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Abstract— The emerging field of passive macro-scale tile-
based self-assembly (TBSA) shows promise in enabling effec-
tive manufacturing processes by harnessing TBSA’s intrinsic
parallelism. However, current TBSA methodologies still do
not fulfill their potentials, largely because such assemblies are
often prone to errors, and the size of an individual assembly
is limited due to insufficient mechanical stability. Moreover,
the instability issue worsens as assemblies grow in size. Using
a novel type of magnetically-bonded tiles carried by bristle-
bot drives, we propose here a framework that reverses this
tendency; i.e., as an assembly grows, it becomes more stable.
Stability is achieved by introducing two sets of tiles that move
in opposite directions, thus zeroing the assembly net force.
Using physics-based computational experiments, we compare
the performance of the proposed approach with the common
orbital shaking method, proving that the proposed system
of tiles indeed possesses self-stabilizing characteristics. Our
approach enables assemblies containing hundreds of tiles to
be built, while the shaking approach is inherently limited to a
few tens of tiles. Our results indicate that one of the primary
limitations of mechanical, agitation-based TBSA approaches,
instability, might be overcome by employing a swarm of free-
running, sensorless mobile robots, herein represented by passive
tiles at the macroscopic scale.

I. INTRODUCTION AND STATE-OF-THE-ART

Tile-Based Self-Assembly (TBSA) is a process in which
building units (tiles), starting from an initial disordered state,
organize into a target pattern. The process itself is passive,
being driven by predefined interaction rules among tiles and
by an external excitation affecting all tiles in an assembly.
These simple yet universal features are making self-assembly
processes a topic of investigation across multiple length
scales and disciplines, e.g., [1, and references therein]. We
concentrate on the most relevant processes relevant to our
contributions below.

A. DNA-based self-assembly

The most substantial progress in TBSA processes to
date has been achieved in DNA-based algorithmic self-
assembly at the nanoscale, established in a pioneering work
of Winfree [2]. In the Winfree’s framework, individual tiles
are produced from DNA strands, with inter-tile interactions
relying on the chemical bonds between their edges, and
the overall process controlled by temperature. This direction
of inquiry has witnessed remarkable growth, from 7 nm
DNA cubes [3] to Sierpinski triangle [4] assemblies, bitmaps

formed from 8,704 molecular pixels [5], up to robust molec-
ular computations with error rates as low as 1:3,000 [6].

These achievements were all made possible by concurrent
development of modeling strategies, with Winfree’s abstract
Tile Assembly Model (aTAM) providing the fundamental
formalization (see Section III-A for a brief overview). De-
spite many adopted simplifications, aTAM has proved helpful
in, e.g., rigorous analyses of TBSA [7] or in the optimal
design of tiles and their interactions [8], [9] for assemblies
growing from a given initial (seed) structure.

B. Centimeter-scale, magnetically-based self-assembly

Upscaling the principles and results of DNA-based self-
assembly to the macroscale has been motivated by the devel-
opment of non-conventional, intrinsically parallel, fabrication
techniques for architectured materials and components [10].
Most attempts to date have relied upon magnetic forces to
encode tile interactions, e.g., [11], [12], [13], employing
mechanical excitation [12], [13], [14], [15], fans [11], fluid
turbulence [16], [17], [18], or temperature [19] to guide the
self-assembly process.

So far, the complexity of patterns achievable at the
centimeter scale has fallen short of nanoscale DNA-based
results. For instance, our initial macroscale attempt [14]
resulted in 2 × 2 square patterns or up to 7-tile long
linear chains, whereas a recent work by Han et al. [19]
yielded similarly-sized chains that disassembled as tempera-
ture changed. Tsutsumi and Murata [12] succeeded in assem-
bling a 10-tile Sierpinski triangle, using specifically tailored
inter-tile interaction, whereas Hafez et al. [18] demonstrated
the self-assembly of elementary two- and three-dimensional
shapes. Our latest work [20] reported on an errorless assem-
bly of a 4× 4 checkerboard pattern with carefully designed
mechano-magnetic tile interactions.

However, follow-up experiments have revealed that
macroscale TBSA eventually reaches a critical size, where
collisions with moving tiles and external excitation lead to
detachment from the seed or assembly disintegration, cf. Fig.
12 (middle) in [20, p. 6]. This mechanical instability presents
a fundamental obstacle to assembling the large and complex
patterns necessary for real-world applications.
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II. CONTRIBUTIONS

This paper identifies the main parameters governing the
phenomenon of assembly detachment and, leveraging this
insight, proposes a framework that reverses the tendency
towards instability at the macroscale with a self-assembled
structure that is more stable as it grows in size. Particular
emphasis is given to:

• Clarifying the intrinsic limit on the size of an assembly
with a suitable scaling argument,

• Presenting a strategy for overcoming this limit by as-
suming that the motion of the tiles follows a generalized
unicycle model with two distinct tile families,

• Proposing a framework for the physical realization of
the system, utilizing a bristle-bot-like drive, e.g., [21],
[22], [23], that exhibits both translations and rotations,

• Demonstrating the self-stabilizing behavior of the novel
system by extensive, real-time, physics-based sim-
ulations, with results being reproducible using the
tools and code available in our public GitLab repos-
itory (https://gitlab.ciirc.cvut.cz/imr/
expro/tiledyn2).

To these goals, the paper is structured as follows. Sec-
tion III briefly introduces the TBSA theory and provides in-
sight into the instability phenomena occurring during TBSA.
Section IV describes the solution we propose and introduces
our macroscale TBSA simulator together with the simula-
tions we performed to confirm the self-stabilizing effect of
our novel TBSA framework. Section V collects simulation-
based results to compare chessboard patterns obtained by the
commonly-used in-plane shaking approach to our proposed
self-stabilizing approach. Section VI discusses our findings;
their future extensions and application scenario are addressed
in Section VII.

III. LIMITATIONS OF MACROSCALE TBSA

A. Abstract Tile Assembly Model

Macroscopic tile-based self-assembly (TBSA) has not
yet been formalized; therefore, the basic assumptions and
principles of this study are inspired by Winfree’s aTAM
framework [2], in which self-assembling elements (tiles) are
squares, and each edge of a tile carries a glue. Tiles and
glues are passive and time-invariant. Glues can consist of
different types, with different strengths. If matching glues
come together, the tiles carrying them are bonded (e.g.,
magnetically), and the assembly grows. Growth can be
initiated only from a seed. The tiles in an assembly can
only occupy positions determined by a regular orthogonal
grid—binding places—and tiles are not allowed to rotate.
This terminology is illustrated in Fig. 1.

The whole tile system is placed in a reactor that supplies
energy to the system. The magnitude of agitation is quan-
tified by a positive integer value—temperature—specifying
the minimum number of matching glues needed to stably
attach a free tile to an existing assembly.

Fig. 1: Illustration of the terminology used in this work.
Adapted from [20].

B. Assembly detachment
To study the phenomenon of assembly detachment, we

assume that the side of an L-shaped seed contains ns tiles.
The maximal assembly size is thus n2s . The seed structure
holds the entire assembly with the combined force of its 2ns
glues, ~Fng (net glue force); see Fig. 2. All the tiles are under
the influence of an additional driving force ~Fnt (the net tile
force). Assuming that the i-th tile is affected by the driving
force ~Fi, the net tile force exerted on the connection between
the L-shaped seed and the assembly becomes

~Fnt =

n2
s∑

i=1

~Fi. (1)

Neglecting friction among tiles themselves and tiles and a
reactor floor, the assembly detaches when

~Fnt + ~Fng does not occupy the 3rd quadrant, (2)

assuming a right-handed coordinate system with an origin in
the Center of Gravity (CoG).

Fig. 2: Configuration of tile forces leading to detachment or
disintegration of the assembly.

The detachment condition is easily satisfied in shaking-
based TBSA. Here, the reactor moves orbitally along a tra-
jectory that allows free tiles to attach to a growing assembly
and wrongly connected tiles to disconnect. Because all tiles
are experiencing the same acceleration ~ant, the net force
becomes

~Fnt = n2smt~ant, (3)

while the net glue force can be expressed as (recall Fig. 2)

~Fng = 2nsFg

√
2

2
[1, 1]

T
. (4)

https://gitlab.ciirc.cvut.cz/imr/expro/tiledyn2
https://gitlab.ciirc.cvut.cz/imr/expro/tiledyn2


In Eq. (3), mt represents the mass of a single tile and Fg in
Eq. (4) the magnitude of a single glue force.

Because the reactor motion is harmonic, the detachment
condition in Eq. (2) becomes equivalent to

‖~Fng‖ < ‖~Fnt‖, (5)

with ‖ · ‖ denoting the Euclidean norm. Employing Eqs. (3)
and (4), we recast the condition to

ns >

√
2Fg

mt‖~ant‖
, (6)

thereby revealing the fundamental limit on the assembly size.

IV. METHODOLOGY

This section presents our strategy for tackling the in-
stability issue inherent in seeded self-assembly, organized
into three parts for the readers’ convenience. The first part
(Section IV-A) introduces the general strategy for achieving
the self-stabilizing property. The second part outlines the
experiment setup (Section IV-B) and presents the details
on a physics-based model for self-stabilizing self-assembly
(Section IV-C). The third part describes the simulation soft-
ware (Section IV-D) as well as data analysis techniques
(Section IV-E).

A. Self-stabilizing TBSA principle

Section III revealed that reducing net tile force ~Fnt is the
key to increasing the assembly size. Eq. (6) suggests that
this increase can be achieved by decreasing the magnitude
of the acceleration of agitation, ‖~ant‖. Such an approach is of
limited use because decreased agitation leads to deceleration
of assembly and higher error rates [20].

Fig. 3: Configuration of tile forces resulting in minimization
of the net force.

The proposed solution is more complex and results in a
zeroing of the net force on the tiles within the assembly, with
minimal impact on the assembly process.

To minimize the net tile force ~Fnt directly, we propose
a TBSA system that incorporates not only tile types, glues,
seed, and temperature, but also a set of rules describing tile
movements during the assembly through time. This system
employs a circular reactor with a cross-shaped seed fixed in
the center (an L-shaped seed in a square reactor would also

Fig. 4: Illustration of a tile with a bristle-bot drive placed
onto a vertical shaker.

be permissible), and we consider that the motion of the freely
moving i-th tile follows an extended unicycle model [24]

ẋi(t) = u(t)ai cos(φit) + xdi(t), (7a)
ẏi(t) = u(t)bi sin(φit) + ydi(t), (7b)

φ̇i(t) = u(t)ωi + φdi(t). (7c)

Here xi, yi, and φi represent the rigid-body translations and
rotations of the i-th tile, the superimposed dot represents
the time derivative; ai, bi, and ωi are i-th tile parame-
ters; xdi, ydi, and φdi represent inter-tile interactions; and
u(t) ∈ [−1, 1] is a periodic function accounting for external
excitation.

Moreover, we assume that the tiles are grouped into two
distinct families, each sharing the same set of parameters
ai, bi, and ωi. At the same time, the parameters for both
tile families have opposite signs, so their motion occurs in
opposite directions.

Now, assuming that both tile families contain the same
number of tiles, the net tile force ~Fnt will converge to zero
as the assembly grows. On the other hand, the net glue
force ~Fng will increase in time as more tiles are connected
to the seed, recall Eq. (4). Thus, the resultant ~Fnt + ~Fng

will satisfy the condition given by Eq. (2) as the size of the
assembly increases. Note that the torques depicted in Fig. 3
do not introduce any (de)stabilization effects because their
sum converges to zero. Still, they are necessary so that the
free tiles follow the unicycle kinematics that results in more
mixing of free tiles.

B. Outline of practical realization

Such self-stabilizing behavior can be reached in practice
by introducing two types of tile drives (representing two tile
families), each exerting a force in the opposite direction.
This can be achieved by combining each tile with a bristle-
bot drive, shown in Fig. 4. Bristle-bots are simple rigid-
bodied robots with bristles on their lower parts, see Fig. 4.
The bristles are placed such that they give each robot a
preferred direction of motion (linear or even curved [22])
when actuated by vertical vibrations either in the robot
body or on the surface under the robot [21]. Moreover, the
direction of motion can be controlled and even reversed
by changing the actuation mode (vibration amplitude and
frequency) [23].



Fig. 5: Physical setup of the proposed self-stabilizing frame-
work with the corresponding bristle-bot drives and the for-
ward directions of motion indicated for both tile families (di-
rection of motion can be switched to backward by changing
the actuation mode).

Therefore, our proposed setup involves a flat vibrating
surface excited by a shaker actuated by a harmonic signal
with controllable amplitude and frequency, illustrated in
Fig. 4. The individual bristles under the tile are oriented
asymmetrically, see Fig. 4, to allow the bristle-bots to exhibit
both translation and steering movements switchable accord-
ing to the excitation signal, in agreement with the unicycle
model Eq. (7). The self-assembly process takes place in a
circular reactor and is initiated starting from a cross-shaped
seed, illustrated in Fig. 5.

C. Physics-based self-assembly model

Following from the preceding discussion, the minimal
physics-based model needs to incorporate three components:
a tile body, inter-tile interactions representing glues, and a tile
drive describing the external excitation. These are discussed
directly below in more detail.

Note that this paper aims neither to exactly reproduce
the motion of bristle-bots nor to explore the behavior of
the bristle-bots. Instead, we focus on comparing the self-
assembly mechanisms from the proposed framework and our
earlier results [20], using the idealized model.

1) Tile body: Tiles are represented by rigid squares, and
the Coulomb friction model is adopted to account for fric-
tional effects between tile edges and between the tiles and the
surface upon which they move. Each tile carries glue in the
center of each edge representing a small neodymium magnet.
Magnets are placed so that their repulsive forces prevent a
tile from bonding to the seed in the wrong orientation. An
assembly illustrating the placement of magnets is in Fig. 6.

The mechanical model of a tile in the simulation solver
is characterized by the parameters listed in Table I (the
parameters were obtained by fitting simple experiments). We
used the glues based on the abstract magnetic model [14],
and, for programming purposes, we labeled the attracting
pairs of glues with numbers having opposite signs, i.e.,
{+1,−1}, {+2,−2}, and so on.

2) Magnetic force model: The magnetic field between
tiles can be determined using Maxwell equations. However,
their solution is computationally expensive when our model
runs the near- to real-time performance required for long

Fig. 6: Illustration of placement of magnets within tiles and
their function for building an assembly. View from the top.

TABLE I: Tile parameters set in the simulation solver.

Parameter Value
Tile restitution 0.2

Linear friction coefficient (tile-tile) 0.25
Linear friction coefficient (tile-floor) 0.25

Angular friction coefficient (tile-floor) 0.25
Tile mass 16 g

Tile width 3 cm
Linear damping coefficient 0.8

Angular damping coefficient 0.5

experiments. The dimensions of the magnets are relatively
small compared to tiles, and their force is close to zero
for a distance equal to one tile dimension. Thus, three or
more magnets cannot get into close contact and interact in
any meaningful way. Therefore, our model considers only
sufficiently close magnets, and the interaction force between
all pairs of glues (gi, gj) in the system is approximated as:

~F (~ri, ~rj) = p
α

(‖~rj − ~ri‖+ β)2
~rj − ~ri
‖~rj − ~ri‖

(8)

where ri and rj define the positions of magnet centers, the
parameter p equals 1 when the respective glue magnets are
in an orientation resulting in attractive force; otherwise p
equals −1. Parameters α = 0.18 Nm2 and β = 0.64 m were
determined from fitting the data obtained by measurement
of real magnet forces, see Fig. 7, using the non-linear least-
squares method.

Fig. 7: Force between two aligned magnets with respect
to their distance. The magnets in each tile are offset 0.15
cm into the tile body. This corresponds to reality because
when two tiles bind, their edges (together with magnets) are
aligned in the same orientation.



3) Tile drive: Only the tiles forming the cross-shaped
seed, see Fig. 5, are static (lacking the drive), while the others
are driven by force ~Fi. We do not model the full bristle-bot
drive dynamics, but rather replace this with a combination of
force acting in the center of a tile, and a torque, allowing the
tile to rotate, thereby allowing universal control of the motion
of a tile. To compare the proposed self-stabilizing strategy to
macroscale self-assembly and the common strategy presented
in our previous work [20, and the references therein], we
implemented two types of motion simulating the unicycle
model and a reactor shaking in a horizontal plane.

The unicycle-like dynamics of the i-th tile is achieved by
application of force ~Fi given as:

~Fi(t) = u(t)aiFmag [sin(φi), cos(φi)]
T
, (9)

where u(t) = sin(2πft) (with f representing the motion
frequency), Fmag is a constant controlling the magnitude of
the force, and φi is the orientation of a tile, recall Eq. (7).
In this case, frequency f was set to 0.1 Hz meaning that the
direction of motion was reversed every 10 s.

The torque around the z-axis is given by

T (t) = u(t)ωiTmag, (10)

where Tmag is a constant controlling the magnitude of torque.
The shaking-based motion model does not apply any

additional torque on tiles, and the force applied on a tile
is taken as

~Fi(t) = Fmag [sin(2πft), cos(2πft)]
T (11)

with f = 0.33 Hz (the reactor circumscribes its circular
trajectory every 3 s).

D. Simulation solver and its implementation

We used the Box2D real-time physics engine (https:
//box2d.org) to solve the equations of motion of the
system.1 The implementation resulted in a single-purpose
software that can simulate TBSA experiments on a physical
level. Its architecture is described in Fig. 8. The software can
be extended via engines—modules that take the simulation
state and output forces and torques into account. We used this
functionality to implement the unicycle and shaking-based
motion models and the magnetic interaction between tiles.
The software features not only a physics engine but also an
OpenGL renderer. The data collected can be analyzed offline.

E. Data analysis

The simulator was programmed to save data on an assem-
bly state for every 10 s of the running simulation. Data were
subsequently post-processed following four steps:

1) Detection of tiles which belong to the seed assembly,
2) Detection of assembly holes,
3) Comparison of the actual pattern with a ground truth,
4) Detection of errors.

1The 2D engine was chosen after a previous experience with a 3D
solver Bullet (https://pybullet.org) which was unable to guarantee
an artifact-free motion of tiles in two dimensions. Moreover, the 2D engine
offers the required performance and numerical stability.

Fig. 8: Simulation software architecture.

The three metrics we collected and analyzed were: the size
of an assembly (including errors), percentage of errors (i.e.,
number of erroneously placed tiles related to the number of
tiles in the assembly at a given time), and the percentage
of holes (i.e., number of empty spaces in the assembly
surrounded by four tiles related to the number of tiles in
the assembly at a given time).

V. RESULTS

The main goal of the experiments performed was a com-
parison of assembly performance using both the shaking-
based and our proposed approaches. We focused especially
on achievable assembly size, number of errors and the
tendency to form holes.

We performed a chessboard assembly, which required two
types of tiles (black and white) and two types of tile bonds
leading to four types of glues: ±1 and ±2, see Fig. 9. We
placed a cross-shaped seed with a size of 10× 10 tiles and
550 free tiles into a reactor with a radius of 60 cm. First,
we ran experiments with the shaking-based reactor model,
i.e., force acted on the free tiles with orbital movements of
the reactor in a horizontal plane. This model approximated
the real, orbitally-shaken reactor described and used in our
previous work [20], where the reactor body moved along a
circular trajectory. Thus, ~Fi for all the tiles Ti had the same
orientation and magnitude, following Eq. (11). Second, we
ran experiments with a periodic harmonic signal to drive the
unicycle motion model as a simulation of the proposed self-
stabilizing approach, where the forces acting on the tiles had
different sizes and directions.

After running 36 simulated experiments for both shaking-
based and self-stabilizing approaches 2, we collected and an-
alyzed the data with respect to the above-stated metrics. The
assembly size reached by shaking in a horizontal plane was
approximately 35 tiles, while the self-stabilizing approach
assembled more than 130 tiles, illustrated in Figs. 10 and 11.
Moreover, trends of the curves in Fig. 12 indicate that the
proposed approach, in contrast to the shaking-based one,
did not reach its limit, and the assembly would continue

2See the Multimedia material supplement for a video with a representative
run for both motion models. Better quality video is also available at:
https://youtu.be/75VPmPSLj3g.

https://box2d.org
https://box2d.org
https://pybullet.org
https://youtu.be/75VPmPSLj3g


Fig. 9: High-level overview of a chessboard assembling
tileset, a) cross-shaped seed for a chessboard assembly, b)
chessboard assembling tileset.

to grow if a higher number of tiles were available, albeit at
a decreasing rate.

The average percentage of errors at the end of the
experiment was significantly lower for the self-stabilizing
approach, reaching 0%, whereas the shaking-based approach
reached 0.5%, see Fig. 13, consistently with the values
reported earlier in [20]. On the other hand, the shaking-based
approach provided a lower average percentage of holes at the
end of experiment (0%) than the self-stabilizing one (1.5%),
shown in Fig. 14.

Fig. 10: Snapshots from a 3,600 s simulation of a chessboard
assembly experiment using the proposed self-stabilizing ap-
proach (unicycle motion model).

VI. CONCLUSIONS

We proposed here a novel self-stabilizing TBSA frame-
work tackling the stability issue inherent to macroscale
seeded self-assembly. The proposed approach assumes that
tiles are divided into two distinct families, and the tiles in
both families are subjected to the same magnitudes of force
and torque but act in opposite directions, thus zeroing the
assembly net force. Moreover, the direction of tiles is switch-
able from forward to backward, and switching is entirely
controlled by a single parameter (amplitude or frequency).
This introduces a tile motion model as a necessary part of
the tilesystem description.

To verify the functionality of the self-stabilizing frame-
work, we implemented a physics-based simulation of the sys-
tem, loosely based on differential bristle-bot kinematics, and

Fig. 11: Snapshots from a 3,600 s simulation of a chessboard
assembly experiment using the shaking-based approach.

compared the proposed approach to the state-of-the-art self-
assembly shaking-based agitation approach. The experiments
simulating the assembly of a chessboard pattern confirmed
a significant difference in assembly performance in regard
to error rates and maximum achievable sizes, with the self-
stabilizing approach performing better than the shaking-
based approach. This is because each assembly originating
from the shaking-based self-assembly framework eventually
reaches a limit when it detaches from the seed. An assembly
created within the proposed self-stabilizing framework is
not only unlimited in size, but its stability increases as the
assembly grows and it had a lower percentage of erroneously
placed tiles in our simulations. However, our proposed
method resulted in a higher percentage of holes in the final
assembly than the shaking-based framework.

Fig. 12: Evolution of the average assembly size and its
standard deviation.

VII. FUTURE WORK AND POTENTIAL APPLICATIONS

The next step in our research will lead to physical re-
alization of the proposed framework using a passive tile
drive. The drive will consist of an undercarriage propelling
magnetic [14] or magneto-mechanical [20] tiles we have
already developed and tested. Since our preliminary experi-
ments utilizing mechanically actuated bristle-bots indicated a
lack of reliability and repeatability, our further research will
move in the direction of actuation via a magnetic field [25].

Tackling the instability issue would enable, e.g., making a
step towards automated manufacturing of modular architec-
tured materials [26], [27], with the geometry of the modules



Fig. 13: Evolution of the average percentage of errors in the
assembly related to the number of tiles in the assembly.

Fig. 14: Evolution of the average percentage of holes in the
assembly related to the number of tiles in the assembly.

and their placement optimized for target performance. In
particular, we envisage the tiles as drives for molds represent-
ing individual modules. The tiles would self-assemble into a
desired pattern, providing a mold for fabricating a complete
product. Interested readers are referred to [10] for additional
potential application scenarios.
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