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Abstract— A novel coupled path planning and energy man-
agement problem for a hybrid unmanned air vehicle is consid-
ered, where the hybrid vehicle is powered by a dual gas/electric
system. Such an aerial robot is envisioned for use in an urban
setting where noise restrictions are in place in certain zones
necessitating battery only operation. We consider the discrete
version of this problem, where a graph is constructed by
sampling the boundaries of the restricted zones, and develop
a path planning algorithm. The planner simultaneously solves
the path planing along with the energy mode switching control,
under battery constraints and noise restrictions. This is a
coupled problem involving discrete decision making to find
the path to travel, and determining the state of charge of
the battery along the path, which is a continuous variable.
A sampling based algorithm to find near optimal solution
to this problem is presented. To quantify the efficacy of the
solution, an algorithm that computes tight lower bounds is
also presented. The algorithms presented are verified using
numerical simulations, and the average gap between the feasible
solutions (upper bounds) and the lower bounds are, empirically,
shown to be within 15% of each other.

I. INTRODUCTION

In the area of urban air mobility (UAM) and drone
delivery, many commercial ventures are considering electric
propulsion aircraft [1], [2]. Given the deficiencies in state-
of-the-art lithium-ion battery energy density and fuel cell
technology [3], [4], it is prudent to consider alternative
technologies that can help reduce our carbon footprint in the
near term. Furthermore, as the world looks for faster modes
of transportation and quicker delivery of goods, our skies will
become saturated with the noise from these drones [5]. In the
most prevalent use cases, these vehicles will operate in loca-
tions where such droning background noise is unacceptable.
A gasoline-electric hybrid aerial robotic vehicle is well suited
for UAM or drone delivery applications, where the gasoline
engine provides long endurance and electric motor facilitates
the low noise mode [6]. The perceived noise level when the
aerial vehicle is powered by electric motor is considerably
less compared to a gasoline engine [7], [8].
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In this letter, we consider a noise constrained path planning
problem for a hybrid gasoline-electric unmanned air vehicle.
We assume the robotic vehicle is equipped with a series
hybrid architecture [9], where the propellers are powered by
an electric motor that draws power from either the gasoline
engine-generator or from the battery. The gasoline engine,
when run at full capacity (maximum flow rate of fuel), can
run the motor and also charge the battery; or the engine
can be run at a limited capacity to produce only sufficient
power to run the motor. However, due to frictional losses,
it is more efficient to run at full capacity and charge the
battery to full whenever possible, and then power the motor
with the battery. Therefore, we assume that the fuel rate
is at maximum whenever the gasoline mode is chosen.
We further assume that the architecture facilitates instant
effortless switching between these two modes. The robotic
vehicles considered can make sharp turns similar to quad-
rotors, and therefore, we do not consider the kinematic
constraints.

The path planning problem involves finding a path be-
tween a pre-specified start and goal locations in the presence
of quiet zones. The aerial robot is allowed to pass through
quiet zones, however it must be powered by the electric
mode (gasoline-engine turned off) while flying above such
zones. A candidate path can be divided into several segments,
where each segment could be either gasoline or electric
mode. The cost we have considered in this letter is the fuel
cost, and therefore the objective is to minimize the length
of the segments that are traveled in gasoline mode. This
cost is appropriate for commercial applications where the
objective is to minimize the fuel consumption. However, the
framework presented here can easily modified for any other
application that aims to minimize a different objective, for
example, travel time. The decision making involves finding
the path, while simultaneously determining the switching
points from gas to electric and vice-versa. To do so, the
planner must determine the segments along the path where
the power source is the gasoline engine or the electric motor,
such that state of charge remains within the capacity limits.

To find the optimal paths, one needs to model the battery
characteristics, the rate of charge of the battery while the
robot travels in gasoline mode and the rate of discharge in
electric mode. For simplicity, in the operational limits of the
battery charge level, we assume that the rates of discharge
and recharge with respect to distance traveled are constants.
Let q(s) be the variable representing battery charge along a
path, where the parameter s represents the length of the path
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Fig. 1. An example of a feasible path for hybrid navigation

traveled, then

q′(s) =

{
−α if electric mode,
β if gasoline mode,

(1)

qmin ≤ q(s) ≤ qmax, (2)

where α and β are the rates of discharge and recharge
per unit distance traveled. This model allows for quick
evaluation of feasibility for a given state of charge at initial
and final position of a segment of the path. The path planning
algorithm we present in this paper can accommodate higher
fidelity battery models.

Toy Example: Suppose the initial charge is 80%, and final
charge level is required to be at least 50%. A feasible path
and the corresponding charge profile along the path are
shown in Fig. 1, where there exists one quiet zone, shown
in grey. The path is demarcated and shown in magenta and
green for the gasoline and electric modes, respectively. Note
that the charge profiles are linear due to the model assumed
in (1). In this example, the robot travels using the gasoline
mode and switches to electric mode before it enters the quiet
zone and continues in the electric mode throughout the quiet
zone, and switches to the gasoline mode after exiting from
the quiet zone. It is clear that the mode of the segment in the
quiet zone is electric, and the other segments could be either
gasoline or electric. The planning algorithm must chose the
modes and switching points along a path that minimizes the
total fuel cost.

Let us represent a path as a series of segments
{(vs, v1), (v1, v2), . . . (vn, vt)}. For a given path, one so-
lution approach would be to determine the charge levels
{q1, . . . qn} at the vertices {v1, . . . vn} that are feasible with
respect to the battery model, and the state of charge satisfies
(2) everywhere along the path. However, for the problem
considered in this paper, the path itself is a decision variable;
this coupling between the path planning and charge profile
planning poses a challenge.

On its own, path planning in the presence of quiet
zones resides in a continuous space resulting in an infinite
dimensional problem. Sampling the continuous space is a
popular technique used to translate the problem to a discrete
planning problem. We discretize the problem by sampling
the boundaries of the quiet zones, and generate a graph
similar to a visibility graph [10], shown in Fig. 2. We address

the discrete version of the problem by formulating the path
planning and the energy management problem on the discrete
graph. It allows us to reduce the infinite dimensional path
planning problem into a finite dimensional discrete problem.
There is a loss of optimality using this approach, however,
it yields a simplified and potentially tractable approach to
solve the coupled infinite dimensional problem. Note that,
the loss of optimality depends on the sampling intervals
along the boundaries, and therefore the loss could be made
sufficiently small with sufficiently large sampling rate. We
also develop an algorithm that produces tight lower bounds
to this problem, and thereby corroborates the quality of the
feasible solutions. The key idea to obtain this lower bound
is to partition the domain of a set of continuous variables,
that determine the state of charge at each vertex, into a set of
sub-intervals. The state of charge at these vertices is allowed
to be discontinuous, i.e. the vehicle can arrive at and exit a
vertex with different charge levels; but the two charge levels
are forced to lie in one of the sub-intervals. This problem is
relaxed compared to the original because we are allowing it
to violate the continuity of the state of charge at the vertices.

Related literature: The path planning problems are
solved using sampling based algorithms such as RRT [11],
RRT∗ [12], BIT∗ [13], road-map based search techniques
such as PRM methods [14], incremental graph search meth-
ods such as D∗ Lite [15]. Other path planning techniques
include visibility graph, Voronoi diagram based or potential
field methods [16]. There exists few results in the area of
energy aware path planning. In [17], a planning problem is
considered where a robot needs to accomplish a set of goals
while maintaining a minimum energy threshold. In [18], an
energy aware coverage planning problem is addressed, where
a robot needs to cover an area that minimizes the total energy
consumption. A planning problem to minimize energy con-
sumption in the presence of disturbances is addressed in [19].
The paper uses a model predictive approach to estimate
safety critical states, and presents a self triggering schedule
to re-plan, and is compared to periodic re-planning. Zhang
et al. addressed a route planning for a plug-in hybrid vehicle
is addresses in [20] that minimizes energy consumption. The
authors addressed the coupled routing problem that aims to
simultaneously optimize the decision making for path and
the power management.

The problem considered in this paper addresses the path
planning problem for a hybrid aerial robot, in the presence
of (noise-)restricted zones. Here, we aim to optimize the
travel cost for a robotic vehicle that can switch between
two different modes. To the best of our knowledge, a path
planning that allows a robot to switch between travel modes,
with constraints on the modes in certain regions, has not
addressed before in the literature. The application of this
novel problem to urban air mobility and drone delivery is
of particular relevance and deserves attention. In sampling
based and incremental search techniques, a tree is iteratively
constructed by following a sampling procedure. To deter-
mine the switch points along the path while simultaneously



growing the tree is not possible without decoupling the path
planning and energy management problems. The novelty
of the proposed algorithm lies in addressing the coupled
problem that involves path planning and energy management.
Moreover, the presented technique facilitates computation of
the lower bound to the optimal solution, which ratifies the
quality of the feasible solutions produced.

The main contributions of this work are: (i) we present
a novel path planning and energy management problem for
a hybrid robot suited for an urban air mobility application,
(ii) we formulate the coupled problem on the discrete graph
that involves discrete decision making for the path, and con-
tinuous variables for the state of charge along the path, (iii)
we present a sampling based approach to find near optimal
solutions, (iv) we develop a partitioning algorithm to find
tight lower bounds to the optimal solution, (v) we validate
the presented algorithms using numerical experiments on
some benchmark areas of operation.

The rest of the paper is organized as follows. In Section II,
a graph is constructed by sampling the boundaries of the
quiet zones, and the hybrid path planning is defined on this
graph. The algorithms to compute near optimal solutions and
tight lower bounds using sampling and partitioning approach,
respectively, are presented in Section III. The algorithms
presented were tested using computational experiments, the
results are presented in Section IV, and some concluding
remarks are provided in Section V.

II. PROBLEM FORMULATION

Before formalizing the problem, we define the graph, Gs
using Algorithm 1, which takes as inputs the start and goal
locations, vs and vt, a set of quiet zones, O, and a sampling
interval, δL. The boundaries of each quiet-zone are sampled
uniformly by choosing a point at every δL units of distance.
The vertex set, Vs, is built by creating a vertex corresponding
to these samples, the start and goal positions (steps 4–6
of Algorithm 1). An edge is added if the two vertices are
visible1; note that, the edges between the vertices that belong
to the same quiet zone are added too (step 8). The edge set
consists of edges both inside and outside the quiet zones.
The sampled graph of the example problem is shown in
Fig. 2. The dotted lines inside the quiet zone represent the
feasible segments of the path, where the mode of travel is
restricted to electric. Though we consider only the polygonal
quiet zones in the examples, this method directly applies to
non-polygonal quiet zones too. For non-convex shapes, one
may consider convex-hull as done in [21], and generate the
graph. If one needs to consider obstacles along with quiet
zones, it is sufficient to add the vertices of the obstacles to
Vs, and corresponding edges that does not intersect with the
obstacles.

We formulate and solve the path planning and energy
management problem using the sampled graph, Gs(Vs, Es).
With this approximation, the path planning reduces to finding

1Two vertices are considered visible if the straight line connecting them
does not intersect with any other quiet zones.

vs vt

Fig. 2. A graph generated by sampling the boundaries of the quiet zones.

an ordered sequence of nodes Sp := {vs, vs1 , . . . vsk , vt} on
graph Gs along with the state of charge of the battery at
each of these nodes, {qs, qs1 , . . . , qsk , qt}. Let vl indicate
the lth node in Sp. The following must hold for Sp and the
corresponding battery charge at each node vl ∈ Sp: (i) the
state of charges, qsl , qsl+1

on every edge (vl, vl+1) ∈ Sp
satisfies the battery dynamics (1) and (2), (ii) the segments
of the path in the quiet zones are in electric mode, (iii) the
state of charge of the battery at the terminal node is greater
than a specified value, qgoal, and (iv) the total cost of travel
is minimized. The cost we aim to minimize is the total fuel
consumed while traveling in gasoline mode. Therefore, each
edge has a zero cost if it is traveled completely in electric
mode.

Algorithm 1 Construction of the sampling graph
1: function SAMPLINGGRAPH(vs, vt,O, δL)
2: Vs ← INITIATENODESET()
3: Es ← INITIATEEDGESET()
4: Vs ← Vs ∪ {vs, vt}
5: for Oi ∈ O do
6: Vs ← Vs ∪ DISCRETESAMPLING(Oi, δL)

7: for vi, vj ∈ Vs do
8: if CHECKEDGEFEASIBILITY(vi, vj) then
9: Es ← Es ∪ (vi, vj)

10: Gs ← CREATEGRAPH(Vs, Es)
11: return Gs

Let I := {1, . . . , |Vs|} be the set of indices of the vertices
in Vs. For any i, j ∈ I , let xij denote the binary variable
such that xij = 1 if an edge (vi, vj) is chosen to be on the
path, and xij = 0, otherwise. Given the states of charge of
the battery qi and qj at the vertices vi and vj , respectively, let
cij(qi, qj) be the cost of travel from vi to vj . Let x represent
a matrix of all binary variables, and X be the set of all
feasible paths from vs to vt in Gs. The optimization problem,
P1, is stated as the following.

P1 : min
x∈X ,qk∈[qmin,qmax],∀k∈I

∑
i,j∈I

xijcij(qi, qj) (3)

In the following sections, we present the algorithms that
simultaneously optimizes the two sets of variables, x and
{qi, i ∈ Vs}. The approach involves sampling of the state
of charge at every vertex in Vs, constructing a graph
Gu(Vu, Eu), and solving a shortest path problem on this
graph; the solution to the shortest path problem on Gu



produces a feasible solution (upper bound to optimal so-
lution) to P1. For a given map with quiet zones, the con-
struction of the base graph without the start and goal can
be done offline. We only need to add the start and goal
vertices and corresponding edges to compute the shortest
path, which significantly reduces the online computation
time. We also present a partitioning approach, similar to the
upper bounding algorithm, that produces tight lower bounds.
In this way, we provide both upper and lower bounds to
the optimal solution and hence the gap between the two is
the maximum gap between the optimal and feasible (upper
bound) solutions.

III. TECHNICAL APPROACH

The algorithms to compute the upper bounds and lower
bounds follow a method similar to Algorithm 1 of creating
nodes and edges. These algorithms sample and partition the
state of charge at each vertex in Vs. In the upper bounding
algorithm, the state of charge at each vertex is uniformly
sampled, creating a new node for each sample of state
of charge at each vertex. In contrast, the lower bounding
algorithm partitions the feasible interval of state of charge
into small sub-intervals and builds a graph where each node
represents a sub-interval of the state-of-charge at each vertex
in Vs. This partitioning approach is similar to that found in
[22]–[25]. For coupled optimization problems involving both
discrete and continuous variables, this approach is found
to produce tight lower and upper bounds, and therefore
guarantees the quality of the upper bounds with respect to
the optimal solution.

A. Feasible Solution (Upper bounds)

In problem P1, at any vertex vk ∈ Vs \ {vs, vt}, the
charge qk is a continuous variable and qk ∈ [qmin, qmax].
To compute near optimal feasible solutions, for every vk ∈
Vs \{vs, vt}, we chose a discrete set of values, Qku, sampled
uniformly in the interval [qmin, qmax]. Such a sampling
procedure transforms P1 into the discretized problem P2

below:

P2 : min
x∈X ,qk∈Qk

u∀k∈I

∑
i,j∈I

xijcij(qi, qj). (4)

By construction, any solution to P2 is a feasible solution to
P1. To solve P2, we construct a graph Gu(Vu, Eu), where
the set of nodes, Vu, consists of all nodes corresponding to
every combination of vk ∈ Vs \ {vs, vt} and qk ∈ Qku. One
can choose the discrete set Qku to be the same for every node
vk, and let it be Qu. For the start node, there is only one
value (vs, qinit), and the feasible charges for the goal node is
sampled from the set [qgoal, qmax]; denote this set of charges
as Qgoal. Then Vu contains the Cartesian product of the sets
Vs \ {vs, vt} and Qu, and the nodes corresponding to the
start and goal nodes, that is Vu := {Vs \ {vs, vt} × Qu} ∪
{(vs, qinit)} ∪ {{vt}×Qgoal}. An illustration of the graphs
Gs and Gu is shown in Fig. 3(a) and 3(b).

For any nodes, vl ∈ Vu, let the position corresponding
to the node vl be pl and state of charge of the battery,

ql. We check if a feasible edge exists between a pair of
nodes that complies with the battery dynamics (1), and
compute the cost of such edge if it exists. For a given pair
of nodes vui

, vuj
∈ Vu, where vui

= (vi, qi), vuj
= (vj , qj),

Algorithm 2 checks if edge (vui
, vuj

) is feasible with respect
to the battery dynamics. The algorithm returns the cost of the
corresponding edge as zero if the travel mode is completely
electric. Notice that the gasoline engine runs at full capacity
whenever it is turned on, and therefore it is sufficient to find
the length of the segments that are traveled in gasoline mode
to evaluate the cost. If an edge is traveled in both gasoline
and electric modes, the algorithm computes the distance
traveled in gasoline mode, λdij , and returns the fuel cost
of travel, cfλdij , where cf is cost of fuel per unit distance
traveled.

Algorithm 2 Evaluation of an edge
1: function SOCFEASIBILITY(vui , vuj )
2: dij = |position(vui

)− position(vuj
)|

3: if qj > min(qmax, qi + βdij) then
4: FeasCheck ← false
5: else if qi − αdij > qmin & qj ≤ qi − αdij then
6: FeasCheck ← true . electric mode
7: λ← 0
8: else . partly gasoline/electric
9: λ1 ← (qmax − qi)/(β ∗ dij)

10: λ2 ← (qmax − qj)/(α ∗ dij)
11: if λ1, λ2 ≥ 0 & λ1 + λ2 ≤ 1 then
12: λ← λ1 + ( α

α+β ) ∗ (1− λ1 − λ2)
13: else
14: λ← qj−qi+αdij

(α+β)dij

15: if 0 ≤ λ ≤ 1 then
16: FeasCheck ← true
17: if FeasCheck then
18: cost← cfλdij . fuel cost

return FeasCheck, cost

Algorithm 2 checks if “all electric” mode is feasible in
step 5. The variable λ indicates how much of the edge is
traveled in gasoline mode. When an edge is traveled in partly
gasoline and partly electric mode, without loss of generality,
we assume that the robot travels in gasoline mode first and
then switches to electric. Further, we allow a maximum of
three switch points on an edge. When an edge is sufficiently
long, more than three switch points might be necessary;
however, such cases can be accommodated by breaking the
long edge into smaller edges by introducing artificial vertices.
If an edge is traveled using both modes, the value of λ
is computed in steps 9–14, and the corresponding cost is
computed in step 18.

To solve the problem P2, we construct graph Gu(Vu, Eu),
such that a shortest path on this graph produces a solution to
the problem P1. The pseudocode of the algorithm that solves
P2 is presented in Algorithm 3. The problem prescribes a
state of charge of the robot at the start, and therefore we can
create a node, vus

, correspondingly, and add to Vu, shown



in step 6. In step 7, the discrete set, Qu, is obtained by
sampling the interval [qmin, qmax]. In steps 9–10, for every
combination of (vi, qj), vi ∈ Vs\{vs, vt}, qj ∈ Qu, we create
a node and add to Vu. A minimum state of charge, qgoal, is
required at the goal position, and to satisfy that, we sample
uniformly in the interval [qgoal, qmax], and create the set of
nodes, Vgoal (shown in step 12), that correspond to the goal
position and a state of charge qj ∈ Qgoal. In steps 14–19,
we construct the set of edges, Eu, by adding an edge for
every pair of nodes in Vu, if Algorithm 2 returns a feasible
solution; the costs returned by the algorithm are set as the
weights of those edges. Note that there could be multiple
nodes in Vgoal, that correspond to the goal position, and
satisfy the minimum charge required at goal. Therefore, any
path from vus to a node in Vgoal is a feasible path. To find
the minimum cost path, we add an another node vut

, that
corresponds to the goal, and add zero cost edges between
all nodes in Vgoal and vut

, shown in steps 20–22. Finally,
we use Dijkstra’s algorithm to find the optimal shortest path
from vus to vut in step 24. The time complexity of Dijkstra’s
algorithm is O(|Vu|2), and it returns the minimum cost path
on the graph Gu. The trajectory for the robot is constructed
using the position of the vertices in the shortest path.

Algorithm 3 Construction of the graph, Gu
1: function SAMPLINGGRAPHG(Gs, δq)
2: Vu ← INITIATENODESET()
3: Eu ← INITIATEEDGESET()
4: vus

← CREATENODE(vs, qinit)
5: vut

← CREATENODE(vt)
6: Vu ← Vu ∪ {vus

}
7: Qu ← DISCRETESAMPLING([qmin, qmax], δq)
8: Qgoal ← DISCRETESAMPLING([qgoal, qmax], δq)
9: for vi ∈ Vs, qj ∈ Qu do

10: Vu ← Vu ∪ CREATENODE(vi, qj)

11: for qj ∈ Qgoal do
12: Vgoal ← Vgoal ∪ CREATENODE(vt, qj)

13: Vu ← Vu ∪ Vgoal
14: for vui , vuj ∈ Vu do
15: if CHECKEDGEFEASIBILITY(vui , vuj ) then
16: feas, cost← SOCFEASIBILITY(vui

, vuj
)

17: if feas then
18: Eu ← Eu ∪ (vui

, vuj
)

19: cij ← cost
20: Vu ← Vu ∪ {vut

}
21: for vuk

∈ Vgoal do
22: Eu ← Eu ∪ (vuk

, vut
)

23: Gu ← CREATEGRAPH(Vu, Eu)
24: pathu ← SHORTESTPATH(Gu, vus

, vut
)

25: return pathu

The algorithm returns the shortest path, pathu, which is
comprised of a series of nodes {vs1 , . . . vsp}, and each of
these nodes correspond to the vertices in Vu. This series
of vertices in Vu is the path taken by the robot. The states
of charge corresponding to each of the nodes in pathu are

the charges at corresponding vertices in Vu. The feasibility
check in step 16 of Algorithm 3 ensures the feasibility of
the whole path. Since, the weight of each edge is the cost
of travel in gasoline mode, the shortest path is the path of
minimum fuel cost. The optimal solution of P2 is a feasible
solution to P1, but may not be optimal due to the discrete
sampling. A tight lower bound could corroborate the quality
of a feasible solution, and an algorithm to compute tight
lower bounds is presented in the next section.

(a) Graph constructed by sampling the boundaries of the quiet zones

(b) Gu(Vu, Eu) obtained by sampling charge at every vi ∈ Vs

(c) Graph Gl(Vl, El) obtained by partitioning charge into sub-
intervals

Fig. 3. Graph construction to compute the upper bounds and lower bounds
to P1

B. Lower Bounds

To compute lower bounds, it is a common practice to relax
a set of constraints and the optimal solution of the resulting
relaxed problem gives a lower bound to the original problem.
The Held-Karp bounds for traveling salesman problem [26],
is a good example of this technique. In recent work, for
coupled problems involving discrete and continuous deci-
sion variables, a technique was developed where a set of
constraints are relaxed, and another set of ‘loose’ constraints
are added, such that it produces tight lower bounds. This
was shown to produce very tight lower bounds for routing
problem with turn radius constraints [23], [24] and for
neighborhood traveling salesman problem [25]. The problem
in this paper is also a coupled problem; and we develop an
algorithm using a similar idea of partitioning the continuous
decision variables, that produces tight lower bounds.



To compute the lower bound, we pose a relaxation of the
problem P1. Any feasible solution to P1 would be given as
a sequence of nodes {v1, . . . vp}, and a state of charge at
each of these nodes, {q1, . . . qp}. The continuity of the state
of charge dictates that at any intermediate node vj along the
path, the state of charge at the end of prior edge is same as
the state of charge at the beginning of the following edge.
For example, if a feasible solution contains two successive
edges, (vi, vj) and (vj , vk), let qeij be the charge at the end
of edge (vi, vj), and qsjk be the charge at the start of edge
vjvk. The position of the end of the edge (vi, vj) is same as
the start of the edge (vj , vk); therefore, the continuity of the
charge profile dictates that qeij = qsjk. We relax this continuity
constraint and allow qeij and qsjk to be different but we restrict
them to lie in an interval, i.e., qeij , q

s
jk ∈ (qp, qp+1). We refer

to this relaxed problem as P3. Since, this is a relaxation
to P1, every feasible solution to P1 is also feasible to the
relaxed problem P3. Therefore, the optimal solution of P3

is a lower bound to the optimal solution of P1.
To this end, at every node, we partition the feasible interval

of state of charge into nl sub-intervals. At the vertices
vi ∈ Vs \ {vs, vt}, the set of intervals would be Qil =
{[qmin, q1], [q1, q2], . . . [qnl−1, qmax]}. At the goal node, the
minimum charge required is qgoal, and therefore the intervals
would be {[qgoal, q1], . . . [qng−1, qmax]}, for some ng . Let q̄i
represent an interval of states of charge at a node vi. Now
the relaxed problem P3 is stated as follows:

P3 : min
x∈X ,q̄k∈Qk

l ,∀k∈I

∑
i,j∈I

xijcij(q̄i, q̄j). (5)

We solve P3 by constructing a graph, Gl(Vl, El), similar
to the Gu(Vu, Eu). The nodes in Vl are the combination of
the vertices vi ∈ Vs and the intervals q̄j ∈ Qjl . For a pair of
nodes vli , vlj ∈ Vl, let (qik, q

i
k+1) and (qjm, q

j
m+1) be the cor-

responding charge intervals. The cost of the corresponding
edge in El is the minimum cost of the edge,

min
qi∈(qik,q

i
k+1),qj∈(qjm,q

j
m+1)

cij(qi, qj). (6)

Due to the linear battery dynamics, this cost could be found
by using Algorithm 2 with the upper limit of the interval
at the first node, and lower limit of the interval at the
second node, qik+1, q

j
m. The graph construction of Gl(Vl, El)

is similar to the one presented in Algorithm 3, however it
differs only in two aspects: (i) in steps 7–8, the discrete
sampling is replaced with continuous partition of the interval
[qmin, qmax] and [qgoal, qmax], respectively, and (ii) the edge
cost, in step 16, are assigned using the solution of (6).
Similar to the steps 10, 12 of Algorithm 3, nodes are created
corresponding to a combination of vertices vi ∈ Vs and
intervals q̄j ∈ Qil . The rest of the graph construction goes
similar, and therefore, to avoid the repetition, we do not
present the pseudocode for the lower bounding algorithm.
An illustration of the construction of the graphs Gu and Gl
is shown in Figs. 3(b) - 3(c). In the following theorem, we
formally prove that the optimal solution to P3 is a lower
bound to the optimal solution of P1.

Theorem 1. The optimal solution of P3 is a lower bound to
the optimal solution of P1.

Proof. It is sufficient to show that every feasible solution
to P1 is also a feasible solution to P3, and the cost of
the solution to P3 is less than or equal to the cost of
the solution to P1. Let Vfeas := {vs, vs1 , . . . vsp , vt} be
the sequence of vertices in a feasible solution to P1, and
Qfeas := {qs, qs1 , . . . qsp , qt} be the corresponding states
of charge at those vertices. For each vertex vk ∈ Vfeas
and the corresponding state of charge qk, there exists an
interval q̄k ∈ Qkl , such that qk ∈ q̄k. Construct a path in Gl
by identifying the nodes corresponding to vk and q̄k. This
gives a feasible path from vls to vlt in Gl, and let V lfeas
be the sequence of nodes. The cost of each edge between
successive nodes in V lfeas is less than or equal to the cost of
corresponding edge in Vfeas due to (6), and thus cost of the
path in V lfeas is less than or equal to the one in Vfeas.

IV. COMPUTATIONAL RESULTS

To evaluate their performance, we have tested the algo-
rithms to compute the upper bounds and the lower bounds
using several scenarios constructed from randomly generated
maps and benchmark maps. Since the problem of path
planning in the presence of obstacles is closely related to
the problem we consider, we use previously established
benchmark maps [27] to test our methods. We constructed
the maps by randomly generating polygonal restricted zones,
where the centers of the polygons are sampled from an
uniform distribution. The number of sides are also randomly
generated for each restricted zone. There are 10, 15, 20
and 25 restricted zones in map1, map2, map3 and map4,
respectively. We have constructed two more maps using
the benchmark instances ‘boston2’ and ‘newyork0’ from
[27]. These are based on real world maps of a region in
the cities Boston and New York; we identified the regions
directly above the buildings as restricted zones, and they are
appropriate for drone delivery applications as discussed in
Section I. An interested reader can access the Julia code to
extract the buildings from the OpenStreetMaps data from
https://github.com/manyamgupta/HybridPathPlanning.git.

We have generated 50 scenarios with each of the above
maps, where the start and goal positions are chosen from
a random distribution such that the straight line distance
between them is greater than a specified limit. Further, the
instances are run with different levels of discretization of
the states of charge. The rate of discharge, α, and the rate of
recharge, β are chosen such that the ratio α

β is equal to two,
i.e., the battery discharges twice as fast as the it recharges
per unit distance traveled.

In Fig. 4(a), a path of the feasible solution is shown for
a scenario generated in the ‘newyork0’ map, and the charge
profiles of the feasible path and the lower bound are shown
in Fig. 4(b). We consider no-fly zones in this scenario, shown
in red, and were addressed as explained in Section II. The
vertical lines are the positions of the vertices in Fig. 4(b),
and one may observe the charge profile is not continuous for

https://github.com/manyamgupta/HybridPathPlanning.git


(a) Solution produced by Algorithm 3

(b) Charge profile of the path

Fig. 4. Results of a scenario generated in the ‘newyork0’ map with 35
quiet zones

the lower bound path. This is expected due to the relaxation
of the charge continuity, and the resulting solution is a lower
bound, rather than a feasible solution. For this scenario, the
cost of the feasible path produced by Algorithm 3 is 5318
and the lower bound is given as 5137, therefore, the gap
between upper bound and lower bound is around 3.5%. This
infers that the feasible solution is within less than 3.5% from
the optimal solution.

The percent gap between the lower bounds and upper
bounds is a measure of the quality of the feasible solutions.
This is the maximum gap between the feasible solution
and the optimal solution. For each of the maps, there are
50 scenarios, and each scenario is solved with 20, 30 and
40 discretizations. The box plot of the percentage gap is
shown in Fig. 5(a). Clearly, with higher sampling rate,
the algorithm produces better solutions as evident from the
reducing gap with higher discretizations. The maps Boston
and New Y ork have a few quiet zones with very small
edges, and because of these, the lower bound graph consists
of many zero cost edges. For example, let [qa, qb] be the
charge interval corresponding to the vertices vk and vl in
Gl. If the charge required to travel on the edge (vk, vl) is
less then qb− qa, this edge can be on a path with zero cost,
and have same charge at the start and end of the edge. This
resulted in loose lower bounds, and hence the higher gap.
However, the algorithm produces tighter lower bounds by
choosing sufficiently large number of sub-intervals nl while
constructing the graph Gl. But, this comes at a higher cost in
computational time required. The computation time required
to find the upper bounds and lower bounds are shown as
box and whisker plots in Figs. 5(b) and 5(c). The higher

computation times for the Boston and New Y ork maps is
due to the higher number of quiet zones.

A significant part of the computational effort in Algorithm
3 is spent constructing the graph Gu(Vu, Eu). However,
for UAM applications the restricted zones, start and end
locations are know a priori and can be computed ahead
of time. For other applications, like package delivery, the
restricted zones and the problem parameters are known a
priori, but the positions of the start and goal may not be
known. In practice, one may construct the parts of the graph
Gu(Vu, Eu) offline without the nodes corresponding to the
start and goal position, and edges incident on them. And
when the robot’s start and goal positions are specified, the
corresponding edges of the graph could be constructed and
added to the graph with Algorithm 3. Therefore, to validate
the feasibility of online implementation of this algorithm, it
is sufficient to analyse the computational effort of the online
part. The online computation time required by Algorithm 3
is shown in Fig 5(b). Though the effort required increases
with higher number of restricted zones and higher sampling
rate, it is still in the order of seconds, and therefore, is viable
for on-board implementation.

To evaluate the cost savings from the proposed framework,
we solved the related but different path planning problem
where the quiet zones are considered to be no-fly zones (i.e.,
feasible paths must completely avoid the quiet zones). This
is done by removing the quiet zone edges from the graph
Gu, and solving for the shortest path thereafter. Note that,
we still consider the hybrid mode of the robotic vehicle, and
the switching between the gasoline and electric mode still
exists. If we were to restrict this to gasoline mode only, the
savings would be much larger. The percentage reduction in
cost using Algorithm 3 is presented in Fig. IV. The cost
savings are around 5 to 10% for most cases, with some
cases having much higher savings. This large variance is
due to the randomly generated start and goal locations; the
cost reduction depends on the difference in length between
the shortest path that avoids the “no-fly zones” and path
generated from our work that passes through the restricted
zones.

V. CONCLUSIONS

A novel hybrid path planning problem that arises from
urban air mobility is presented. In this path planning prob-
lem, the hybrid vehicle is required to run in electric mode
in certain regions to comply with noise restrictions. The
path planner needs to generate a path and schedule for
switching between gasoline and electric modes. Algorithms
based on sampling and partitioning are presented yielding
upper and lower bounds to the coupled path planning and
energy management problem. The paper assumes a linear
battery model, but a higher fidelity model could be easily
integrated with the algorithms presented here. The solutions
produced by the presented algorithms are empirically shown
to yield upper and lower bounds that are within 15% of
one another, indicating that the feasible solutions are of high
quality.



(a) Average of percent gap between upper and lower bounds

(b) Online computation time required for upper bound

(c) Computation time required for lower bound

Fig. 5. Computational results from benchmark and random maps

Fig. 6. Percentage cost reduction compared to path planning that avoids
quiet zones

As a future research direction, one may develop an it-
erative scheme to compute lower bounds that refines the
partitioning in each iteration only where it is necessary, and
thus overcome the cost of higher sampling. Another direction
of future research includes the adaptive sampling of the
boundaries of the quiet zones that chooses higher number
of samples on the boundaries that are more likely to be on
the path.
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