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PlaneSDF-Based Change Detection for Long-Term
Dense Mapping

Jiahui Fu , Chengyuan Lin, Yuichi Taguchi, Andrea Cohen, Yifu Zhang, Stephen Mylabathula ,
and John J. Leonard

Abstract—The ability to process environment maps across mul-
tiple sessions is critical for robots operating over extended periods
of time. Specifically, it is desirable for autonomous agents to detect
changes amongst maps of different sessions so as to gain a conflict-
free understanding of the current environment. In this letter, we
look into the problem of change detection based on a novel map
representation, dubbed Plane Signed Distance Fields (PlaneSDF),
where dense maps are represented as a collection of planes and
their associated geometric components in SDF volumes. Given
point clouds of the source and target scenes, we propose a three-
step PlaneSDF-based change detection approach: (1) PlaneSDF
volumes are instantiated within each scene and registered across
scenes using plane poses; 2D height maps and object maps are ex-
tracted per volume via height projection and connected component
analysis. (2) Height maps are compared and intersected with the
object map to produce a 2D change location mask for changed
object candidates in the source scene. (3) 3D geometric validation
is performed using SDF-derived features per object candidate
for change mask refinement. We evaluate our approach on both
synthetic and real-world datasets and demonstrate its effectiveness
via the task of changed object detection.

Index Terms—Mapping, SLAM, range sensing.

I. INTRODUCTION

THE ability to perform robust long-term operations is crit-
ical in many robotics and AR/VR applications, such as

household cleaning and AR/VR environment scanning. Through
multiple traverses of the same place, agents accumulate a more
holistic understanding of their working environments. However,
in the long-term setting, the working environment is prone to
changes over time, e.g., the removal of a coffee mug. Conflicts
may then arise when agents try to synthesize scans from different
sessions. Therefore, agents are expected to first capture these
changes and then obtain the up-to-date 3D reconstruction of the
scene after all change conflicts have been resolved.
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An intuitive way to conduct change detection is through
scene differencing between the two reconstructions of inter-
est. Previous works on change detection leverage scene rep-
resentations such as point clouds [1]–[4] or Signed Distance
Fields (SDF) [5]–[7] and perform point- or voxel-wise compari-
son [1]–[3], [8] globally between the two scenes. To ensure that
comparison is carried out at corresponding locations of the two
observations, these methods demand consistent and precisely
aligned reconstructions, which are hence susceptible to sensor
noises and localization errors.

We observe that most scene changes occur at the object
level, and that man-made environments can often be modeled
as a set of planes with objects attached to them, as opposed
to a cluster of unordered points or voxels with no geometric
structure. Therefore, we choose to represent the whole scene
as a set of planes, each having an associated SDF volume
that describes the geometric details of the objects attached to
it, which we term as the PlaneSDF representation. Similiar to
the idea of dividing the whole environment into submaps, e.g.,
based on time intervals [7] or objects [6], [9], agents could
maintain multiple PlaneSDF volumes of scalable sizes in lieu of
a single chunk of global SDF while saving update and memory
reload time by updating volumes only in the current viewing
frustum. Furthermore, this representation is also more robust to
localization drift as local regional correction can be performed
patch by patch each time two planes from different traverses are
registered via plane pose.

Taking advantage of the PlaneSDF representation, in this
paper, we propose a change detection algorithm given a source
and a target scene that decomposes the original global com-
parison in a local plane-wise fashion. Treating each plane as a
separator, the local change detection is performed plane-wise
as well as at the object level. The global localization drift issue
between two scenes is alleviated during plane-pose registration.
Through the projection of SDF voxel height values onto the
plane, the obtained height map and its value connectivity offers
a solid indication about the potential object candidates along
with their projected 2D contours, making it possible to con-
duct 3D geometric validation only on SDF voxels belonging to
the potentially changed objects. Our main contributions are as
follows:

1) PlaneSDF is proposed as a novel representation for indoor
scene reconstruction.

2) A change detection algorithm, consisting of 2D height map
comparison and 3D geometric validation, is developed
leveraging the PlaneSDF data structure.
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3) The effectiveness of the proposed algorithm is demon-
strated on both synthetic and real-world datasets of indoor
scenes.

II. RELATED WORK

Change detection, as widely discussed in research concerning
long-term robotic operations, can be roughly divided into two
categories: geometric and probabilistic approaches.

A. Geometric Approaches

Geometric approaches are usually based on comparing geo-
metric features extracted from various environment represen-
tations. Walcott-Bryant et al. [11] developed Dynamic Pose
Graph SLAM, where change detection is performed on the 2D
occupancy grid to edit and update the pose graph. Classical 2D
feature descriptors, e.g. SURF, ORB, and BRISK [12], [13],
were extracted from the grey scale input images and the visual
database, respectively. Next, the Euclidean distance between the
two features is computed to determine if changes have taken
place. There are also many works in the literature which use 3D
representations. Finman et al. [1] performed scene differencing
on depth data among multiple maps and learned segmentation
models with surface normals and color edges to discover new
objects in the scene. Ambrus et al. [2] computed a meta-room
reference map of the environment from the collected point cloud,
and employed spatial clustering based on global descriptors to
discover new objects in the scene. Fehr et al. [8] adapted volu-
metric differencing onto a multi-layer SDF grid and showed its
effectiveness in object discovery and class recognition. Kunze et
al. [14] built and updated a hierarchical map of the environment
by comparing object positions between observations and corre-
sponding map contents. Schmid et al. [9] proposed a panoptic
map representation using multiple Truncated Signed Distance
Fields for each panoptic entity to detect long-term object-level
scene changes on-the-fly. Langer et al. [10] combined semantic
as well as supporting plane information, and conducted local
verification (LV) to discover objects newly introduced into the
scene. The proposed method outperforms several global point-
and voxel-based approaches and is selected as the baseline here
for comparison.

B. Probability-Based Approaches

Previous works in this category tend to develop statistical
models to describe sensor measurement or environment dy-
namics. Krajnik et al. [15] modeled the environment’s spatio-
temporal dynamics by its frequency spectrum, while [3], [16]
exploited probabilistic measurement models to indicate how
likely it is for each surface element in the scene to have moved
between two scenes. Bore et al. [17] proposed a model for object
movement describing both local moves and long-distance global
motion. Katsura et al. [18] converted point clouds and measured
data into ND (Normal Distribution) voxels using the Normal
Distribution Transform (NDT) and compared voxel-wise distri-
bution similarity.

There are also learning-based change detection ap-
proaches [19], [20] that learn geometric features through neural
networks trained on pre-registered images or SDF pairs. Con-
sidering the potential challenges of training data availability and

Fig. 1. System Overview. Input: point clouds of the source and target scene.
Output: voxels of objects detected as changes between the two scenes. (a) For
the two input point clouds, PlaneSDF volumes are fused and registered using
poses of major planes (e.g., desk, cabinet, and the floor, as indicated in different
colors). A 2D height map and an associated object map are obtained for each
plane through projection and connected component analysis. (b) Height values
for corresponding planes are compared, which yields a preliminary 2D change
mask for the source plane w.r.t. the target plane. (c) The intersection of the
current change mask and the source object map is found to determine changed
object candidates. Each of these objects has its SDF-based features extracted
and compared against the corresponding one in the target for change mask
refinement.

generalization to unseen changes, this paper focuses only on
non-learning based methods.

Despite all the results reported, the global point- or voxel-
wise geometric comparisons are susceptible to sensor noises and
localization errors and the results of probabilistic approaches
may not be readily applicable to scene mapping tasks. Hence,
in this work, we consider 2D as well as 3D information on the
voxel and object level with the proposed PlaneSDF structure,
and achieves robust change detection on both synthetic and real-
world datasets.

III. METHOD OVERVIEW

Our method (see Fig. 1) leverages the plane-to-object sup-
porting structure through the PlaneSDF representation, thereby
enabling us to first perform local pairwise plane pose alignment
against global reconstruction errors. We then obtain change de-
tection results via efficient and effective local scene comparison
on 2D height map and 3D object surface geometry informed by
the SDF volume.

A. PlaneSDF Instantiation

We first generate the PlaneSDF representation for each scene,
i.e., representing the input 3D point cloud for the scene as a set
of planes and their associated SDF volumes.

For plane detection, when given sequential point cloud
streams, we extract planes from each frame with RANSAC and
merge them when a new frame arrives, as how SLAM systems
commonly proceed when using planes as pose estimation con-
straints [21]–[23]. When a point cloud for the complete scene is
available, we run a spatial clustering algorithm [24] to detect a
set of planes out of the cloud.

For each plane detected, we fuse an SDF volume using all the
points within a predefined distance to the plane, in the hope that
the obtained SDF will record the free space and object geometry
solely from objects directly supported by the plane, e.g., the
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Fig. 2. Change detection results for a complete indoor scene from the object change detection dataset [10]. The whole scene is spatially subdivided into multiple
PlaneSDF instances (marked by distinct colors). Note that there could be some overlap among certain SDF volumes (e.g., the seating area of the sofa in the upper
right of the scene is also fused into the floor volume). For each plane of interest, i.e., planes with objects newly introduced onto them, the associated height map
and the final change mask are shown. The detected object changes are colored in red while the ground truth (GT) changes are rendered in the upper right corner of
the figure.

drawings hanging on the vertical wall or the soda can placed on
the table. Note that when two detected planes are less than the
defined fusing distance away from each other or there are bigger
objects supported by multiple planes, a point could be fused into
multiple PlaneSDF instances, e.g., the color overlap of the sofa
and the floor instances in Fig. 2). We also limit our detection
of planes to only horizontal and vertical ones, as they constitute
most of the “plane-supporting-objects” cases we encounter in
daily lives.

Furthermore, the local 2D height grid map evaluated w.r.t.
the plane is computed, where each grid stores the maximum
voxel-to-plane distance in the height direction at the current
plane location. The height map is non-zero for plane locations
occupied by objects, zero for flat unoccupied locations, and −1
for unobserved regions. Building on top of this, as non-zero
regions are disconnected from each other by the plane zero-level
set, we could easily obtain an “object (or object cluster for
multiple small objects close to each other) map” [Fig. 1(d)]
preserving relatively accurate object contours through connected
component labeling on the height map.

Given two PlaneSDF volumes, a source and a target, instanti-
ated from the two scenes respectively, we define the 2D change
mask of the pair as a ternary mask of the same size as the source
height map, indicating all changed plane locations in the source
w.r.t. the target (Fig. 2).

B. PlaneSDF Registration

Before scene differencing is conducted, PlaneSDF volumes
of the two scenes are first registered so that the comparison
is guaranteed to be carried out on two observations of the same
plane. With the assumption that input point clouds from different
sessions share the same world coordinate frame, registration
of PlaneSDF volumes is accomplished through plane poses to
alleviate the effect of localization drift among reconstructions
of the same plane. For each pair of PlaneSDFs, we determine if
they belong to the same plane according to the orientation cosine

similarity and offset difference of the two plane poses:

nTn′ ≥ δn

||d− d′|| ≤ δd, (1)

where (n, d) and (n′, d′) are the plane surface normals and
offsets from origin of the source and target PlaneSDF volumes,
respectively. δn and δd are the minimum cosine similarity and
maximum offset distance for two planes to be regarded as the
same plane. In this way, via associating plane detections of
similar orientations and offsets in the pair of reconstructions,
small localization drift of the same plane can be mitigated
by applying the relative transform between plane poses, from
which we are then ready for change detection on each registered
PlaneSDF pair.

C. Height Map Comparison

As floating objects are rare in daily scenes, height value
discrepancy at the same plane location in different observations
can offer informative speculation about the changes on this
plane, e.g., when objects are newly removed or added, drastic
changes between zero and non-zero height values will occur.
In this spirit, we project each location, (x, y), of the source
height map H onto the target height map H ′ using the relative
plane pose. If the height value variation is above a threshold δh,
we mark this plane location as changed (see Fig. 3). Oftentimes,
the projected location, (x,′ y′), will not not land exactly onto a
grid center in the target map, so comparisons are drawn between
the source height and those of the four nearest neighbors of
(x,′ y′):∑

i=0,1;j=0,1

1(|H ′(�x′�+ i, �y′�+ j)−H(x, y)| ≤ δh)

=

{
0, changed

≥ 1, unchanged.
(2)

In most cases, as a consequence of measurement noises, the
change mask obtained after direct comparison is usually cor-
rupted by small false positive clusters scattered around the map.
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Fig. 3. Height map comparison. For the registered source and target PlaneSDF
pairs, each grid in the source height map is projected onto the target height map,
with its height value compared against those of its closest 2×2 neighborhood.
If all four neighbors have a height difference above a threshold, this grid (plane
location) is preliminarily marked as changed.

Therefore, a round of connected component filtering followed
by dilation is applied to remove the noise.

D. 3D Voxel Validation

Comparing height values for changes works well when (1)
objects are removed or added, inducing significant variation in
height values, or (2) camera trajectories have a high observation
overlap of the unchanged objects between two runs. However,
height implications can fail easily when old objects are replaced
with new ones in the same place, or different parts of the same
unchanged object are observed due to disparate viewing angles.

Therefore, 3D validation on the SDF of potential changed
source plane locations is introduced with the goal of correcting
false positives indicated by the change mask. For the overlapping
space of two observations, if the same object persists, then the
local surface geometry and free space description should be
similar, or the target SDF will otherwise be remarkably different
from that of the source.

Here, for the sake of selecting key voxels and obtaining
corresponding descriptive geometry characterization around the
selected locations, the curvature-derived description of the SDF
is adopted for its capability to characterize the geometry of both
object surfaces and the unoccupied space in between. In addition
to indicating the planarity, convexity, or concavity of the object
surface, the trend of SDF variation amid object surfaces can
reflect inter-surface spatial relations, e.g., the sudden drop of an
increasing SDF value along a ray direction can imply the switch
of the nearest reference surface for SDF value calculation as
the ray marches through surfaces. In contrast, the raw SDF value
description and its gradient-derived counterpart are less suitable
for the unified goal of key voxel selection and local geometry
description. The former, due to the unavailability of ground truth
surfaces during point fusion, is prone to slight inconsistency
when constructed from different camera trajectories, while the
latter returns an indistinguishable magnitude of one by construc-
tion in most places.

Additionally, to make the comparison more robust to mea-
surement noises and reconstruction errors, the SDF voxels of
interest are extracted and compared in the minimal unit of an
object (cluster). This is achieved by selecting voxel blobs in each
source PlaneSDF as those whose 2D projected clusters from the
change mask have high overlap with the connected clusters in
the object map, i.e., the intersection of the change mask and the
object map. Through per-blob 3D geometry validation, the final

Fig. 4. Key voxel distribution and corresponding similarity score distribution
of planes with and without changes. (a) Key voxel (red square dots) distribution
within a voxel blob (round dots with colors indicating the SDF value). (b) Key
voxels within the same PlaneSDF volume are classified as either “part of an
object” or “others” as everything left in the background. Left (PlaneSDF of the
yellow plane): Both the side table (object) and the wall (others) are unchanged,
hence both similarity scores bias towards higher-valued bins. Right (PlaneSDF
of the green plane): The book stack and the coffee mug swap their positions on the
table. Their shape distinction leads to scattered distribution of voxel similarity
scores at the same 3D position, while the “other” unchanged voxels around the
tabletop plane still share high similarity.

change mask not only preserves a more detailed object contour
in cases of adding/removing an object to/from a free space, but
also self-corrects false per-voxel height variation induced by
sensor noises in a clean way.

1) Key Voxel Selection: Key voxels are selected per object
blob so as to offer a more compact and robust characterization
of the overall blob shape. Inspired by [25], voxels around re-
gions of high curvature are selected as key voxels, implying
neighborhoods of significant shape variations (see Fig. 4(a). We
adopt the measure of local extrema of the determinant of Hessian
(DoH), det(Hess(v)), and calculate the Hessian matrix within
a complete 3× 3× 3 neighborhood N :

Hess(v) =

⎡
⎢⎣sxx sxy sxz

syx syy syz

szx szy szz

⎤
⎥⎦

sij = (Gj ∗Gi)(Φ(v)) i, j = x, y, z, (3)

where each element sij in the Hessian matrix of v is obtained
via convolution of Φ(v), the 3× 3× 3 SDF neighborhood at v,
with the 3D Sobel filter G in turn in the i and j direction.

2) Per-Voxel Shape Description: For each key voxel v0 in
the object blob O, the three eigenpairs of the Hessian matrix,
pi = (λi, ei), i = x, y, z, are computed and represent the three
principal curvatures (λis) and their directions (eis) at v, re-
spectively. This operation is then repeated for each voxel in
N and its corresponding neighborhood N′ in the target map
(determined by its projected location v′ in the target map). The
three eigenvalues are normalized for numerical stability and
each principal direction vector ei is converted into spherical
coordinate (θi, φi).

We then construct eigenpair histograms, H and H′, for the
corresponding neighborhood N and N′. For neighborhood N ,
we compute three sub-histograms, his, for all the eigenpairs pji
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in the i direction, where i = x, y, z:

pji = [θi, φi, λi],pj ∈ N
⇒ hi ∈ RNθ×Nφ×Nλ

θhi
= [0, 180◦], φhi

= [−90◦, 90◦]

λhi
= [min

j∈N
(λji),max

j∈N
(λji)], (4)

where Nθ, Nφ, and Nλ are the number of bins, and θhi
, φhi

,
and λhi

are the bin threshold in the θ, φ, and λ directions for
hi, respectively. With each hi of dimension Nθ ×Nφ ×Nλ,
we then concatenate the three to form the final histogram, H =
[h1||h2||h3], describing the local shape distribution around this
key voxel in the source. The corresponding H′ for the target
neighborhood is computed in the same fashion, while sharing
all the histogram thresholds with those of H.

To further enhance its ability of characterizing local shapes,
we append the final histogram with a weighted signed distance
value s of the neighborhood. The weights are assigned with a
Gaussian filter centered at v0 with deviation of σ = 2, and the
weighted SDF s is computed as follows:

wi =
1√
2πσ

e
(vi−v0)2

2σ2 ,vi ∈ N (v0)

s =

∑
wiΦ(vi)∑

wi
. (5)

Thus the ultimate feature vector for the key voxel in the source is
f(v0) = [H, s], which is of dimension 3×Nθ ×Nφ ×Nλ + 1.
We define a similarity score, sim ∈ (0, 1), at this key voxel
between the two features, f and f ′, of the source and target
map, respectively, as:

sim(f, f ′) = 1/(1 + α‖f − f ′‖2), (6)

where f ′(v0) = [H,′ s′] and α is a coefficient for adjusting the
contribution of the Euclidean distance between f and f ′, ‖f −
f ′‖2, to the similarity score.

3) Per-Object Shape Comparison: The distribution of the
similarity scores for all key voxels in the current object blob
then makes it possible to determine if the space is occupied
by the same object across two sessions. We argue that for
an unchanged space occupied with the same object blob, the
similarity scores, as an indication of the local shape, should
be concentrating around higher values, whereas for a space with
objects later removed, added, or replaced by another object, they
should either be low (removed or added) or distributed more
evenly around a wider range of bins (replaced) [see Fig. 4(b)].
Therefore, we construct the similarity score histogram for the
object blob and compute the histogram mean to determine if the
object has changed:

Havg =
∑

mini/N

isChanged(O) = 1(Havg < δblob), (7)

where mi and ni are the midpoint value and frequency of each
bin i, and N is the total number of key voxels in this object
blob. The object is then validated as changed if Havg is below a
similarity threshold, δblob, or false positives from 2D comparison
can be corrected based on the relatively high Havg value.

Following the plane locations marked as changed in the
change mask, all the corresponding voxels along the height
direction are extracted, which are the changed part of the source
scene w.r.t. the target.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our approach on both synthetic
and real-world indoor datasets, and demonstrate its strength via
tasks revolving around object-level change detection.

A. Datasets

1) Synthetic Tabletop Dataset: For evaluations under con-
trolled environments, we generated synthetic indoor sequences
with known object models on a tabletop. We first scanned a static,
furnished room with a Lidar scanner to obtain a ground-truth 3D
point cloud of the room. A few synthetic daily objects, e.g. mug
and book stack, are then arbitrarily placed on a synthetic table in
the scene, which are added, removed, or moved across multiple
sequences, thus creating the desired changes to be detected. The
scenes are rendered by simulating cameras on the Oculus Quest
2 headset moving in a preset trajectory around the table, from
which per-frame 3D point cloud observations were generated
and used as the input to our algorithm.

2) Object Change Detection Dataset: The object change
detection dataset [10] is recorded with an Asus Xtion PRO
Live RGB-D camera mounted on an HSR robot, consisting
of multiple complete or partial point clouds of five scenes:
big room, small room, kitchen, office, and living room. Each
scene consists of a reference reconstruction and 5 to 6 other
reconstructions obtained using Voxblox [26], accompanied by
various levels of permanent structure misalignment and noisy
boundaries due to localization and reconstruction errors. Ground
truth annotation of 3 to 18 newly introduced YCB [27] objects
to the scene is provided.

B. Evaluation Metrics

We adopt the commonly used precision and recall rates as the
metrics for change detection evaluation.

For the object change detection dataset, following the mea-
sures in [10], we compute precision, recall rate, and F1 score
at the point level, based on the ground truth changed point
annotation and our detection results. Precision is computed as
the proportion of total number of detected points that correspond
to the ground truth, and recall rate is defined as the proportion of
ground truth points that are incorporated in the detection points.
The F1 score provides the harmonic mean of the two metrics.
Two other metrics, the number of missing objects (changed
objects with no points detected as changed) and wrongly de-
tected clusters (clusters generated by the method that do not
overlap with any changed objects) are also reported so as to
better manifest the approach’s performance on the object/cluster
level.

C. Implementation Details

We follow the procedures described in III-A for generating
PlaneSDF instances, with the RANSAC-based approach for data
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streams of the synthetic tabletop dataset and the clustering-based
approach for scene point clouds of the object change detection
dataset. We set the fusing threshold to include points within 0.3 m
from the plane, hoping to cover most of the easy-to-move daily
objects supported by a plane. The SDF voxel grid resolution is
set as 7 mm so as to best preserve the scene geometry, especially
for smaller objects.

For PlaneSDF registration, the minimum cosine similarity and
maximum offset distance are set as δn = 0.95 and δd = 0.2 m.

For change detection, the height map difference threshold is
set to be δh = 0.02 m so as to not miss smaller objects. To
construct the 3D feature histogram for each area of interest, the
number of bins along each dimension is set to be Nφ = 5, Nθ =
5, Nλ = 6. The α and the threshold δblob are set as (α, δblob) =
(2, 0.9) for the synthetic dataset, and further moderately tuned
for the object change detection dataset to accommodate certain
dataset-defined cases where some slightly moved planes are not
marked as changed.

D. Results on the Synthetic Tabletop Dataset

The tabletop dataset captures a relatively complete surround-
ing view of the various objects on a tabletop, which provides a
simple yet effective scene for initial evaluation of the proposed
algorithm. The experiments are run on 20 arbitrarily selected
source-target sequence pairs, with objects on the tabletop rang-
ing from coffee mug (5- cm in height), toy car (10 cm in
height), to 3-layer book stack (30+ cm in height), etc. The
output is the 2D change mask of the same size as the height
map of the source PlaneSDF volume, indicating all the changed
locations on the source plane w.r.t. the target. To prove the
robustness of our algorithm, we also run all the experiments in
a bi-directional fashion, i.e., detecting changes source-to-target
as well as target-to-source. With relatively complete observation
of all the tabletop objects, for the 20 pairs we have tested, the
algorithm is able to achieve 100% recall and 80% precision rate
for detecting changed objects without 3D geometric validation.
The precision rate further rises to 100% after incorporating 3D
validation, where false positive height differences are corrected
by verifying the shape similarity in the SDF field [as for the case
of the book stack shown in Fig. 5(b)].

Fig. 5 shows examples of the evolution of change masks
out of each stage in the proposed method for three common
object changing scenarios: (a) Two objects swap places. (b) One
object changes and one remains. (c) Objects are added/removed
to/from a free space. We can see that the masks out of height map
comparison (3rd column) still contains noisy false positive (FP)
clusters, as a consequence of reconstruction errors. The smaller
FP clusters are then partially removed by connected-component
filtering and dilation, as shown in the 4th column, but bigger FP
patches still persist, such as the book stack on the left side of
the tabletop in scenario (b). The 3D validation here then plays
a significant role in comparing the 3D geometric similarity of
all the possible patches and effectively reverting the FP book
stack back to unchanged (5th column in (b)). The results also
demonstrate bi-directional robustness as the change masks are
of similar pattern within each source-target pair.

Fig. 5. Sample change detection results on the synthetic tabletop dataset. Each
mask showcases the change detection result of treating the sequence in the same
row as the source. Here we include snapshots of the actual scene in the first
column, the associated height map in the second column, and the evolution of
the change mask out of each stage of our approach in the last three columns:
(1) height map comparison (HC) (2) connected component filtering and dilation
(CC) (3) 3D geometric validation (3D).

E. Results on the Object Change Detection Dataset

In addition to the synthetic tabletop dataset, we further eval-
uate our algorithm on the more challenging real-world object
change detection dataset, which offers scene settings with object
changes of more diverse sizes and layouts.

Quantitatively, Table I compares the results of our approach in
terms of the five metrics against those of the volumetric/point-
based approaches Octomap [28] and Meta-room [2], and the
best results of the approach proposed by [10]. The results are
computed by projecting the ground truth point clouds into SDF
voxels and determining the change state of each point according
to that of its corresponding voxel indicated by the 2D change
mask from our approach. Note that following dataset definition,
we manually exclude all detected changed points resulting from
moved furniture and decoration from evaluation.

Moreover, to demonstrate the effectiveness of our blob-level
curvature-based SDF description for robust change detection, we
provide another baseline (FPFH in Table I) with a point-wise
variant of the proposed method by replacing the 3D voxel
validation step III-D with the point-based FPFH [29] feature
matching using the Open3D [30] implementation. As our se-
lected key voxels are not located on object surfaces, where
off-the-shelf point feature extractors cannot be directly applied,
FPFH features are extracted for every point in the original point
cloud that contributes to the fusion of the SDF. A point is marked
as changed if its source FPFH feature cannot be matched in its
target neighborhood.

Here, Fig. 6 illustrates the key voxel distribution and the false
positive points detected by FPFH matching for two unchanged
sub-scenes: a single green object and two bottle standing closely
against a wall. In (b), near-surface key voxels (within 1.5 SDF
voxel size to an object point, shown in blue) are distributed
around the object surface, giving good characterization of
the object geometry, while key voxels farther away from the
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TABLE I
RESULT COMPARISON OF THE PROPOSED APPROACH WITH THREE BASELINES PROVIDED BY THE OBJECT CHANGE DETECTION DATASET. BEST VALUES ARE

MARKED IN BOLD. (PR = PRECISION, RE = RECALL, F1 = F1 SCORE, M = MISSED OBJECTS, W = WRONGLY DETECTED CLUSTERS)

Fig. 6. Illustration of key voxel distribution and detected false positive points
from the per point FPFH feature matching baseline for two unchanged sub-
scenes. (a) Scene rendering. Above: an isolated green object in the center of a
tabletop in the “small room” scene. Below: two bottles standing together against
a wall in the “kitchen” scene. (b) The scene point clouds are rendered in bigger
colored squares, and the key voxels are in smaller squares with blue ones as
those near object surfaces and orange ones farther away in the unoccupied space
amid object surfaces. (c) Falsely detected changed points from the FPFH feature
matching baseline are rendered in red.

surface are more frequently witnessed in spaces amid surfaces,
e.g., the area around the top of the shorter bottle and the left
gap between the bottles and the wall, acting to unravel the
spatial relations of these adjacent surfaces. The effectiveness
of considering both object surfaces and inter-surface regions is
then demonstrated by (c). While our method correctly recognizes
the two scenes as unchanged, FPFH shows a small ratio of
false positive points for the less noisy, single-object scenario
but induces considerable amounts of false positives for the
two-bottle case given a partial and warped reconstruction of the
shorter bottle and the wall.

From Table I, we see that our approach achieves the highest
values in terms of the five aforementioned metrics in most
scenes. The point-wise FPFH matching baseline, while not eli-
gible for wrongly detected clusters measurements as no cluster-
level operations are involved, results in worse performance in

the rest of the four metrics. This can be ascribed to its sensitivity
to reconstruction noises, e.g., residual points or warpings that
are prevalent around boundaries.

In comparison to the baseline approaches, our better perfor-
mance could be attributed to the more distinct object contours
and more robust neighborhood geometry verification enabled
by the PlaneSDF representation. First, finding intersections be-
tween the preliminary change mask and the object map ensures
that most of voxels extracted for 3D validation belong to part
of an object and all voxels of the potentially changed objects
are selected for 3D validation, hence unaffected by the common
artifacts, e.g., noisy and incomplete object boundaries, in 3D
clustering and segmentation in [10]. Second, local geometry ver-
ification, as opposed to point-wise nearest neighbor searching,
offers additional robustness for detecting smaller objects and
rejecting false positives, especially in the face of undesired point
cloud residuals, such as when reconstruction quality is poor and
objects are close to fixed structures such as walls.

Qualitatively, Figs. 2 and 7 display examples of qualitative
change detection results of each of the five scenes. From Fig. 7,
we can see that the proposed algorithm is able to extract point
clouds belonging to most of the newly introduced objects, with
some points missing from the planar parts that are attached to
the plane, such as the bottom of the skillet in the kitchen scene
(the last row of Fig. 7).

While the proposed algorithm has been shown to be effective
in object change detection both quantitatively and qualitatively,
we point out the failure case as when the height discrepancy
between the object and the plane is ambiguous. Two typical
examples within the dataset are: (1) The new object is partially
occluded by a fixed structure in the height direction, e.g., the
baseball placed under the table is missing from detection as its
height is not correctly reflected in the height map. (2) The object
is close to some noisy plane boundaries such as those caused by
non-rigid deformation, e.g., missing object detection on the sofa
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Fig. 7. Qualitative examples of the change detection results (red) for the four
scenes in the object change detection dataset, from top to bottom: living room
(partial), small room, office (partial), kitchen (partial). (a) Detected objects from
our algorithm. (b) Ground truth.

(first row in Fig. 7) and our lower precision scores on the “small
room” and “living room” scenes with new objects on the sofa.

V. CONCLUSION

In this paper, we have presented a new approach for change de-
tection based on the newly proposed PlaneSDF representation.
By making the most of the plane-supporting-object structure,
our approach decomposes the common noise-sensitive global
scene differencing scheme in a local plane-wise and object-wise
manner, demonstrating enhanced robustness to measurement
noises and reconstruction errors on both synthetic and real-world
datasets.
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[2] R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms: Building
and maintaining long term spatial models in a dynamic world,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014, pp. 1854–1861.

[3] E. Herbst, P. Henry, and D. Fox, “Toward online 3-D object segmen-
tation and mapping,” in Proc. IEEE Int. Conf. Robot. Automat., 2014,
pp. 3193–3200.

[4] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A.
J. Davison, “Slam++: Simultaneous localisation and mapping at the level
of objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013,
pp. 1352–1359.

[5] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping
and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Augmented Reality,
2011, pp. 127–136.

[6] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,
“Fusion++: Volumetric object-level SLAM,” in Proc. IEEE Int. Conf. 3D
Vis., 2018, pp. 32–41.

[7] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and J.
Nieto, “Voxgraph: Globally consistent, volumetric mapping using signed
distance function submaps,” IEEE Robot. Automat. Lett., vol. 5, no. 1,
pp. 227–234, Jan. 2020.

[8] M. Fehr et al., “TSDF-based change detection for consistent long-term
dense reconstruction and dynamic object discovery,” in Proc. IEEE Int.
Conf. Robot. Automat., 2017, pp. 5237–5244.

[9] L. Schmid et al., “Panoptic multi-TSDFS: A flexible representation for
online multi-resolution volumetric mapping and long-term dynamic scene
consistency,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 8018–
8024, doi: 10.1109/ICRA46639.2022.9811877.

[10] E. Langer, T. Patten, and M. Vincze, “Robust and efficient object change
detection by combining global semantic information and local geometric
verification,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 8453–8460.

[11] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard, “Dy-
namic pose graph SLAM: Long-term mapping in low dynamic en-
vironments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 1871–1878.

[12] E. Derner, C. Gomez, A. C. Hernandez, R. Barber, and R. Babusška,
“Towards life-long autonomy of mobile robots through feature-based
change detection,” in Proc. IEEE Eur. Conf. Mobile Robots, 2019,
pp. 1–6.

[13] E. Derner, C. Gomez, A. C. Hernandez, R. Barber, and R. Babusška,
“Change detection using weighted features for image-based localization,”
Robot. Auton. Syst., vol. 135, 2021, Art. no. 103676.

[14] L. Kunze et al., “SOMA: A framework for understanding change in
everyday environments using semantic object maps,” in Proc. AAAI Conf.
Artif. Intell., 2018.

[15] T. Krajnik, J. P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett,
“Spectral analysis for long-term robotic mapping,” in Proc. IEEE Int. Conf.
Robot. Automat., 2014, pp. 3706–3711.

[16] L. Luft, A. Schaefer, T. Schubert, and W. Burgard, “Detecting changes
in the environment based on full posterior distributions over real-valued
grid maps,” IEEE Robot. Automat. Lett., vol. 3, no. 2, pp. 1299–1305,
Apr. 2018.

[17] N. Bore, J. Ekekrantz, P. Jensfelt, and J. Folkesson, “Detection and tracking
of general movable objects in large three-dimensional maps,” IEEE Trans.
Robot., vol. 35, no. 1, pp. 231–247, Feb. 2019.

[18] U. Katsura, K. Matsumoto, A. Kawamura, T. Ishigami, T. Okada, and R.
Kurazume, “Spatial change detection using voxel classification by normal
distributions transform,” in Proc. IEEE Int. Conf. Robot. Automat., 2019,
pp. 2953–2959.

[19] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-view
change detection with deconvolutional networks,” Auton. Robots, vol. 42,
no. 7, pp. 1301–1322, 2018.

[20] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner, “RIO: 3D
object instance Re-localization in changing indoor environments,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 7658–7667.

[21] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “Point-plane SLAM
for hand-held 3D sensors,” in Proc. IEEE Int. Conf. Robot. Automat., 2013,
pp. 5182–5189.

[22] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct RGB-D SLAM,” in Proc. IEEE Int. Conf.
Robot. Automat., 2016, pp. 1285–1291.

[23] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based dense
planar SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 5110–
5117.

[24] J. Straub, T. Campbell, J. P. How, and J. W. Fisher, “Small-variance non-
parametric clustering on the hypersphere,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 334–342.

[25] A. J. Millane et al., “Freetures: Localization in signed distance
function maps,” IEEE Robot. Automat. Lett., to be published,
doi: 10.1109/LRA.2021.3052388.

[26] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D euclidean signed distance fields for on-board MAV plan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366–
1373.

[27] B. Calli et al., “Yale-CMU-berkeley dataset for robotic manipula-
tion research,” Int. J. Robot. Res., vol. 36, no. 3, pp. 261–268,
2017.

[28] E. Langer, B. Ridder, M. Cashmore, D. Magazzeni, M. Zillich, and
M. Vincze, “On-the-fly detection of novel objects in indoor en-
vironments,” in Proc. IEEE Int. Conf. Robot. Biomimetics, 2017,
pp. 900–907.

[29] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Proc. IEEE Int. Conf. Robot. Automat.,
2009, pp. 3212–3217.

[30] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” 2018, arXiv:1801.09847.

https://dx.doi.org/10.1109/ICRA46639.2022.9811877
https://dx.doi.org/10.1109/LRA.2021.3052388


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


