
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022 1

A Conflict-driven Interface between Symbolic Planning
and Nonlinear Constraint Solving

Joaquim Ortiz-Haro1 Erez Karpas2 Michael Katz3 Marc Toussaint1

Abstract—Robotic planning in real-world scenarios typically
requires joint optimization of logic and continuous variables. A
core challenge to combine the strengths of logic planners and
continuous solvers is the design of an efficient interface that
informs the logical search about continuous infeasibilities. In this
paper we present a novel iterative algorithm that connects logic
planning with nonlinear optimization through a bidirectional
interface, achieved by the detection of minimal subsets of nonlin-
ear constraints that are infeasible. The algorithm continuously
builds a database of graphs that represent (in)feasible subsets of
continuous variables and constraints, and encodes this knowledge
in the logical description. As a foundation for this algorithm, we
introduce Planning with Nonlinear Transition Constraints (PNTC),
a novel planning formulation that clarifies the exact assumptions
our algorithm requires and can be applied to model Task and
Motion Planning (TAMP) efficiently. Our experimental results
show that our framework significantly outperforms alternative
optimization-based approaches for TAMP.
Webpage: https://quimortiz.github.io/graphnlp/

Index Terms—Task and Motion Planning, Task Planning,
Manipulation Planning.

I. INTRODUCTION

ROBOT planning involves both discrete and continuous
decisions. For example, in Task and Motion Planning

(TAMP, [1]), discrete decisions concern which type of in-
teractions with which objects are to be performed, typically
formalized using a logic planning language such as STRIPS
or PDDL. Continuous decisions concern robot & object poses,
motions and potentially forces [2], which need to respect
geometric, physical and collision constraints, according to
the discrete decisions. The focus of this paper is the case
where continuous constraints are formulated as a nonlinear
mathematical program (NLP) over continuous variables [3].

Despite recent advances in TAMP solvers, current algo-
rithms struggle in high dimensional configuration spaces (e.g.
several robots), large symbolic spaces and constrained environ-
ments that require joint optimization. A promising approach
to plan in such challenging settings is to efficiently interface
state-of-the-art solvers on both sides, in particular, incorporat-
ing information about (in)feasibility from continuous solvers
back to the logical level. Looking into similar challenges in

Manuscript received: February, 24, 2022; Revised May, 24, 2022; Accepted
June, 26, 2022.

This paper was recommended for publication by Editor Hanna Kurniawati
upon evaluation of the Associate Editor and Reviewers’ comments.

This research has been supported by the German-Israeli Foundation
for Scientific Research (GIF) grant I-1491-407.6/2019. Joaquim Ortiz-Haro
thanks the International Max-Planck Research School for Intelligent Systems
(IMPRS-IS) for the support.

1 TU Berlin, Germany.
2 Technion, Israel.
3 IBM Research, USA.
Digital Object Identifier (DOI): see top of this page.

Fig. 1. Task and Motion Planning problems solved by our framework. Top
row: four robot manipulators use a stick as a tool to reach a distant block.
Mid row: a heterogeneous team of robots builds a tower. Bottom row: two
real 7-DOF manipulators solve the Tower of Hanoi puzzle.

classical planning formulations, such as Satisfiability Modulo
Theory (SMT [4]), a fundamental approach to inform and
guide the logical search is to automatically identify and
block minimal conflicts which guarantee infeasibility of the
continuous problem.

In this paper we present the Graph-NLP Planner (GNPP), a
novel method to interface a logic solver with an NLP solver,
which iteratively detects minimal infeasible subgraphs, i.e.,
minimal subsets of nonlinear constraints that are infeasible,
and encodes back this information into the logic problem
description. The algorithm continuously builds a database of
(in)feasible subgraphs – in a sense learning what is feasible or
infeasible – and uses this accumulated information to inform
logic search as well as avoid future feasibility checks.

As a foundation for this algorithm we introduce an abstract
Planning with Nonlinear Transition Constraints (PNTC) for-
mulation, where a symbolic plan implies a factored non-linear
program as a sub-problem, and logical predicates of the plan

ar
X

iv
:2

21
1.

15
27

5v
1

 [
cs

.R
O

]
 2

8
N

ov
 2

02
2

https://quimortiz.github.io/graphnlp/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

can be related to factors of the NLP. This formulation clarifies
the concepts and exact assumptions our algorithm builds on,
and formally defines the explicit bidirectional relation between
the logical and the continuous components of the problem,
which is exploited in our solver.

PNTC provides a natural and efficient formulation of TAMP
problems in robotics that can be viewed as a variant of a
Logic-Geometric Program (LGP) [3]. However, in comparison
to LGP, PNTC explicitly defines a factored structure of the
implied NLP and a bidirectional mapping between symbols
and constraint factors in the resulting NLP. This is exactly the
structure we need to inform better the symbolic search and
is naturally available in TAMP, making our solver directly
applicable to solve TAMP and LGP problems. Our method
is evaluated on three robotic TAMP scenarios with complex
intrinsic logic-geometric dependencies that require long action
sequences, generating a solution in a few seconds – state-of-
the-art performance. We deploy the framework in real-world
experiments and demonstrate that the solver computes full task
and motion plans in real-time.

II. RELATED WORK

A. Planning with continuous variables

Classical AI planners have been extended to support plan-
ning with numerical constraints on action preconditions (e.g.,
Metric-FF [5]). Recent versions of the Planning Domain
Definition Language (PDDL) include temporal planning with
numerical variables [6], [7], [8]. For instance, the COLIN
planner [9] includes continuous linear change of numerical
variables (e.g., fixed velocities), and encodes the temporal and
state evolution constraints implied by a sequence of actions
as a linear program. The Scotty planner [10] adds support
for control variables which govern the rate of change (e.g.,
controlling the velocity) by replacing the linear program with a
Second Order Cone Program. Perhaps the most closely related
work is [11], that extends classical planning with general state
constraints. In contrast, the nonlinear constraints of PNTC
are defined by a sequence of symbolic states and evaluated
on consecutive continuous variables. This implies a nonlinear
program for the whole sequence of continuous variables,
that must be solved jointly, and can model efficiently long-
term relationships between the continuous variables without
additional discretization.

B. Task and Motion Planning

Task and Motion Planning in robotics is a prominent exam-
ple for jointly solving for discrete and continuous variables.
Most TAMP solvers rely on a discretization of the configura-
tion space. For instance, PDDLStream [12] uses constrained
samplers for generating grasp and kinematic solutions inside
PDDL-like planning; and [13] integrates samples of feasible
configurations into the planning task through a precompilation.

Some sampling-based TAMP solvers reason explicitly about
geometric conflicts. For example, a set of predefined predicates
such as “is reachable” is used in [14] to combine a black-
box task planner with a motion planner. The constraint based
approach in [15] incorporates information about geometric

infeasibility by blocking the full task plan or, in some special
cases, a pair of a (partial) state and an action. Alterna-
tively, our framework can encode continuous infeasibilities
that potentially involve several motion phases. In fact, instead
of enumerating possible geometric failure cases, we define
nonlinear constraints to model the motion and geometry, and
let the solver detect which intrinsic subset is jointly infeasible.

Our method provides an optimization-based formulation
of TAMP [16], [17], [18], [19] which leverages nonlinear
optimization to jointly compute a motion that satisfies all
geometric and physical constraints. In contrast to previous
solvers for LGP [18], namely Multi-Bound Tree Search [20],
our solver provides a more efficient logic-geometric interface
based on detecting infeasible subsets of constraints instead of
infeasible action sequences, as our evaluations show.

III. PROBLEM FORMULATION

A Planning with Nonlinear Transition Constraints (PNTC)
problem is a 7-tuple 〈V,A, s0, g,Π,H,X〉. The logical com-
ponent 〈V,A, s0, g〉 corresponds to a classical planning prob-
lem encoded in SAS+ [21]. V is a finite set of variables
and A is a finite set of action operators. Each variable
v ∈ V has a finite domain dom(v). A symbolic state s is
an assignment to the variables v ∈ V . A partial state p is
an assignment to a subset of variables. s0 is the initial state
and g is a partial state that represents the goal. We denote by
P = ×v∈V(dom(v) ∪ {⊥}) the space of partial states, where
⊥ means that the partial state does not instantiate a given
variable. Each action operator a ∈ A is a pair of partial states
called preconditions and effects 〈pre(a), eff(a)〉. An action a
is applicable in state s if pre(a) ⊆ s and modifies variables in
v ∈ eff(a). s′ = s[a] denotes the resulting state after applying
action operator a on s.
X is a finite set of continuous variables {x1 . . . xK}.

Each variable takes value in a continuous space Xk (e.g.
dom(xk) = Xk = Rnk), A continuous state x = {x1 . . . xK}
is a value assignment to {x1 . . . xK}. H is a finite set of
nonlinear piece-wise differentiable constraint functions that are
evaluated on pairs of subsets of continuous variables, H =
{hb : Xb0 ×Xb1 → Rnb}. The index sets b0, b1 ⊆ {1 . . .K}
indicate on which subsets of variables the function hb depends
on. These functions define nonlinear constraints h ≤ 0 on two
consecutive subsets of continuous variables (xb0 , x′b1).

The logical and continuous components of a PNTC are cou-
pled through the mapping Π : P×P → H∪∅, that maps con-
secutive partial states 〈p, p′〉 to a nonlinear constraint function
hb evaluated on 〈xb0 , x′b1〉, i.e. Π : 〈p, p′〉 7→ hb(x

b0 , x′b1),
(the empty set ∅ highlights that some 〈p, p′〉 do not generate
constraints). This formulation includes dimension-reducing
constraints h = 0 (rewritten as h ≤ 0 , −h ≤ 0) and
constraints acting on a single state Π(p)→ hb(x

b0).
A solution is a sequence of logical and continuous states
〈(s0, x0) . . . (sn, xn)〉 and action operators 〈a1 . . . an〉 such
that si = si−1[ai], g ⊆ sn and hb(x

b1
i , x

b0
i+1) ≤ 0, hb =

Π(p, p′), ∀p ⊆ si, p
′ ⊆ si+1,∀i = 0 . . . n − 1 (using

xi = {x1i . . . xKi }). Given a fixed logical plan 〈s0 . . . sn〉 the

ORTIZ-HARO et al.: A CONFLICT-DRIVEN INTERFACE BETWEEN SYMBOLIC PLANNING AND NONLINEAR CONSTRAINT SOLVING 3

continuous states can be computed by solving the continuous
feasibility program, i.e. nonlinear program without costs:

find xki ∈ Xk, ∀i = 0 . . . n, k = 1 . . .K (1)

s.t hb(xb0i , x
b1
i+1) ≤ 0, hb = Π(p, p′)

∀p ⊆ si, p′ ⊆ si+1,∀i = 0 . . . n− 1

Therefore, a valid logical plan is only a necessary condition for
the existence of the full logical and continuous solution and, in
practice, valid logical plans often fail at the continuous level.

IV. GRAPH-NLP: A BIDIRECTIONAL LOGIC-CONTINUOUS
INTERFACE

Given a fixed sequence of logical states 〈s0 . . . sn〉, we
represent the NLP on the continuous variables xki (1) as a
graph-NLP, a structured representation that resembles con-
straint graphs [22], graphical models [23] or factor graphs.
We now state the definition and some properties that will later
be exploited by our algorithms.

Definition 4.1: A graph-NLP G(〈s0 . . . sn〉) = (VG, EG) is
a bipartite graph that models continuous variables and con-
straints (vertices) and their dependencies (edges) for the fixed
sequence of logic states 〈s0 . . . sn〉. Formally, VG = XG∪HG,
where XG = {xki , i ∈ 0 . . . n, k ∈ 1 . . .K} and HG = {hb :
hb = Π(p, p′) ∀p ⊆ si, p

′ ⊆ si+1,∀i = 0 . . . n − 1}, and
EG = {(xki , hb) : hb ∈ HG depends on xki ∈ XG}.

In relevant applications, such as TAMP, each constraint h ∈
HG depends only on small subsets of variables, which results
in sparse and factored graph-NLPs (e.g. Fig. 2).

A subset of variables and constraints is a subgraph-NLP:
Definition 4.2: A subgraph-NLP M ⊆ G of a graph-NLP

G = (XG ∪HG, EG) is M = (XM ∪HM , EM) with XM ⊆
XG, HM ⊆ {h ∈ HG : Neigh(h) ⊆ XM}.

A graph-NLP is locally time connected, and the factors are
time invariant.

Property 4.1: (Local time connectivity) A variable vertex
xki is connected to constraints that are evaluated on variables
with time index i, i− 1 or i+ 1.

Property 4.2: (Factor time invariance) A sequence of partial
states induces a subgraph M(〈p0 . . . pL〉) = (XM∪HM , EM),
with HM = {hb : hb = Π(p, p′) ∀p ⊆ pl, p

′ ⊆ pl+1, l ∈
0 . . . L− 1} and XM = {xkl , l ∈ 0 . . . L, k ∈ 1 . . .K : ∃h ∈
HM : h depends on xkl }.

Property 4.3: If 〈s0 . . . sn〉 contains 〈p0 . . . pL〉 (i.e. ∃i ∈
{0 . . . n−L} : pl ⊆ si+l ∀l = 0 . . . L), then M(〈p0 . . . pL〉) ⊆
G(〈s0 . . . sn〉).

Definition 4.3: A graph-NLP G is said to be feasible
(Feas(G) = 1) if there exists a variable assignment xki , ∀xki ∈
XG such that all constraints h ∈ HG are satisfied. Otherwise
G is infeasible (Feas(G) = 0). Note that any subgraph M ⊆ G
can be evaluated for feasibility.

An assignment can be computed with nonlinear constrained
optimization methods such as interior points or augmented
Lagrangian (used in our implementation). The computational
complexity (determined by the factorization of a banded
diagonal Hessian matrix) is O(nK3).

a0

τa0

b0

q0

w0

τw0

a1

b1

q1

w1

τa1

τw1

a2

b2

q2

w2

τa2

τw2

a3

b3

q3

w3

Ref

Ref

Ref Ref Ref

Ref

Grasp

Grasp Pos

Ref

Kin

Kin Kin

EqualEqual Equal

Fig. 2. Graph-NLP of the example domain in Sec. IV-A. Circles are
variables and squares are constraints. We display variables for all mode-
switch configurations (a, b, q, w), and trajectory variables (τa, τw) (omitting
τb, τq and factors that represent collisions between trajectories to keep the
illustration clean). Brown squares are collision avoidance constraints. Gray
squares are boundary constraints between trajectories and mode-switches. This
representation is similar to the constraint graphs in [24].

Property 4.4 (Monotone Infeasibility): If a subgraph-NLP
M ⊆ G is infeasible, G is infeasible. If G is a feasible graph,
M ⊆ G is feasible.

Definition 4.4: An infeasible subgraph-NLP is minimal if,
when removing one or more variables or constraints, the
resulting graph is feasible.

Property 4.5: The minimal infeasible subgraph is connected.
If the graph-NLP G is not connected, the NLP associated to
each connected component Gi can be solved independently
and Feas(G) =

∧
i Feas(Gi).

A. Example domain

Consider a basic robot manipulation domain, where we
have two movable objects, OA and OB, initially on OA init,
OB init, and two robot manipulators, RQ and RW, on a Table
with the goal to stack OA on top of OB.

The logical description contains abstract information of the
structure of the configuration (i.e. parent-child relations in the
kinematic tree) but without defining the continuous relative
pose. For example, the logic variable parent OA with domain
{OA init, Table, RQ, RW, OB} indicates whether object OA is
on the initial position, the Table, held by one of the robots or
on top of object OB. The possible logic decision sequences are
defined using a PDDL planning task with two action operators:
pick and place.

Figure 2 shows the graph-NLP that results from applying
the logical decision sequence pick(OB, OB init, RQ), pick(OB,
RQ, RW), place(OB, RW, OA) from the starting logic state
{parent OA=OA init, parent OB=OB init, gripper RQ=free,
gripper RW=free}.

In each vertical slice, we have continuous variables
{a, b, q, w, τa, τ b, τ q, τw}, where a, b are the pose of the object
with respect to the parent frame in the kinematic chain (for
example, using quaternions for the rotation a, b ∈ R7) and q, w
are the robot joint configurations (using a 7-DOF manipulator
q, w ∈ R7). These variables represent the configurations at
the beginning of each motion-phase and are usually called

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

mode-switches. τa, τ b, τ q, τw ∈ R20·7 are the correspond-
ing trajectories during each motion phase (represented with
20 waypoints). These variables are constrained by nonlinear
functions that model grasping (Grasp), collision avoidance,
kinematic switches (Kin), position (Pos), time-consistency
(equal) and reference (Ref) constraints.

Constraints operate on pairs of consecutive continuous
variables, and the constraints that are applied depend on the
values of the logical variables. For instance, a transition of
logic variables Parent OA = OA init → Parent OA = OA init
generates a = a′ (equal(a, a′)). Parent OB = RQ generates
grasp(b), which constrains the relative position of the object
to be inside the two fingers of the gripper with a correct
orientation. Kinematic switch constraints appear when robots
pick/place the objects, e.g., a transition Parent OB = OB init
→ Parent OB’ = RQ generates Kin(b, b′, q′) where Kin ensures
that the absolute pose of OB is kept constant when the robot
RQ picks the object.

V. OVERVIEW: GRAPH-NLP PLANNER

Fig. 3 provides an overview of the Graph-NLP Planner
(GNPP) for solving a PNTC that we will introduce in the
next sections. To simplify the presentation, we briefly outline
the steps of the algorithm, which are run iteratively:

1) We leverage a state-of-the-art PDDL planner to find a
sequence of logical states that is logically feasible for
the current logical planning task.

2) We generate a nonlinear program with an explicit graph
structure, called graph-NLP (Sec. IV), that represents
the continuous variables and the nonlinear constraints
defined by the logical state sequence.

3) An NLP solver evaluates the graph-NLP. If this NLP
is feasible, the algorithm terminates and the output is
a solution containing all logic and continuous states.
Otherwise, a minimal conflict in the form of a minimal
infeasible subgraph-NLP is extracted and all evaluated
subgraph-NLPs are stored in a database of feasible or
infeasible subgraphs.

4) Finally, we reformulate the logical planning task to
forbid all plans that would generate a graph-NLP that
contains any subgraph that was already found to be
infeasible.

VI. FINDING SMALL INFEASIBLE SUBGRAPHS

In this section, we discuss how to detect a minimal subset
of infeasible constraints from a graph-NLP (Step 3 of the
Graph-NLP Planner, Fig. 3) In the worst case, finding an
infeasible subgraph of minimum cardinality requires solving a
NLP for each subset of constraints O(2|HG|) [25]. Conversely,
a minimal infeasible subgraph can be found by solving a linear
number of problems [26]. This search can be accelerated with
a divide and conquer strategy, with complexity O(log |HG|)
[27]. Recently [25] presented a technique for finding an
approximately minimal subgraph in a convex optimization
problem by solving one convex program with slack variables.

Inspired by these works, we propose an algorithm for
finding small minimal infeasible subgraphs that exploits the

Input: 〈V,A, s0, g,Π,H,X〉

1) Logic plannerPlanning task
〈A′,V ′, s′0, g

′〉
plan

〈s0 . . . sn〉

2) Mapping Π

Graph-NLP
G(〈s0 . . . sn〉)

feasible
subgraphs

3) Nonlinear solver
+ conflict extraction

4) Reformulation

Sec. VI-E Sec. III

Output: 〈(s0, x0) . . . (sn, xn)〉
Sec. VI

infeasible
subgraphs

Sec. VII

Fig. 3. Overview of the Graph-NLP Planner for solving a PNTC problem
〈V,A, s0, g,Π,H,X〉. The solution is a sequence of logic and continuous
states 〈(s0, x0) . . . (sn, xn)〉. See Sec. V.

particular structure of the graph in our setting, namely the
time structure of graph-NLPs and the semantic information
contained in them, as well as the convergence point of the
nonlinear optimizer.

A. Double binary search on the time index

The first key insight is to exploit the time connectivity of
our graph-NLP (Property 4.1). Given an infeasible graph-NLP
G(〈s0 . . . sn〉) we can find a minimal temporal subsequence
〈sf . . . sl〉, 0 ≤ f ≤ l ≤ n such that G(〈sf . . . sl〉) is
infeasible with a double binary search that executes O(log n)
calls to a nonlinear optimizer (Properties 4.5 and 4.4). Specif-
ically, we first compute the minimum upper index l such that
G(〈s0 . . . sl〉) is infeasible. After fixing l we compute the
maximum lower index f such that G(〈sf . . . sl〉) is infeasible.

B. Relaxations

Binary search on time exploits the local connectivity in
the temporal dimension, but does not detect the infeasible
factors inside an infeasible temporal subsequence. To address
this issue, we propose to solve a set of relaxations of the
graph-NLP that evaluates only a subset of variables and
constraints. Each relaxation corresponds to a subgraph-NLP
and is, therefore, a necessary condition of feasibility. The
algorithm stores the infeasible relaxations as candidates for
the minimal subgraph.

The relaxations depend on the semantic information of the
variables and constraints and are problem independent but
domain specific. Intuitively, we are looking for relaxations that
make the graph sparser, smaller and potentially disconnected,
while keeping those constraints that define the infeasible
subgraph. Section VIII-B presents informative relaxations in
the context of Task and Motion Planning.

C. Leveraging the convergence point of the optimizer

A powerful heuristic to discover a smaller infeasible subset
of variables and constraints is to check the convergence point
of the optimizer in an infeasible graph.

ORTIZ-HARO et al.: A CONFLICT-DRIVEN INTERFACE BETWEEN SYMBOLIC PLANNING AND NONLINEAR CONSTRAINT SOLVING 5

Given a graph-NLP G = (XG ∪ HG, EG), the nonlinear
optimizer aims to compute xki s.t h(x) ≤ 0 ∀h ∈ HG. Typical
optimization methods converge also for infeasible G, where
we can use the convergence point x∗ as a heuristic guess to
find a subgraph of G that is infeasible. Specifically, we test
the subgraph spanned by the constraints violated at x∗, i.e
M ′ = (X ′ ∪ H ′, E′) where H ′ = {h ∈ HG : h(x∗) > 0},
X ′ = {x ∈ XG : ∃h ∈ Neigh(x) s.t h ∈ H ′}. If M ′ is also
infeasible, we consider only M ′ as a candidate for the minimal
infeasible subgraph.

D. The complete algorithm
We combine these three ideas into an algorithm to find an

infeasible subgraph (Alg. 1 of Appendix A in the extended
version of the paper1). In this algorithm, we alternate between
applying relaxations (each relaxation considers only a subset
of variables and constraints) that potentially break the full
problem into disconnected components, and computing the
minimal infeasible time slice inside each connected component
(with double binary search). The convergence point of the
optimizer is used to reduce the size of the output infeasible
subgraph. The algorithm will return the first infeasible sub-
graph it finds, and therefore it is best to try the relaxations in
a loose to tight order, as this will likely result in a smaller
infeasible subgraph.

Deciding whether a relaxation should be applied before or
after the binary search on the time index is rather arbitrary. To
this end, a relevant observation is that solving a small NLP
that is feasible is usually an order of magnitude faster than
checking that a larger NLP is infeasible. Thus, we try to solve
numerous small and feasible problems first.

E. Database of feasible subgraphs
The graph structure of the graph-NLP is a suitable represen-

tation to share information about feasibility between different
sequences of logical states. Graphs of different symbolic plans
contain common subgraphs, which correspond to sequences of
partial states that appear in both plans (potentially at different
time indices).

During the execution of the graph-NLP Planner (see Fig. 3),
all solved subgraphs are stored either in a feasible or infeasible
database. Before solving a new nonlinear program, we check
if it is a subgraph of any graph in the feasible database.
This check requires a graph isomorphism test [28], based on
the adjacency structure and semantic information of variable-
vertices, which corresponds to the variable-index k = 1 . . .K
(without considering the time index) and the name of the
constraint h ∈ H. Given the available semantic information,
the test is fast in practice (with complexity closer to O((Kn)2)
instead of the worst case exponential).

F. Infeasible subgraphs in TAMP
To conclude the section, Fig. 4 provides two examples of

possible infeasible subgraphs of the graph-NLP of the example
domain (Fig. 2), together with an intuitive explanation of the
underlying reason of continuous infeasibility.

1Available in the project webpage https://quimortiz.github.io/graphnlp/

b b

a

q

Grasp

Kin

Ref

Ref b b

q

b

q

w

Ref

Grasp Grasp

Kin

Kin

Fig. 4. Two examples of possible infeasible subgraphs of the graph-NLP of
the example domain (Fig. 2). Left: the robot RQ can not pick object OB from
the initial position if OA is on the initial position, e.g. OA blocks the grasp
of OB. Right: it is not possible to pick object OB with the robot RQ and then
do a handover to robot RW, e.g. due to kinematic constraints, robot RQ can
only pick the object in a certain way that prevents doing a handover later.

VII. LOGIC REFORMULATION

In this section we discuss how to reformulate the logic
task with the information about the continuous infeasibilty
(Step 4 of the Graph-NLP planner, Fig. 3). Specifically, given
an infeasible subgraph M , we modify the logical planning
task 〈V,A, s0, g〉, to ensure that the logical planner will never
generate plans whose graph-NLP contains M . The mapping
is achieved through a two-step process:

First, we translate the infeasible subgraph M = (XM ∪
HM , EM) into a sequence of logical partial states. Recall
that each constraint h ∈ HM was generated by the forward
mapping Π(p, p′) 7→ h. We now trace this mapping back, to
get (p, p′) which generated h. The relative temporal order of
the partial states is kept, resulting in the sequence 〈p0 . . . pL〉

Given an infeasible sequence of partial states 〈p0 . . . pL〉,
we introduce a compilation that eliminates plans that contain
〈p0 . . . pL〉 starting at any time index, similarly to the plan for-
bidding compilation [29]. Our compilation introduces binary
symbolic variables bl = {0, 1}, l = 0 . . . L to indicate whether
the path from s0 to sn contains the infeasible subsequence of
partial states. bl = 1 means that the current path contains the
first l + 1 elements of the infeasible sequence.

Given a planning task 〈V,A, s0, g〉 and an infeasible se-
quence 〈p0 . . . pL〉, the new SAS+ task is 〈V ′,A′, s′0, g′〉,
where:
• V ′ = V ∪ {b0, . . . , bL}
• s′0 = s ∪ {bl = 0 | l = 1, . . . , L} ∪ {b0 = 1 if p0 ⊆
s0; b0 = 0 otherwise}

• g′ = g ∪ {bL = 0}
• A′ = {a′ = mod(a), a ∈ A}

where a′ = mod(a) modifies action a by adding conditional
effects to ensure that if action a was executed when bl−1 = 1,
and executing a makes pl true, then a sets bl = 1 and bl−1 = 0.
Alternatively, if a was executed when bl−1 = 1, and it does not
make pl true, then a sets bl−1 = 0. The last binary variable bL
can not transition 1→ 0 (i.e. bL = 1 is a dead end). The formal
reformulation a′ = mod(a) is shown in Appendix B. We can
now state the proposition which shows that this compilation
eliminates exactly all solutions which satisfy 〈p0 . . . pL〉:

Proposition 7.1: Let T = 〈V,A, s0, g〉 be a SAS+ planning
task, 〈p0 . . . pL〉 be some infeasible sequence, and T ′ =
〈V ′,A′, s′0, g′〉 be the reformulation described above. A plan
π is a solution of T ′ iff π is a solution of T and the states
along π do not contain any subsequence of states 〈s′i . . . s′i+L〉
such that pl ⊆ s′i+l for l = 0 . . . L for some i.

https://quimortiz.github.io/graphnlp/

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

Multiple infeasible subsequences are forbidden by iterative
reformulation. We are now ready to discuss the properties of
our Graph-NLP Planner (Fig. 3):

Theorem 7.1: If the underlying classical planner is sound
and complete and the nonlinear optimizer always finds a
feasible solution if such exists, then the Graph-NLP Planner
is sound and complete.

Proof Sketch: The proof follows from the fact that any
subsequence we forbid can not be part of any feasible solution
(because it generates a subgraph found to be infeasible, Prop.
4.3), together with the fact that our compilation eliminates
only plans which contain these subsequences (Prop. 7.1). The
completeness of the algorithm does not require the infeasible
subgraphs to be minimal, nor the mapping Π. Nonetheless,
these properties are desirable for an efficient algorithm.

VIII. EXPERIMENTAL RESULTS

A. Benchmark

Our algorithm is evaluated in 3 different simulated sce-
narios, where the goal is to move obstacles, rearrange and
stack up to six blocks to build towers with several robots. The
evaluation on real robots is reported in Section VIII-H.

1) Laboratory (Lab): Two 7-DOF manipulator arms exe-
cute pick and place actions to build a tower. The solution
requires handovers, regrasping and removing obstacles.
It is based on the real-world setting, Fig. 5.

2) Workshop (Work): Extension of the Laboratory scenario
that includes four robots and a stick, that can be grasped
and used as a tool to reach blocks, Fig 1.

3) Field: Contains a fixed 7-DOF manipulator and a mobile
7-DOF manipulator, with two additional actions opera-
tors: start-move and end-move, for moving the base of
the mobile robot on the floor, Fig. 1.

For each scenario, we generate 5 different problems (e.g
Lab {1,2,3,4,5}) by modifying the symbolic goal and the
initial configuration to increase the complexity in the logical
and geometric levels, while keeping the number of movable
objects constant (except for the easier versions Work 1 and
Field 1). A subset of these problems, together with the com-
puted solutions, are shown in the project webpage.

B. Relaxations for finding infeasible subgraphs

The formulation PNTC and the solver is general and domain
independent. Domain knowledge is introduced through the
relaxations used for extracting minimal conflicts (Sec. VI-B).
The following relaxations (applicable in any TAMP problem)
are used in the benchmark scenarios:

1) Removal of trajectories: The remaining graph only
contains variables for the mode-switches, considerably reduc-
ing the dimensionality of the nonlinear program while still
detecting most of the geometric infeasibilities.

2) Removal of collision constraints: Collision constraints
connect all robot configuration and object pose variables in
the same time step, resulting in a densely connected graph
(see Fig. 2). Without collisions, the graph becomes sparse,
and object and robot variables are only connected by grasping,
kinematics and placement constraints.

3) Removal of time consistency: Time-consistency con-
straints (Equal in Fig. 2) appear when objects are not modified
by an action. This relaxation does not consider the long
term dependencies of the manipulation sequence and creates
a sparse time structure.

4) Removal of robots variables: The remaining graph con-
siders only the variables for the objects, detecting infeasible
placements due to collisions between objects.

C. Algorithms under Comparison

We compare our approach with two different formulations
that combine a logical search with joint nonlinear optimization
for solving Task and Motion Planning problems.

1) One-way interface between Top-K Planning and a non-
linear optimizer (One-way): This baseline combines Top-K
planning [29] to generate a set of different logic plans with a
nonlinear optimizer to evaluate the plans. The planner does
not receive any information about the geometric reason of
infeasibility and only blocks the evaluated plans.

2) Multibound Tree Search (MBTS): The MBTS Solver
[20] incrementally builds a tree in a breadth-first order to ex-
plore sequences of logic actions that reach the symbolic goal.
Instead of solving the full continuous optimization problem
directly, MBTS computes first relaxed versions (bounds) that
consider a subset of variables and constraints. The pose bound
optimizes each mode-switch independently and the sequence
bound considers the full sequence of mode-switches, that are
optimized jointly.

3) Four Variations of our Graph-NLP Planner (GNPP):
We evaluate our full planner GNPP trng, and three additional
versions: GNPP t, GNPP tr, and GNPP trn to do an abla-
tion study of the algorithm to extract infeasible subgraphs.
Suffixes indicate: t=time search, r=relaxation, n=convergence
heuristic, and g=feasible graph database.

D. Metrics

Each algorithm is run 10 times with different random seeds
and a timeout of 100 seconds. For each method we report
on the number of solved NLPs (NLP) and the CPU time in
seconds (time) in Table I. “–” means failure to find a solution
within 100 seconds with at least 70% success rate.

Time2 provides an objective way to compare algorithms that
use different underlying methods. The number of solved NLPs
is informative but does not capture the influence of the size
and feasibility of NLPs on the running time of the solver.

For each problem, N denotes the length of the shortest found
plan that is both logically and geometrically feasible and N0 is
the length of the logical plan that solves the initial logical task
(that is, without considering the continuous information). N
and N0 are a proxy for the difficulty: the number of candidate
plans typically grows exponentially with N , and the difference
N − N0 shows the impact of the continuous domain on the
logical planner. The approximate branching factor is 12 in
Lab {1,2,3,4,5}, 13 in Field {2,3,4,5}, 24 in Work {2,3,4,5},
4 in Work 1 and 5 in Field 1.

2Experiments are run on Single Core i7-1165G7@2.80GHz

ORTIZ-HARO et al.: A CONFLICT-DRIVEN INTERFACE BETWEEN SYMBOLIC PLANNING AND NONLINEAR CONSTRAINT SOLVING 7

Table I. Number of NLP evaluations and CPU time, averaged over 10 random seeded runs, with standard deviations in gray.

length One-way MBTS GNPP t GNPP tr GNPP trn GNPP trng

N0 N NLP time NLP time NLP time NLP time NLP time NLP time

Work 1 2 4 77.00.0 8.21.0 37158.5 23.54.4 50.812.0 5.71.2 53.012.6 5.71.3 60.810.5 5.60.9 55.21.4 5.30.1
Work 2 4 6 - - - - - - 11340.4 22.79.2 94.71.7 19.76.0 86.81.5 16.72.9
Work 3 4 6 - - - - - - 10537.0 19.15.3 95.61.0 22.15.9 86.11.5 21.46.1
Work 4 8 10 - - - - - - 2820.0 53.15.6 3071.9 56.47.6 2701.8 55.49.0
Work 5 8 11 - - - - - - - - 3554.9 76.07.0 3095.3 76.89.4
Lab 1 2 3 25.00.0 7.11.0 25.00.0 4.10.5 21.00.0 4.50.2 25.00.0 3.20.2 30.00.0 3.30.1 28.00.0 3.30.2
Lab 2 2 3 12.00.0 3.10.5 28.90.3 3.70.5 32.00.0 5.50.3 46.00.0 4.30.2 23.00.0 2.10.1 21.00.0 2.10.1
Lab 3 4 5 19.00.0 8.41.2 34.00.0 18.52.7 26.00.0 5.90.4 23.00.0 3.10.2 25.00.0 3.30.4 24.00.0 3.20.2
Lab 4 4 9 - - - - - - - - 70.00.0 6.50.6 60.13.5 6.30.4
Lab 5 12 17 - - - - - - 87.00.0 18.71.8 93.00.0 19.12.0 83.00.0 19.02.0
Field 1 2 4 19.00.0 7.02.0 90.00.0 15.33.1 19.00.0 5.71.1 14.10.3 2.91.4 16.00.0 2.60.3 16.00.0 3.11.0
Field 2 2 6 - - - - - - 46.00.0 6.10.4 53.00.0 6.30.5 52.50.5 6.30.5
Field 3 4 8 - - - - - - 75.00.0 11.71.2 84.00.0 12.31.4 78.60.5 11.70.7
Field 4 6 10 - - - - - - 67.00.0 13.21.5 77.00.0 13.61.6 76.00.0 13.51.3
Field 5 6 11 - - - - - - 2820.0 56.56.6 2891.0 50.75.5 2620.5 51.46.6

E. Comparison to baselines
Concerning the problems solved, One-way and MBTS

can only solve the easier problems in each scenario while
GNPP trn/trng solves all the problems. Our algorithm is sig-
nificantly faster in the problems solved by One-way and MBTS,
where the more efficient encoding of geometric information
reduces the running time.

The success rate of our planners GNPP trn/trng is 100%
in all problems except for Field 5 (80%), Work 4 (95%) and
Work 5 (90%), where the optimizer fails to solve feasible
graph-NLPs in a few runs. The performance of GNPP trng is
not affected by the branching factor of the underlying problem
and provides good scaling with respect to N and N − N0.
The highest computational time corresponds to Field 5 and
Work 5, that require a long plan and detecting collisions
between movable objects. In TAMP, the practical size of the
graph-NLPs is O(K2n) (where n is the length of the action
sequence, and K is the number of objects and robots). The
domains are modelled using a small set (< 20) of different
types of nonlinear constraints (e.g. Fig. 2).

F. Ablation study
1) Analysis of the relaxations: GNPP t detects conflicts of

the form 〈si . . . si+l〉, while GNPP tr checks relaxations to
generate smaller conflicts 〈pi . . . pi+l〉. Small conflicts lead
to more aggressive pruning of logic plans, and are essential to
solve the harder problems (the number of solved problem is 5
vs 13 out of 15). An analysis of the impact of each relaxation
is shown in Appendix C, where we observe that Removal of
trajectories and Removal of collision constraints are the most
informative relaxations.

2) Analysis of the convergence heuristic: The results show
that the convergence heuristic is important in problems that
require reasoning about the collisions between movable ob-
jects, e.g. when the robot must move one object before placing
another to avoid a collision. In this case, the relaxations are
not informative, while the convergence point of the optimizer
in these infeasible problems usually indicates which are the
objects that are in collision. GNPP tr solves 13 out of 15 and
GNPP trn solves 15 out of 15.

3) Analysis of the database of feasible graphs: GNPP trng
reduces the number of solved NLPs, from a total average of
1673 to 1508, but there is no improvement in the compu-
tational time. We conjecture that the database approach will
provide higher benefits in a setting where solving the NLPs
requires more time.

G. Scalability and limitations

We conduct two additional experiments in the Laboratory
scenario to explicitly evaluate the scalability of the method
when increasing the number of blocks to be stacked (from 4
to 32) and the number of movable obstacles in a cluttered table
(from 1 to 6). Results are shown in Appendix D. Our planner
requires 5.5, 36.6, and 241.9 seconds to compute a plan that
stacks, respectively, 8, 16 and 28 blocks in pairs; and 11.8,
22.3 and 54.7 seconds to rearrange 6 blocks while clearing
first 1, 3 and 6 obstacles.

The running time of the Graph-NLP Planner scales poly-
nomially with the number of objects and plan length, and
the practical bottleneck is the time spent on solving large
nonlinear programs (with cubic complexity on the number of
objects and linear on the plan length). The main weakness of
our method is that the nonlinear optimizer is not guaranteed
to find a solution for a (sub)graph-NLP even if one exists,
given that the nonlinear constraints define a non-convex opti-
mization problem (which could break the assumption in Thm.
7.1). However, the extensive experiments demonstrate that the
solver is efficient and reliable in relevant use-cases of TAMP.

H. Real-time planning in the real-world

We demonstrate our solver in a real-world version of the
Laboratory environment (two 7-DOF Manipulators and up to
6 movable objects), see Fig. 5. The solver is integrated in
a Sense-Plan-Act pipeline, where we first perceive the scene
with an external motion capture system, compute a full (logical
and continuous) plan and execute the plan.

The real world evaluation consists of three scenarios: Tower,
Hanoi-Tower, Obstacles-Tower, for a total of 11 problems.
The symbolic goal is to build a tower of cubes at different

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

Fig. 5. The task in this real-world experiment is to build the tower blue-gray-
red-green in the central spot (highlighted in yellow). The solution, computed
in only 8.88 seconds with our planner, requires moving the brown and yellow
blocks to avoid collisions and executing a total of 12 actions.

locations: Hanoi-Tower introduces the classical Hanoi logic
constraints and Obstacles-Tower requires plans that clear ob-
stacles. The planning time differs across problems: 2.8 s to
build a tower of 6 blocks in the center of the table (12 actions),
8.8 s to remove two obstructing blocks and stack 4 blocks (12
actions), 9.4 s to build a Hanoi Tower (12 actions) and 27.2 s to
remove obstructing blocks and transfer blocks from the left to
right side (16 actions). Recordings of planning and execution
are shown in the project webpage.

IX. CONCLUSION

We presented a solver that combines nonlinear optimization
and PDDL planning for joint optimization of logical and con-
tinuous variables in robotic planning. The key contribution is
the novel bidirectional interface between logic and continuous
constraints, realized through the detection of infeasible sub-
graphs and a reformulation to inform the logical planner about
subgraph infeasibility. The problem formulation is formalized
as PNTC, which extends classical planning with nonlinear
transition constraints.

Our experiments in Task and Motion Planning show that the
algorithm is faster and more scalable than Multi-Bound Tree
search for LGP, while maintaining the generality and using
the same input information. These results are further validated
in real-world experiments, where our solver generates plans
for two 7-DOF robots with 6 objects in few seconds. As
future work, we would like to combine nonlinear optimization
with conditional constraint sampling for solving large graph-
NLPs, potentially bridging the gap between sample- and
optimization-based approaches to TAMP.

REFERENCES

[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” Annual
Review of Control, Robotics, and Autonomous Systems, 2021.

[2] M. Toussaint, J.-S. Ha, and D. Driess, “Describing physics for phys-
ical reasoning: Force-based sequential manipulation planning,” IEEE
Robotics and Automation Letters, 2020.

[3] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in International Joint
Conference on Artificial Intelligence, IJCAI, 2015.

[4] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, 2011.

[5] J. Koehler, “Planning under resource constraints.” in ECAI, 1998.
[6] M. Fox and D. Long, “Modelling mixed discrete-continuous domains

for planning,” Journal of Artificial Intelligence Research, 2006.
[7] W. M. Piotrowski, M. Fox, D. Long, D. Magazzeni, and F. Mercorio,

“Heuristic planning for pddl+ domains,” in Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[8] E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Interval-based
relaxation for general numeric planning,” in ECAI 2016, 2016.

[9] A. J. Coles, A. Coles, M. Fox, and D. Long, “COLIN: planning with
continuous linear numeric change,” J. Artif. Intell. Res., 2012.

[10] E. Fernández-González, B. Williams, and E. Karpas, “Scottyactivity:
Mixed discrete-continuous planning with convex optimization,” Journal
of Artificial Intelligence Research, vol. 62, pp. 579–664, 2018.

[11] P. Haslum, F. Ivankovic, M. Ramirez, D. Gordon, S. Thiébaux, V. Shiv-
ashankar, and D. S. Nau, “Extending classical planning with state
constraints: Heuristics and search for optimal planning,” Journal of
Artificial Intelligence Research, vol. 62, pp. 373–431, 2018.

[12] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of ICAPS, 2020.

[13] J. Ferrer-Mestres, G. Francès, and H. Geffner, “Combined task and
motion planning as classical AI planning,” CoRR, 2017.

[14] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. J. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in ICRA, 2014.

[15] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and systems, 2016.

[16] T. Migimatsu and J. Bohg, “Object-centric task and motion planning in
dynamic environments,” Robotics and Automation Letters, 2020.

[17] Z. Zhao, Z. Zhou, M. Park, and Y. Zhao, “Sydebo: Symbolic-decision-
embedded bilevel optimization for long-horizon manipulation in dy-
namic environments,” IEEE Access, 2021.

[18] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differen-
tiable physics and stable modes for tool-use and manipulation planning,”
in Robotics: Science and Systems XIV RSS, 2018.

[19] J. Ortiz-Haro, E. Karpas, K. Michael, and M. Toussaint, “Conflict-
directed diverse planning for logic-geometric programming,” in Proceed-
ings of ICAPS, 2022.

[20] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains,” in Int.
Conf. on Robotics and Automation, ICRA, 2017.

[21] C. Bäckström and B. Nebel, “Complexity results for SAS+ planning,”
Computational Intelligence, vol. 11, no. 4, pp. 625–655, 1995.

[22] R. Dechter, “Constraint networks,” 1992.
[23] D. Koller and N. Friedman, “Probabilistic graphical models: principles

and techniques,” 2009.
[24] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based

methods for factored task and motion planning,” The International
Journal of Robotics Research, 2018.

[25] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “Smc: Satisfiability modulo convex
programming,” Proceedings of the IEEE, 2018.

[26] E. Amaldi, M. E. Pfetsch, and L. E. Trotter, “Some structural and
algorithmic properties of the maximum feasible subsystem problem,”
in Int. Conf. on Integer Progr. and Combinatorial Optimization, 1999.

[27] U. Junker, “Preferred explanations and relaxations for over-constrained
problems,” in AAAI, 2004.

[28] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” IEEE transactions
on pattern analysis and machine intelligence, 2004.

[29] M. Katz, S. Sohrabi, O. Udrea, and D. Winterer, “A novel iterative
approach to top-k planning,” in ICAPS, 2018.

ORTIZ-HARO et al.: A CONFLICT-DRIVEN INTERFACE BETWEEN SYMBOLIC PLANNING AND NONLINEAR CONSTRAINT SOLVING 9

APPENDIX

A. Algorithm for finding infeasible subgraphs

Algorithm 1 shows an heuristic way to combine our three
algorithmic ideas (“time binary search”, “relaxations” and
“convergence heuristic”) to detect small infeasible subgraphs
(see Sec. VI). It achieves a good experimental performance
with an easy implementation. More complex and efficient
conflict extraction strategies will be explored in future work.

Algorithm 1 Finding a small infeasible subgraph
Input: Graph-NLP G(〈s0 . . . sn〉), set of relaxation rules
R = {rj}.
Output: Small infeasible subgraph M ⊆ G.
for r in R do

Gr ← r(G) . remove variables, constraints. Gr ⊆ G
{gi} ← Connected Components(Gr)
for g in {gi} do

feasible, [tf , tl] ← Binary Search Time(g)
. [tf , tl] is infeasible time interval (if any)

if not feasible then
gs ← Convergence Heuristic(g([tf , tl]))

. g([tf , tl]) ⊆ g only has variables in time
interval [tf , tl]

return gs

B. Logic reformulation

Given a planning task 〈V,A, s0, g〉 and an infeasible se-
quence of partial states 〈p0 . . . pL〉, the new SAS+ task is
〈V ′,A′, s′0, g′〉, where:
• V ′ = V ∪ {b0, . . . , bL}
• s′0 = s ∪ {bl = 0 | l = 1, . . . , L} ∪ {b0 = 1 if p0 ⊆
s0; b0 = 0 otherwise}

• g′ = g ∪ {bL = 0}
• A′ = {a′ = mod(a), a ∈ A}
To formally describe a′ = mod(a), we treat the partial

assignment pl as a set of facts, and add the following condi-
tional effects to a: (

∧
f∈p0\eff(a) f) . (b0 → 1); and for every

l = 1, . . . , L: (bl−1 = 1)∧(
∧

f∈pl\eff(a) f).(bl−1, bl)→ (0, 1)
and (bl−1 = 1) ∧ ¬(

∧
f∈pl\eff(a) f) . (bl−1) → 0, where the

notation A.B → 1 means “if A , then B → 1”. If the effects
of a are inconsistent with pl (that is, one of the effects of a
assigns a different value to one of the variables in pl), the
expression (

∧
f∈pl\eff(a) f) always evaluates to false.

Finally, we remark that avoiding a sequence of states which
satisfies 〈p0 . . . pL〉 can be encoded as a PDDL 3 trajectory
constraint. The above-mentioned compilation is a special case.

C. Experimental study of relaxations

We analyze in detail the 4 relaxations to detect minimal
conflicts in TAMP problems (see Sec. VI-B):
• Removal of trajectories (No Traj)
• Removal of collision constraints (No Col)
• Removal of time consistency (No Time)
• Removal of robots variables (No Robot)
In the experimental evaluation, our algorithms GNPP tr,

GNPP trn, and GNPP trng check the following relaxation
rules before solving the complete graph-NLP.

1) No Robot + No Col + No Traj
2) No Col + No Traj
3) No Robot + No Time + No Traj
4) No Time + No Traj
5) No Traj
Namely, we first apply (1) to the original graph-NLP and

check if it is feasible (breaking the full graph into disconnected
components, and doing binary search on the time index, see
Alg. 1). If feasible, apply (2) to the original graph and check
if it feasible. If feasible, apply (3) and so forth. The algorithm
stops the first time it finds an infeasible subgraph. If all tested
relaxations are feasible, we solve for the full graph-NLP.

To analyze the influence of each individual relaxation we
evaluate the following relaxation rules:
• Without No Col (GNPP tnr1)

1) No Robot + No Time + No Traj
2) No Robot + No Traj
3) No Time + No Traj
4) No Traj

• Without No Time (GNPP tnr2)
1) No Robot + No Col + No Traj
2) No Robot + No Traj
3) No Col + No Traj
4) No Traj

• Without No Robot (GNPP tnr3)
1) No Col + No Time + No Traj
2) No Col + No Traj
3) No Time + No Traj
4) No traj

Results are shown in Table II. We use the version of
our algorithm called GNPP trn (with relaxation rules “r”,
search on the time index “t”, and convergence heuristic
“n”). GNPP tnr0 is the default implementation using all the
relaxations. GNPP tnr1, GNPP tnr2, and GNPP tnr3 apply
three different relaxations rules (see above).

The worst performing variation is GNPP trn1 (without No
Col). This highlights that No col relaxation is fundamental
to detect small conflicts in TAMP, as it makes the graph-
NLP sparse and, when combined with the search on the time
index, highly disconnected. The best performing variation is
GNPP trn3, suggesting that No Robot relaxation is in fact not
useful to improve the running time. Finally, we remark that
the overall performance of each variation is influenced by the
convergence heuristic, that potentially reduces the size of the
infeasible subgraph and outputs small conflicts even when no
informative relaxation is used.

10 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

length GNPP tnr GNPP tnr1 GNPP tnr2 GNPP tnr3
N 0 N NLP time NLP time NLP time NLP time

Work 1 2 4 57.31.9 5.30.1 93.62.3 4.80.1 88.81.4 5.30.1 46.80.7 4.70.0
Work 2 4 6 95.00.0 15.63.5 1950.5 33.76.0 1641.4 15.42.6 78.51.9 14.74.1
Work 3 4 6 96.22.4 15.73.5 1960.5 30.22.2 1640.4 16.33.7 78.11.6 13.03.1
Work 4 8 10 3082.4 52.54.3 10422.8 1110.8 7445.1 57.13.3 5351.2 38.32.8
Work 5 8 11 3530.4 71.75.6 - - 87424.7 79.65.7 6332.4 51.83.6
Lab 1 2 3 30.00.0 3.60.1 57.00.0 4.90.1 46.00.0 3.60.1 30.00.0 3.40.2
Lab 2 2 3 23.00.0 2.10.1 31.00.0 2.20.1 27.00.0 2.10.1 25.00.0 2.10.1
Lab 3 4 5 25.00.0 3.40.3 50.61.1 4.20.3 42.00.0 3.40.2 30.00.0 3.40.2
Lab 4 4 9 71.84.9 6.90.6 1350.0 7.90.5 1643.8 7.60.5 1106.8 6.50.3
Lab 5 12 17 93.00.0 20.40.9 2850.0 27.01.2 2780.0 20.51.4 2070.0 14.30.7
Field 1 2 4 16.00.0 3.21.1 27.05.6 3.60.4 23.00.0 3.10.9 16.00.0 2.50.2
Field 2 2 6 53.00.0 6.20.3 99.00.0 12.90.5 75.00.0 6.50.3 56.00.0 6.10.3
Field 3 4 8 84.00.0 12.60.8 22626.9 27.62.1 1414.9 12.81.1 1380.0 13.00.8
Field 4 6 10 77.00.0 13.40.7 2471.9 30.51.2 1950.0 14.51.0 1880.0 14.50.6
Field 5 6 11 2890.0 50.31.1 842 103 73956.6 57.58.5 5731.1 46.40.9

total 1672 283 3526 404 3766 305 2743 235

Table II. Analysis of different relaxations in TAMP. Number of NLP evaluations and CPU time, averaged over 10 random seeded runs, with standard
deviations in gray. “–” indicates consistent failure to solve a problem within 100 seconds.

Note that the relaxation No Traj is applied in all the relax-
ation rules, and we only compute trajectories if all the previous
relaxations are found to be feasible (that is, when solving
for the full graph-NLP). The justification is twofold: first,
the nonlinear optimization problem with trajectories contains
20 times more scalar variables than the optimization without
trajectories, and is an order of magnitude slower to solve
(each trajectory is represented with 20 waypoints, while a
mode-switch is represented with a single waypoint). Second, a
good strategy to solve the optimization problem including the
trajectories is to 1) compute the mode-switches, 2) warmstart
the trajectories with a linear interpolation between the mode-
switches, and 3) reoptimize trajectories and mode-switches
jointly.

D. Extended Study of Scalability: Objects and Obstacles

In this section, we study the scalability of our solver when
increasing the number of objects and obstacles. These results
extend the benchmark in the Experimental Results (Sec. VIII
and Table I).

The new problems are based on the Laboratory scenario.
• Stacking Boxes. Two 7-DOF manipulator arms execute

pick and place actions to stack blocks in small towers of
two blocks. We increase the number of blocks in each
instance, from 4 to 32. See Fig. 6.

• Placement in a cluttered table. Two 7-DOF manipulator
arms execute pick and place actions to place 6 blocks into
a goal position and orientation, which requires to detect
possible collisions and move obstacles around the table.
We increase the number of movable obstacles from 1 to
6. See Fig. 7.

Results are shown in Fig. 9 and Fig. 8.
Stacking Boxes - Our solver scales polynomially to the

number of objects in the scene, while relying on joint opti-
mization and not using hand-crafted problem decompositions
or sampling of partial solutions. The number of evaluated
action plans scales linearly with the number of objects, but
the computational time spent on solving the (sub)graph-NLPs

Fig. 6. Stacking boxes. The goal is to stack blocks in pairs, e.g. put the
orange block on top of the pink and the white on top of the blue block. Left:
4 objects. Right: 32 objects.

Fig. 7. Placement in a cluttered table. Dark colors denote movable obstacles.
The frame markers show the goal positions and orientations for the objects.
Left: 1 obstacle. Right: 6 obstacles.

increases polynomially with the size of the nonlinear optimiza-
tion problem. In fact, the largest problem requires a motion
plan of 32 actions. In this setting, generating a full motion
using joint optimization is not the most efficient approach, and
could be improved with an heuristic strategy that fixes mode-
switches (after joint optimization) and solves the trajectory
individually for each step.

Placement in a cluttered table - In this setting, our solver
scales linearly with the number of obstacles. This is achieved

ORTIZ-HARO et al.: A CONFLICT-DRIVEN INTERFACE BETWEEN SYMBOLIC PLANNING AND NONLINEAR CONSTRAINT SOLVING 11

5 10 15 20 25 30

num. objects

0

100

200

300

400

500

ti
m

e
[s

]

Fig. 8. Computational time in Stacking boxes. See Fig. 6. We report mean
and standard deviation over 10 runs.

0 1 2 3 4 5

num. obstacles

10

20

30

40

50

60

ti
m

e
[s

]

Fig. 9. Computational time in Placement in a cluttered table. See Fig. 7. We
report mean and standard deviation over 10 runs.

by the efficient detection and encoding of minimal infeasible
subgraphs (in this case, which obstacles are blocking the
placement of a block).

Based on the results of the main benchmark (Tab. I) and
the scalability study (Fig. 8 and 9), we can conclude that the
running time of our solver depends on:
• Solving the Logic Problem: fast in practice using the

logic encoding of geometric conflicts and a state-of-the-
art PDDL planner (the worst case time complexity is
exponential in the action branching factor).

• Number of iterations of GNPP: the efficient detection
and encoding of geometric information achieves practical
linear complexity (the worst case is exponential in the
action branching factor).

• The number of evaluated subgraphs: for each new sym-
bolic sequence, the algorithm to detect infeasible sub-
graphs evaluates a number of subgraphs that is linear in
the number of objects (in practice) and logarithmic in the
length of the action sequence. Worst case is exponential
in the number of objects.

• Solving nonlinear programs: the theoretical time com-
plexity (assuming a bounded number of nonlinear itera-
tions) is cubic in the number of objects and robots and
linear in the length of the action sequence. The practical
complexity is worse, because the nonlinear optimizer
usually requires more iterations to solve larger NLPs.

	I Introduction
	II Related Work
	II-A Planning with continuous variables
	II-B Task and Motion Planning

	III Problem Formulation
	IV Graph-NLP: a Bidirectional Logic-continuous Interface
	IV-A Example domain

	V Overview: Graph-NLP Planner
	VI Finding small infeasible subgraphs
	VI-A Double binary search on the time index
	VI-B Relaxations
	VI-C Leveraging the convergence point of the optimizer
	VI-D The complete algorithm
	VI-E Database of feasible subgraphs
	VI-F Infeasible subgraphs in TAMP

	VII Logic Reformulation
	VIII Experimental Results
	VIII-A Benchmark
	VIII-B Relaxations for finding infeasible subgraphs
	VIII-B1 Removal of trajectories
	VIII-B2 Removal of collision constraints
	VIII-B3 Removal of time consistency
	VIII-B4 Removal of robots variables

	VIII-C Algorithms under Comparison
	VIII-C1 One-way interface between Top-K Planning and a nonlinear optimizer (One-way)
	VIII-C2 Multibound Tree Search (MBTS)
	VIII-C3 Four Variations of our Graph-NLP Planner (GNPP)

	VIII-D Metrics
	VIII-E Comparison to baselines
	VIII-F Ablation study
	VIII-F1 Analysis of the relaxations
	VIII-F2 Analysis of the convergence heuristic
	VIII-F3 Analysis of the database of feasible graphs

	VIII-G Scalability and limitations
	VIII-H Real-time planning in the real-world

	IX Conclusion
	References
	Appendix
	A Algorithm for finding infeasible subgraphs
	B Logic reformulation
	C Experimental study of relaxations
	D Extended Study of Scalability: Objects and Obstacles

