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Abstract— In this paper, we tackle the problem of planning
an optimal coverage path for a robot operating indoors. Many
existing approaches attempt to discourage turns in the path by
covering the environment along the least number of coverage
lines, i.e., straight-line paths. This is because turning not only
slows down the robot but also negatively affects the quality
of coverage, e.g., tools like cameras and cleaning attachments
commonly have poor performance around turns. The problem
of minimizing coverage lines however is typically solved using
heuristics that do not guarantee optimality. In this work, we
propose a turn-minimizing coverage planning method that com-
putes the optimal number of axis-parallel (horizontal/vertical)
coverage lines for the environment in polynomial time. We do
this by formulating a linear program (LP) that optimally parti-
tions the environment into axis-parallel ranks (non-intersecting
rectangles of width equal to the tool width). We then generate
coverage paths for a set of real-world indoor environments and
compare the results with state-of-the-art coverage approaches.

I. INTRODUCTION

Coverage path planning is an automation challenge in
which a robot must find an optimal path such that its tool
or sensor covers the entire environment [1]. This problem
has a wide range of applications, including cleaning [2],
agriculture [3], visual inspection [4]–[6], and more recently,
autonomous disinfection of hospitals during the COVID-19
pandemic [7]. The primary objective in coverage planning
is to minimize overlap or “double” coverage. This is typ-
ically achieved through a lawnmower-style path consisting
of parallel non-overlapping coverage lines. Thus, the main
differentiation between coverage plans is the transitions
between these lines, where the robot performs little to no
additional coverage. This has resulted in a growing body of
work focused on minimizing turns, i.e., minimizing the time
spent transitioning between coverage lines. Turns also have
the following adverse effects: (i) the robot travels slower
around turns which increases total coverage time, (ii) in
cleaning applications, the tool does not properly pick up
water and dust while turning, and (iii) in sample retrieval
applications, the robots may experience high pose estimation
errors and poor sensor coverage quality during turns [8].

Coverage planning with minimum turns is however an NP-
Hard problem [9]. As such, a common solution framework
is to simplify the problem into three steps:
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Fig. 1: (a) An example environment and (b) its optimal rank
partitioning obtained using the proposed OARP method: the orange
partitions are horizontal ranks and the purple are vertical ranks.

(i) decompose the environment into sub-regions or cells,
(ii) use the cells to help place coverage lines (straight-line

paths) in the environment, and
(iii) construct the coverage path by computing a tour of the

coverage lines.
For example, exact decomposition methods like [10] decom-
pose the environments into convex cells, each of which is
covered by a lawnmower-style path. Following this frame-
work, the robot only turns when transitioning from one
coverage line to another. As a result, the number of turns
in the path is often reduced by minimizing the number of
coverage lines.

A state-of-the-art method which follows this general
framework is Vandermeulen et. al. [11], where they aim to
cover the environment along a minimum number of axis-
parallel (horizontal/vertical) coverage lines. Such a method
is particularly well suited for indoor environments, in which
many walls are either parallel or orthogonal. Their method
decomposes the environment into cells, which are then used
to partition the environment into ranks, i.e., thin disjoint
rectangles of width equal to the robot’s tool width, where the
center line of each rank along its length defines a coverage
line. However, to solve the partitioning step, the authors
propose an iterative heuristic with no optimality guarantees.
In this paper, we propose a coverage planner that follows
the above framework and plans axis-parallel coverage paths
with theoretical guarantees and with better performance.

Contributions: Our specific contributions are as follows:
1) We prove that the axis-parallel rank partitioning prob-

lem is tractable and propose a polynomial-time solver
that is guaranteed to find the optimal partition. We
do this by posing the problem as a mixed integer
linear program (MILP) and then proving that the linear
relaxation provides optimal solutions.

2) We develop the Optimal Axis-Parallel Rank
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Partitioning (OARP) method that leverages the
above solver and plans a coverage path for non-convex
environments.

3) We present experimental results using maps of real-
world environments and show that OARP outperforms
the state-of-the-art method from [11] in minimizing the
decomposition time, number of ranks, number of turns,
and consequently the cost of the coverage plan.

Related Work: Apart from [11], there are coverage plan-
ning methods in the literature that follow the same frame-
work. Detailed surveys of such coverage planning methods
can be found in [1] and [12]. One category of approaches
is exact decomposition, where the environment is directly
decomposed into (usually convex) cells without any prior
approximation. Boustrophedon [10] is a widely used method
of this category, where each cell is individually covered in
a back-and-forth sweeping pattern along parallel coverage
lines. There are also turn-minimizing variations of bous-
trophedon which aim to minimize the number of turns to
cover each cell by determining a locally optimal coverage
orientation for the cell. These methods use different criteria
to determine a cell’s orientation: by analysing the geometry
of each cell [8], [13], [14] or its convex hull [15], or
minimizing a cost function that models the robot’s turns [16].
While these variations work well to incorporate multiple
coverage directions to minimize turns, cell decomposition
can be time-intensive for complex real-world environments.
Also, these approaches do not guarantee that the total number
of turns in the path is minimized. In this paper, we address
these shortcomings by creating an optimal axis-parallel rank
partition of the environment that implicitly minimizes the
total number of turns without incorporating complex cell
decomposition.

Another category of approaches, referred to as grid-based
approaches, involve decomposing the environment into a
set of uniform grid cells, where the robot must cover all
accessible grid cells. Grid decomposition approximates the
environment’s boundary and obstacles and captures the areas
coverable by the tool. Our proposed approach falls under
this category. The shape of the grid cells is usually a
square [17] but there are approaches that use hexagons [18].
Coverage planning for a grid environment can be solved
by generating a spanning-tree of the grid cells [19] to find
minimum length paths. A tour of the grid cells can also be
obtained by solving the Travelling Salesman Problem (TSP)
to generate a coverage plan [12]. Recently, learning-based
coverage planning methods have also been introduced to
solve this problem [20]–[23]. These approaches however do
not minimize the number of turns while our proposed method
does.

Organization: In Section II, we define our decomposition
approach and introduce the rank partitioning problem. In
Section III, we formulate this problem as a Mixed Integer
Linear Program (MILP) and then prove in Section IV that
this problem can be relaxed to an LP and optimally solved
in polynomial time. In Section V, we briefly discuss how we
compute a tour of the ranks using a Generalized Travelling

Fig. 2: An Integral Orthogonal Polygon with light squares repre-
senting the polygon and grey areas representing the boundaries and
holes. Each grid cell is as wide as the coverage tool.

Salesman Problem (GTSP) solver to obtain the full coverage
plan. In Section VI, we present our experimental results on a
set of real-world environments and compare the performance
of our algorithm with the method proposed in [11].

II. PROBLEM DEFINITION

In this section, we provide a brief background on coverage
planning and introduce a simple decomposition of the envi-
ronment to tackle turn-minimization. Finally, we define the
partitioning and touring problems which we will be solving
in the rest of the paper.

A. Coverage Planning Problem

Consider a closed and bounded set W ⊆ R2 representing
all points within the boundaries of our 2D indoor environ-
ment. Let O ⊂ W denote the set of obstacles or inaccessible
points in W . The set W̃ = W \ O therefore contains
all accessible points in the environment. The goal of the
coverage problem is to plan a path so that the robot’s tool
covers all accessible points in the given environment. The
feasibility of this problem however depends on the tool’s
footprint, which we represent as A(ω) ⊂ R2 relative to the
robot’s position ω ∈ R2. Conventionally, A(ω) is represented
by a simple geometric shape such as a square of a fixed width
l > 0 centered at ω [1], [9], [11], [19].

Assumption 1. The coverage tool is a square with width l.

The square tool may not be able to cover the environment
entirely as there will likely be coverage gaps near the
boundaries. Let Ŵ ⊆ W̃ be the points of the environment
that can be covered by the tool. The goal of the coverage
problem is then to plan a path P ⊆ W̃ such that⋃

ωi∈P
A(ωi) = Ŵ .

B. IOP Decomposition

In this paper, we look at an extension of this problem
where we minimize the number of turns in P . Following
from Assumption 1, we decompose the environment Ŵ using
a square grid and focus on paths where the tool moves
only in axis-parallel directions during coverage (horizontal
and vertical). We refer to this decomposition as an Integral
Orthogonal Polygon (IOP), which is a set of square grid cells
of size l× l [9]. Fig. 2 shows an example IOP generated for
a simple non-convex environment with one hole. Computing
the IOP representation of the environment constitutes the
decomposition step of the OARP method.



C. Minimum Rank Partitioning Problem

We now consider a partition that will help quantify the
number of potential turns in the final coverage plan. We look
at partitioning the environment into regions that will each be
covered with a straight-line path (no turns). A rank is the
cumulative footprint of the coverage tool when traversing a
straight-line path. For a square coverage tool of width l, a
rank is a rectangular region of width l.

In an IOP, the robot can perform coverage by moving its
square tool from one grid cell to another. A rank in an IOP
is therefore a series of horizontally or vertically adjacent
grid cells (e.g. Fig. 3). Since each grid cell is of the same
size as the coverage tool, a rank can be covered along a
single coverage line (straight-line path) with endpoints at the
centers of grid cells. We can thus define the main problem
of this paper as follows.

Problem 1 (Minimum Rank Partitioning Problem). Given
an IOP representation of Ŵ , compute a partition of the IOP
into the minimum number of axis-parallel (horizontal and
vertical) ranks.

From the rank partition determined in Problem 1, we
generate a coverage path for the environment by solving the
following problem.

Problem 2 (Tour Generation Problem). Given a set of axis-
parallel ranks (partitioning of an IOP), compute a tour of
the ranks that minimizes the total cost of transitions between
ranks.

In a tour of the ranks, the coverage tool moves from one
rank’s endpoint to another along transition paths determined
by the robot’s dynamics.

III. MILP FORMULATION

In this section, we formulate Problem 1 as a mixed integer
linear program (MILP), which involves a set of variables and
linear constraints. Consider an IOP with n grid cells, each of
which is represented by a variable ci in C = {c1, c2, . . . , cn}.
We start by introducing an operator orient(ci) ∈ {H,V }
for each grid cell ci to represent its coverage orientation
(H for horizontal or V for vertical). We also introduce a
series of variables that bound the number of ranks in the
final partition. The goal of this MILP is to compute the
orientations of grid cells that minimize the number of ranks.

Next, we use the concept of neighbouring grid cells to help
represent each rank and construct the objective function to
minimize the number of ranks. We do this by formulating
constraints that can be interpreted as a series of merges for
neighbouring cells. We call a grid cell merge-able with its
neighbour if: (i) the cell and its horizontal neighbour are
horizontally oriented, or (ii) the cell and its vertical neigh-
bour are vertically oriented. A rank is obtained by merging a
set of merge-able cells, and so the rank partition of the IOP
depends on the assigned cell orientations. Fig. 3 illustrates
the intuition of determining ranks from orientations.

Fig. 3: Illustration of merging oriented grid cells to form ranks
and the corresponding coverage lines. The cell orientations are
determined by the MILP from Section III, and the merge-able cells
are merged.

We now work towards constructing a set of operators
that count the ranks for a given set of oriented cells. The
following lemma highlights a useful relationship for this task.

Lemma 1. In any minimal rank partition, each rank ter-
minates at cells with less than two merge-able neighbours.

Proof. By definition, each grid cell in the IOP can have at
most two merge-able neighbours across an axis. Let R =
(r1, r2, . . . , rk) be an ordered set of k similarly-oriented
cells ri ∈ C representing a rank along an axis. By our
definition of R, these cells are connected in a sequential
order (r1, r2, . . . , rk).

Consider one of the endpoints of R: r1. By definition,
r1 and r2 are merge-able neighbours. Let r1 have another
neighbour rt that is covered by a rank R̃. If rt is a merge-
able neighbour of r1, then R and R̃ can be merged to a single
rank, thereby reducing the number of ranks and contradicting
the optimality of the partition. This would mean one of two
things: (i) rt does not exist, i.e., rt is a border or an obstacle,
or (ii) rt is not a merge-able neighbour. Similarly, we can
show that the other endpoint rk has only one merge-able
neighbour rk−1, which completes the proof of Lemma 1.

Given the above lemma, we can calculate the number of
ranks in an optimal partition by counting one of the two
unique endpoints of each rank. For the rest of this paper,
we only consider detecting and counting the left and top
endpoints of horizontal and vertical ranks respectively. The
choice of left and top endpoints is arbitrary and does not
effect the solution approach. To identify and count the rank
endpoints at the IOP border or holes, we add some artificial
cells next to the border cells. These cells are not assigned an
orientation, but simply indicate whether there is a rank that
has an endpoint at the border. We will refer to these cells as
border identifiers.

The following logical statements summarize how we will
constrain our endpoint counting variables. For each grid cell
ci, denoting the left and top neighbors of ci by left(ci) and
top(ci) respectively, we define our endpoint operators as
follows:

endH(ci) =


1 if orient(ci) = H and

orient(left(ci)) = V

1 if orient(ci) = H and left(ci)
is a border identifier

0 otherwise

,



endV(ci) =


1 if orient(ci) = V and

orient(top(ci)) = H

1 if orient(ci) = V and top(ci)
is a border identifier

0 otherwise

,

where endH(ci) and endV(ci) are binary operators determin-
ing if ci is a horizontal or a vertical endpoint respectively.
We now use these functions to formulate the following binary
programming problem:

min

n∑
i=0

endH(ci) +

n∑
i=0

endV(ci) (1)

s.t. orient(ci) ∈ {H,V },∀i ∈ {1, 2, .., n}. (2)

Next, we will convert the above binary programming
problem to a MILP by replacing the operators with a set
of new variables. Let us start with endH(ci) and create the
auxiliary variable yih that bounds endH(ci). The upper index
(i) of yih matches the lower index of ci. We also introduce a
set of binary variables to denote whether a cell is horizontally
or vertically oriented. For the horizontal case, we introduce
xi
h which equals 1 if orient(ci) = H and 0 otherwise. For

the left neighbour, cl = left(ci), we observe the following:

xi
h − xl

h =



1 if orient(ci) = H and
orient(left(ci)) = V

1 if orient(ci) = H and left(ci) is
a border identifier

−1 if orient(ci) = V and
orient(left(ci)) = H

0 otherwise

.

The above, along with a non-negativity constraint, gives the
following encoding of yih:

yih ≥ xi
h − xl

h

yih ≥ 0 ,

where yih ≥ endH(ci). With these constraints, we observe
that minimizing yih gives us an optimal solution where yih =
endH(ci). We now determine the values of yih for all grid
cells using the following system of vector inequalities:

yh ≥ AHxh (3)
yh ≥ 0, (4)

where yh and xh are n-dimensional vectors composed of
the variables yih and xi

h respectively. On further inspection,
AH in (3) is the node-arc incidence (NAI) matrix [24] of the
directed graph GH (see Fig. 4) composed of all horizontal
path flows for an IOP grid cell from its left neighbour/border
identifier. Similarly, we encode endV(c) using the auxiliary
variable vector yv and the NAI matrix AV of the directed
graph GV (Fig. 4).

Fig. 4: The directed graphs GH and GV for an example IOP.

Using the defined matrices and vectors, we write the
following MILP to solve Problem 1:

min

n∑
i=0

yih +

n∑
i=0

yiv (5)

s.t. AHxh − yh ≤ 0 (6)
AV xv − yv ≤ 0 (7)

xh + xv = 1 (8)
xh,xv ∈ {0, 1}n yh,yv ≥ 0, (9)

where 1 is the column vector of ones and 0 is the vector of
zeros. Eq. (8) ensures that each grid cell is assigned one of
two orientations (either xi

h or xi
v equals 1). The objective in

Eq. (5) gives us the number of ranks while xh and xv gives
us the corresponding grid cell orientations. The solution of
the MILP gives the minimum rank partition as determined
by the grid cell orientations, where we obtain the ranks by
merging all merge-able cells.

We also obtain an LP relaxation from this MILP using
Eqs. (5)-(8) and replacing the binary variables xh and xv in
(9) with continuous variables as follows:

xh,xv,yh,yv ≥ 0. (10)

Proposition 1. The relaxed LP denoted by Eqs. (5)-(8),(10)
computes an integral optimal solution and hence solves
Problem 1 in polynomial time.

IV. PROOF OF PROPOSITION 1

In general, solving MILPs is NP-hard while LPs can be
solved in polynomial time [25]. An LP relaxation of a MILP
in general will not yield optimal integral solutions. However,
our LP relaxation belongs to a special class of problems
that yield integral optimal solutions. This is mainly because
of our use of NAI matrices, which are totally unimodular
(TU) [26]. A matrix is TU if the determinants of all its
square submatrices are in {−1, 0, 1} [24]. In this section,
we prove that the matrix of all constraints in Eqs. (5)-(8),
(10) is TU. It will then follow from the Hoffman-Kruskal
Principle [27] that the relaxed LP can directly solve the MILP
in polynomial time, since our matrix is TU.

Theorem 1 (Hoffman-Kruskal Principle [27]). If an integral
matrix A is TU, then for an integral vector b, the polyhedron
{x ∈ Rn | Ax ≤ b} has integral coordinates.



Since the polyhedron has integral coordinates, the resulting
optimal solution for the LP defined in the polyhedron is also
integral.

Lemma 2. The constraints of the LP formulation in Eqs.
(5)-(8),(10) are TU.

Proof. First, we write our problem in Standard Equality
Form (SEF) using slack variables to eliminate the inequality
constraints. We then rewrite the summations in Eq. 5 using
a vector multiplication with 1 and obtain

min 1Tyh + 1Tyv (11)
s.t. AHxh − yh + zh = 0 (12)

AV xv − yv + zv = 0 (13)
xh + xv = 1 (14)
xh,xv,yh,yv, zh, zv ≥ 0. (15)

The constraints are now of the form Ax = b, where

A =

AH 0 −I 0 I 0
0 AV 0 −I 0 I
I I 0 0 0 0

 , (16)

b =
[
0T 0T 1T

]T
, (17)

x =
[
xh

T xv
T yh

T yv
T zh

T zv
T
]T

, (18)

0 is the matrix of zeros and I is the identity matrix. Clearly
b is an integral vector.

To prove A is TU, let us start with the matrix

Ã =

[
AT

H 0 I
0 AT

V I

]
.

Each row of the NAI matrices AH and AV signifies a
directed edge in the graph, with a -1 for the source grid cell
(outgoing), a +1 for the sink grid cell (incoming), and 0s
otherwise [24].

Due to this construction, Ã satisfies the following suffi-
cient conditions for TU matrices as outlined in [27].

1) All elements are in {-1, 0, +1} (all entries in AV and
AH are either -1, 0, or +1).

2) Each column of Ã has at most two non-zero elements
(each column of AT

H and AT
V will have two non-zero

entries, one for the source and one for the sink).
3) There exists a partition of the rows of Ã into two disjoint

sets T1 and T2 such that:
(i) If any column of Ã contains two nonzero entries of

the same sign, then one is in a row of T1 and the
other is in a row of T2.

(ii) If any column of Ã contains two nonzero entries of
the opposite sign, then they are both in a row of T1

or in a row of T2.
For Ã, T1 consists of all rows in[

AT
H 0 I

]

and T2 consists of all rows in[
0 AT

V I
]

.

It follows from [24] that the transpose of Ã is also TU.
We can construct A from ÃT by appending columns of the
positive and negative signed unit matrices Ī and −Ī where

Ī =

I 0 0
0 I 0
0 0 I

 .

Appending these columns preserves the total unimodularity
of the resulting matrix, see [24]. Because of this, the matrix
A is TU, which completes the proof of Lemma 2.

Since the constraints are TU, it follows from Theorem
1 that the relaxed LP computes optimal integral solutions
for the formulated MILP, thereby completing the proof of
Proposition 1. We can therefore use efficient polynomial-
time LP solvers [25] to solve Problem 1 optimally.

V. TOUR GENERATION

We now address Problem 2 and plan our full coverage path
by computing a tour of the ranks obtained from the LP in
Section III. We do this by formulating a GTSP to determine
a visitation order for the ranks. Using a GTSP formulation
offers us the flexibility to use existing approaches to compute
the tour [28], [29]. We employ a similar formulation that was
proposed in [13] and create an auxiliary graph representing
all possible connections between the ranks. The vertices of
this graph are grouped into sets, where each set consists of
two vertices representing the two directions to cover the rank
(e.g., for a horizontal line we can cover it from left to right
or right to left). The GTSP aims to minimize the cost of
visiting one vertex in every set (traversing each rank in a
specific direction).

The edge costs between the vertices in different sets of
the auxiliary graph are given by the time to travel between
rank endpoints along an obstacle-free transition path. These
transition paths are planned using the dynamics of the robot,
which depends on the robot’s design. For this work, we
assume semi-holonomic dynamics where (i) the robot stops
to turn in-place with a constant angular velocity, and (ii) the
robot has piecewise constant acceleration (when accelerating
or decelerating) while travelling in a straight line with a
maximum linear velocity. The same dynamics model is used
in [11] and [14], which we compare our method against in
Section VI. We compute each transition path by constructing
a visibility graph within the IOP boundaries and planning the
shortest path using an A* search [30]. The resulting path is a
sequence of straight lines and intermediary turns, for which
the travel time is computed.

VI. RESULTS

In this section, we present our experiments to test the
performance of OARP and compare it to two different
coverage planning approaches from literature. Finally, we
present ROS simulations on an example environment with
the Avidbots Neo robot model.
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Fig. 5: Comparison of our rank partitioning method with that
proposed in [11]: (a) Cell decomposition runtime for each map.
(b) The number of ranks determined for each test environment.

Firstly, in Sections VI-A to VI-C, we compare OARP to
the heuristic approach from [11]. We chose the heuristic
approach for our main comparisons because it produced
the least turns and the lowest tour costs in our analysis
of the available approaches. While the work in [11] has
applied the heuristic approach for both single and multi-robot
cases, the rank partitioning step is itself independent of the
number of robots, which is similar to OARP. We focus on
the single-robot coverage tours in this comparison to analyze
how the different rank partitioning methods affect the tour.
For this comparison, we use a dataset containing 2D maps
of 44 real-world environments obtained from Avidbots and
used for their Neo cleaning robot. These environments have
a minimum coverage path length ranging from 100 m to
around 3700 m, where the minimum coverage path length of
an environment is given by (total area)/(tool width l). The
maps in this dataset are arranged/labeled by increasing com-
plexity, i.e., the minimum number of ranks required to cover
the environment. Due to the confidentiality of these scans, we
cannot share this dataset but we have additionally generated
a set of anonymized environments for visualization, which
are shown in Figs. 1 and 6. Each method is run for 20 trials
on each map in the dataset and we compare the results for
every stage of the coverage planning process.

A. Decomposition Comparisons

For each map in our dataset, we compared the time it
takes for both methods to decompose the environment into
cells. The heuristic method decomposes the environment
into a preliminary set of coarse rectangular cells [11], while
the OARP method simply needs to express the IOP of the
environment using a grid overlay. To construct the IOP,
we include all grid cells where over 50% of its area is
contained within the original environment. The results of the
comparison are shown in Fig. 5a, where we observe that as
the complexity of the map increases, the cell decomposition
time for the heuristic method increases rapidly. In contrast,
OARP only requires a grid approximation which can be
computed much faster; about 50% faster on average and
5 times faster in some cases. This makes a large impact
on the overall planner time, especially in cases where the

Fig. 6: Coverage path of an indoor environment generated using
the proposed LP method.

coverage plan would need to be replanned due to perceived
changes or uncertainty in the environment. Robustification
of our approach to dynamic environment uncertainties is a
future research direction.

B. Rank Partitioning Comparisons

We implement our rank partitioning step by expressing
the LP using Eqs. (5)-(8), Eq. (10), and the IOP built in the
decomposition step. The algorithm was prototyped in Python
and we used the free LP solver, GLPK [31] to solve the LP.
The coverage tool width was set to 0.8 m to model Avidbots’
robot. Fig. 1 shows the rank partitioning of an example map
with the horizontal (orange) and vertical (purple) ranks as
determined by the LP solver. Solving the LP takes an average
of 0.4 seconds across all trials for all maps.

For the heuristic method, we solve the same IOP cov-
erage problem by only including the interior ranks from
their method (we ignore the perimeter ranks). The heuristic
method is an iterative algorithm, where running for more
iterations improves the performance. So, one would need to
allow enough iterations to find high quality solutions, but
avoid extra iterations after the optimal has been found. In
contrast, OARP avoids unnecessary computation by deter-
ministically finding an optimal solution before terminating.

To standardize the comparison, we limit the runtime of
the heuristic method’s partitioning step to that of OARP’s
partitioning step (the LP’s runtime) for each map. Fig. 5b
shows the results of the experiments. As expected, we
observe that the number of ranks obtained by OARP is
always as good or better than the heuristic method, with
the performance gap widening for more complex maps. In
general, the heuristic method does quite well, likely due to
the tractability of the problem. However, since this problem
is tractable and thus solvable in polynomial time, one should
choose an optimal solver.

C. Coverage Tour Comparisons

To generate the coverage tour from the ranks, we use
the GTSP formulation in Section V to compute a tour that
minimizes the transition time between the ranks. Table I
documents our choice of parameters used to compute the



TABLE I: Robot parameters used for experiments

Coverage Tool Width 0.8 m
Maximum Linear Velocity 1 m/s
Linear Acceleration ±0.5 m/s2

Angular Velocity 30◦/s
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Fig. 7: Average % improvement exhibited by the OARP method in
comparison with [11] for each map.

transition costs by simulating the robot’s coverage tool and
dynamics. We used GLNS [28] to solve the formulated
GTSP problem for both OARP and the heuristic methods.
Fig. 6 shows an example coverage tour for an anonymized
environment from our dataset, with the transitions (green
lines) between the ranks as determined by the GTSP solver.

We also compared our tours to those obtained using
the heuristic method from [11]. Since the ranks are non-
overlapping for both methods, the cost of the tour is related
to the number of turns. Fig. 7 shows the comparison results,
where we plot the average percent improvement of OARP
over the heuristic method for each map on two metrics: a)
number of turns, and b) total coverage tour cost. We observe
that OARP improves the coverage tours on both metrics for
almost all maps. For a small number of maps, we see little
to no improvement due to the heuristic method providing the
same number of ranks as OARP for those maps. On average
for all maps, OARP improved the number of turns by 5.9%
and the tour cost by around 2.7%. For some maps, we get
a 16.8% improvement in the number of turns, and a 7.6%
improvement in total coverage time. From this comparison,
we observe the intended trend that less ranks leads to less
turns, and less turns leads to shorter coverage paths.

D. Comparison against BCD

We additionally compared the proposed OARP method
against the Boustrophedon Cell Decomposition (BCD)
method from [14]. For this comparison, we used the dataset
from [14] containing over 300 aerial scans of environments
with varying number of holes (obstacles). The complexity
measure of the maps in this dataset is given by hole vertices,
i.e., the total number of vertices required to represent the
holes in the map (e.g., one triangular hole has 3 vertices).
The maximum number of hole vertices in this dataset is 86,
whereas in Avidbots’ dataset, this number goes up to 900.
We do not test BCD on Avidbots’ dataset as it would require
significant modifications to the BCD implementation, but we
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Fig. 8: Comparison results of the coverage tour generated using
OARP and the BCD method [14]. The x-axis specifies the number
of vertices representing the holes in the maps.

(a) (b)

Fig. 9: Simulation results of covering an example environment using
the Avidbots Neo robot. The covarage planners used were (a) OARP
and (b) the heuristic method from [11].

expect to see a similar but exaggerated trend due to the large
number of hole vertices. To perform this comparison, we
use the same parameters from [14]; a tool width of 3 m,
linear acceleration of ±1 m/s2, and maximum velocity of 3
m/s. We also penalize turns by adding turning time to the
cost function, where the robot turns in-place with an angular
velocity of 30◦/s. Fig. 8 shows the results of comparing
the cost of the coverage tours generated by OARP and
BCD using identical parameters. We observed that OARP
outperforms BCD for all maps, and improves the coverage
tour by 25.5% on average. We believe that this performance
gap is due to OARP’s better coverage line placement. We
also tested the heuristic method from [11] on this dataset
and observed that, while OARP still outperforms [11], the
average performance improvement is small (<1%) due to
the relative simplicity of the maps in this dataset.

E. ROS Simulation Case Study

In this subsection, we provide a case study of simulating
the coverage of an example environment using the Avidbots
Neo robot. The simulation was conducted using ROS on an
anonymized hybrid environment as shown in Fig. 9. The Neo
robot has tricycle dynamics and so coverage was planned
with sufficient space at the boundaries to allow comfortable
turns. The robot was also equipped with a local planner to
replan difficult parts of the coverage plan (e.g. areas with
small coverage lines) if necessary. Fig. 9 shows the resulting
environment coverage using plans generated by OARP and
the heuristic method [11]. We observed that OARP’s plan
was nearly 13% faster than the heuristic method’s plan
and 3.3% shorter in path length. We also observed that
OARP’s plan covered more area of this map than the heuristic



method’s plan (1.1% more). The reasoning for this is two-
fold: OARP’s path consists of less turns (poor coverage at
turns), and OARP’s plan required less replans by the local
planner. We also attempted to test the plan generated using
the BCD planner from [14], but the plan contained many
sharp turns that are infeasible for the Neo robot. Recordings
of the simulations are also included in our video attachment.

VII. CONCLUSION

In this paper, we proposed the OARP coverage planning
method that aims to minimize the number of turns needed
to cover the robot’s environment. We do this by partitioning
the environment into thin axis-parallel ranks using a linear
program (LP). We proved that this formulation computes the
optimal rank partitioning in polynomial time. We then con-
ducted experiments on maps of real-world environments and
showed that OARP always achieves the best rank partition
in comparison with the state-of-the-art method. Furthermore,
OARP is also shown to have around 6% lesser turns and 3%
shorter coverage tours on average than the other method.

While OARP can be used for any environment, applying
the axis-parallel constraint may result in ”stair-case” paths to
cover narrow areas with non-axis-parallel or curved bound-
aries. A future research direction is relaxing this constraint to
improve coverage of such areas. We also aim to leverage the
performance of OARP to develop an online turn-minimizing
coverage planner for uncertain dynamic environments.
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