring the capacity and trade-offs of the learning pipeline
is also valuable. Adding gestures could be done with minimal
impact on speed or memory by simply adjusting the softmax
layer, but only until the LSTM’s learning capacity saturates.
Scaling the LSTM layer or adding layers scales how many
operations the microcontroller must perform to evaluate the
network. Network size and gesture count also impact how much
training data is required. Such trade-offs between size, speed,
accuracy, and training can be application-specific and nontrivial
to characterize for neural networks.

Finally, augmenting the glove with additional modalities
could unlock applications ranging from healthcare to sports.

This work thus takes a step towards more deployable machine
learning in embedded form factors that are suitable for wearable
devices. This moves closer towards the vision of ubiquitous
smart wearables that could improve communication and lead
to more intuitive human-machine interfaces.
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