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Semi-Perspective Decoupled Heatmaps for
3D Robot Pose Estimation from Depth Maps
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Abstract—Knowing the exact 3D location of workers and
robots in a collaborative environment enables several real ap-
plications, such as the detection of unsafe situations or the study
of mutual interactions for statistical and social purposes. In this
paper, we propose a non-invasive and light-invariant framework
based on depth devices and deep neural networks to estimate
the 3D pose of robots from an external camera. The method
can be applied to any robot without requiring hardware access
to the internal states. We introduce a novel representation of
the predicted pose, namely Semi-Perspective Decoupled Heatmaps
(SPDH), to accurately compute 3D joint locations in world
coordinates adapting efficient deep networks designed for the 2D
Human Pose Estimation. The proposed approach, which takes as
input a depth representation based on XYZ coordinates, can be
trained on synthetic depth data and applied to real-world settings
without the need for domain adaptation techniques. To this end,
we present the SimBa dataset, based on both synthetic and real
depth images, and use it for the experimental evaluation. Results
show that the proposed approach, made of a specific depth map
representation and the SPDH, overcomes the current state of the
art.

Index Terms—Deep Learning Methods, RGB-D Perception,
Synthetic/Real Dataset, Robot Pose Estimation

I. INTRODUCTION

Collaborative robots, or cobots [1], have entered the au-
tomation market for several years now. They have achieved a
rather rapid and wide diffusion, also in the corporate world,
thanks to the newly introduced paradigm of interaction [2] and
collaboration [3]. About 20 years after their introduction, they
still have unexplored potential and challenges that have not
yet been fully investigated and solved in the literature.

Among others, the knowledge of the instantaneous pose of
robots and humans is a key element to set up an effective
and fruitful collaboration between them, allowing several
applications, ranging from solutions for the safety of the
interaction [4] to the behavior analysis [5].

Despite robots usually provide their encoder status through
dedicated communication channels, enabling the estimation
of their pose and the interaction level [6] through forward
kinematics, an external method is desirable in certain cases.
For example, the robot controller could be designed by third
parties that disable or revoke any permission to access the
robot encoders. Another use case is the study of the interaction
between collaborative robots and humans, e.g. focusing on
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the human prejudice and distrust against robots [7], [8]. In
this context, a portable and autonomous setup that does not
require any hardware access to the internal states of the robots
is preferred. In our experience, such a system has been often
accepted by manufacturing companies that are participating in
an ongoing study.

Therefore, in this paper, we propose to use non-intrusive
and ready-to-use sensors, i.e. cameras, to address the 3D Robot
Pose Estimation (RPE) task and, in this way, to monitor the
posture of a given robot by means of the position of its joints
in world coordinates. Different solutions have been explored
to this aim, all of them requiring the unpractical application
of specific sensors [9] or markers [10] on the robot structure.
Differently from these, we propose to use depth cameras [11],
which provide light-invariant and precise 3D scene information
at a low cost [12], and deep neural networks to directly and
accurately predict the 3D location of the robotic joints. Since
supervised deep networks usually require a great amount of
labeled data, we design our approach to leverage synthetic
data during the training phase and seamlessly work with real
cameras and robots at inference. In this way, our method
does not need to acquire data in the real world and annotate
them, which is known to be an expensive and time-consuming
activity.

To this end, we collected and publicly release! a new
dataset, namely SimBa, that contains synthetic data for training
and real-world annotated recordings for evaluation. Regarding
the model architecture, we draw knowledge and expertise from
the related field of the Human Pose Estimation (HPE) [13],
being aware of the impressive progress of the computer vision
community in that field. Indeed, we present an approach that
consists of a novel and effective pose representation, here
referred to as Semi-Perspective Decoupled Heatmaps (SPDH),
that extends the well-known 2D heatmaps to the 3D domain.
Existing 2D HPE architectures developed for the RGB domain
can be easily adapted to process depth data as input and predict
the proposed SPDH, leading to accurate 3D joint locations in
world coordinates.

We demonstrate that this approach overcomes alternative
methods in terms of accuracy, adding negligible computational
overhead to existing 2D methods. Experimental results confirm
the efficacy of the proposed system, paving the way for future
research in the field of the 3D Robot Pose Estimation from
depth maps.

To sum up, our main contributions are:

o We address the problem of the 3D RPE from depth maps,
introducing SPDH, a novel heatmap-based 3D pose rep-
resentation that can be applied to existing 2D human pose
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Fig. 1. Overview of our 3D Robot Pose Estimation (RPE) system. A depth image is converted into an XYZ image which is given as input to a pose estimation
deep model. The network predicts the proposed Semi-Perspective Decoupled Heatmaps (SPDH) from which the 3D robot pose is computed.

estimation architectures with minimal changes, achieving
competitive results.

« We propose an effective and practical training procedure,
based on synthetic depth maps, that can be applied to ac-
quire data at scale without expensive and time-consuming
manual annotations. We publicly release the simulation
parameters and the dataset used for the experimental
validation.

II. RELATED WORK
A. Robot Pose Estimation (RPE)

Only a few works address the RPE task and, to the best
of our knowledge, only a minor subset of them make use of
depth data. This is the case of the system proposed by Bohg et
al. [14], in which, taking inspiration from [15], a random forest
classifier is applied to depth images to segment the links of
the robot arms, from which the skeleton joints are estimated.
In a similar work [16], Widmaier e al. propose to directly
regress the joint angles without the need to predict robot arm
segmentation. However, these methods do not estimate the
pose in terms of camera-to-robot coordinates.

Instead of depth maps, the large majority of works focus on
RGB images. Labbe et al. [17] proposed a method that, given
a single RGB image of a known articulated robot, estimates
the 6D camera-to-robot pose in terms of rigid translation and
rotation through a render-and-compare approach. A reference
point and an anchor part are needed to perform the estimation,
and their choice significantly affects the performance. In the
work by Lee er al. [18], the RGB input image is fed to
a deep encoder-decoder architecture that outputs one map
per keypoint. The final camera-to-robot pose is computed
through Perspective-n-Point (PnP) [19], assuming that the
camera intrinsics and joint configuration of the robot are
known. Similarly, in [20] the PnP is used to compute the
camera-to-robot pose using a combination of both synthetic
and real data. A double system is presented in the work
of Tremblay et al. [21]: one network predicts the object-to-
camera pose while another estimates the robot-to-camera pose.
Both networks are trained entirely on synthetic data and the
final output is intended to help the robot grasping system,
rather than estimating the whole robot pose. Differently from
the discussed approaches, our method can be adapted to any
heatmap-based 2D pose estimation method to estimate the 3D
pose of a robot from a single depth map.

B. Human Pose Estimation (HPE)

The task of estimating the human pose has been extensively
investigated in the computer vision community. Similar to
the RPE field, the vast majority of works is based on RGB
images and outputs only 2D predictions. Recently, several
works also addressed the task of 3D HPE from single monoc-
ular intensity images, such as in [22] where a coarse-to-fine
prediction scheme based on volumetric predictions is exploited
to compute both the 2D and then the 3D pose. However, these
volumetric methods [23] are often characterized by compu-
tational inefficiencies, in terms of complexity and memory
requirement, even though some recent works [24] attempt to
address this issue. These considerations drove our choice to
focus on HPE architectures that predict the 2D joint positions
through heatmaps applied on RGB images, analyzed in the
following.

Among the numerous HPE methods based on 2D
heatmaps [25], the architecture known as Stacked Hourglass,
introduced in by Newell et al. [26], is developed to pro-
cess features at different scales and to capture the spatial
relationships of the human body, obtaining high accuracy.
Recently, Sun et al. [27] proposed a multi-scale approach
called High-Resolution Network, or simply HRNet. HRNet
maintains high-resolution representations throughout the entire
estimation process. Other works have been proposed to specif-
ically reduce the computational complexity of the existing
methods maintaining a satisfactory accuracy. This is the case
of the work described in [28], that proposed the Fast Pose
Machine (FPM) architecture, based on a cascade of detectors
with lightweight and efficient CNN structures. The model
can employ different backbones as feature extractors such as
Squeezenet [29] and MobileNet [30]. Differently from these
methods, the simple architecture proposed by Martinez et
al. [31] aims to predict the 3D human pose directly from
its 2D version. Despite the simplicity of the approach, the
reported results reveal a good accuracy independently from
the 2D pose detector used during the training phase. Being
aware of the high accuracy achieved by these methods, we
aim to adapt RGB HPE architectures for depth data and use
them as backbone of our method.

Only a limited number of HPE methods are based on depth
maps. In the pioneering work of Shotton et al. [32], a random
forest classifier is used to classify each pixel of the input depth
maps and thus to segment the human body. Then, the 3D joint



candidates are selected through a weighted density estimator.
In [33], [34] authors propose to use a 2D HPE model to predict
head position and human poses in depth images. Schnurer
et al. [35] propose to optimize the Stacked Hourglass [26]
architecture reducing its computational load. The predicted
2D pose is then used in combination with a predicted joint-
specific depth map in order to obtain the final 3D coordinates
of skeleton joints. In other words, the authors proposed a
system that combines a heatmap-based prediction for the 2D
coordinates and a value regression for the depth value. A
Residual Pose Machines is used by Martinez et al. [36] to
detect only the 2D location of human skeleton joints on the
depth images. The depth value of the surface close to a given
skeleton joint can be computed by sampling from the depth
map using the location of that joint. However, this simple
approach is not robust against possible body occlusions and
the sensor noise; both of them can significantly alter the depth
value in the sampled point. Moreover, this approach can only
predict the position on the surface of the robot arm, rather than
its center. Finally, we observe that the 3D pose estimation from
depth data is not yet deeply investigated in the literature, in
particular whether deep learning algorithms are used.

III. SEMI-PERSPECTIVE DECOUPLED HEATMAPS

We propose a novel Semi-Perspective Decoupled Heatmaps
(SPDH) pose representation that relies on projections of the
3D space under the assumption of having a single robot
in the image. Each 3D joint location is mapped into two
decoupled bi-dimensional spaces: the uv space, i.e. the camera
image plane, and the uz space, composed by quantized Z-
values and the u dimension, as depicted in Fig. 2. The pose
estimation algorithm will be trained to generate two heatmaps
for each joint, one for each space. The corresponding training
heatmaps are Gaussian probability distributions centered on
the projections of the joint coordinates.

The wv heatmap takes inspiration from the output repre-
sentation used by most of the recent 2D HPE methods [25].
However, differently from them, each heatmap is constructed
using a Gaussian function that has perspective awareness of
the joint’s distance from the camera.

Formally, given a joint j, the related heatmap #7" is defined
in the uv space and computed as follows:

Hi"(p) = N(p —pj,05)
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where f is the focal length of the camera, p; is the 2D joint
location, p is the pixel location, Z; is the Z coordinate of the
3D joint location and ¢™ is the desired standard deviation of
the Gaussian distribution in the metric space.

On the other hand, the uz heatmap can be seen as the
representation of the probability of seeing a joint at the image
coordinate u if it were at a distance z from the camera. To
generate H3“, the following two-step process is applied.

Firstly, we define a restricted depth space Z = {Z; €
Z; Zpin < Z; < Zmax} and we split it into slices of size
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Fig. 2. Visual representation of the proposed Semi-Perspective Decoupled
Heatmaps (SPDH). In particular, uv and wz spaces are depicted in relation
to the input depth map and the acquired robot.

AZ. The number of slices represents the height of the uz
heatmap and can be computed as follows:

_ Zmax - Zmln (2)
TTAz

In this way, there is a direct connection between the 2D
uz space and the depth-aware Z space. For simplicity, we
sample the space Z so that z has the same value of v, i.e. the
dimension of the two heatmaps is the same.

Secondly, we proceed with the computation of the heatmap.
We project each point p™¥ of the image into the 3D reference
frame according to its (x,y) coordinates. We apply the intrin-
sic parameters of the camera K, ie. the focal length f and
the optical center ¢, and obtain

P(p) = ((p"—¢)- e ZY) 3)
where ZY is the corresponding value in camera coordinates
of z sampled in pY. Then, we compute the euclidean distance
d(p) = ||P(p) — P;|| between each point P — corresponding
to each location p™¥ on the uz space — and the 3D ground-
truth joint location P; = [X;, Z;] — excluding the Y axis. We
use this distance to compute the value of the heatmap in each
point p as:

Hji*(p) = N(P(p) — Pj,0™)
L —aw)/eom) @)
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A visual representation of the relation between the proposed
Semi-Perspective Decoupled Heatmaps and the 3D space is
shown in Fig. 2; examples of SPHD are also reported in Fig. 3,
third and fourth row.

IV. 3D ROBOT POSE ESTIMATION

The proposed approach for the 3D Robot Pose Estimation
is based on the aforementioned SPDH representation. Fig. 1
depicts a visual overview of each step, detailed in the following
subsections, adopted to output the final prediction.



A. Depth Data Acquisition

The first step is the data acquisition procedure based
on a depth camera, i.e. a device capable to acquire depth
maps, and a collaborative robot. Despite the challenges and
limitations posed by the usage of depth sensors [37], we
observe that depth data acquired through the same depth
device do not usually require the adoption of challenging
domain randomization techniques [38] typically applied on
RGB synthetic images to bridge the gap between real and
synthetic data [18], [39]. In fact, depth data provide robustness
to light changes and variations in background textures [11],
helping to make the transition from synthetic to real depth data
more straightforward and the synthetic data generation easier
and less time-consuming. Moreover, depth cameras provide
3D information of the scene that the method can leverage to
estimate the 3D pose of the robot.

Formally, we define an acquired depth map as the cou-
ple D)y = (D, K), composed by the matrix of distances
D = {di;}, di; € [0,R], in which values are between 0
and the maximum depth range R, and K, i.e. the perspective
projection matrix computed with the intrinsic parameters of
the acquisition device. In particular, d;; represents the distance
between the optical center and a surface containing the point
p;; and parallel to the image plane; then, D can be visualized
as a depth image, encoded as one-channel gray-level image
Ip, as reported in the first line of Fig. 3.

B. Data pre-processing

As mentioned, the collected depth map D), contains the
information about the distance between the camera and the
objects’ surfaces of the acquired scene, while our purpose is
to have an input with explicit 3D information. To this end,
we convert the depth image I5**" into an XYZ image
LEH*W  where each pixel ¢;; € R® corresponds to the
projection in the 3D space of the original pixel d;; € R,
by applying the inverse of the camera intrinsic matrix K and
then multiplying by the corresponding depth value. Thus, each
pixel of the resulting image represents the 3D coordinate of
that pixel in the depth image: visual samples are shown in the
second row of Fig. 3. The resulting image is then normalized
independently along the three axes X, Y, Z, before being
processed by the network.

C. Model Architecture

As mentioned above, our method is designed to work with a
generic deep learning-based architecture belonging to the 2D
HPE field. Thanks to the adopted SPDH representation, it is
straightforward to adapt the selected architecture for our 3D
RPE task, as detailed in the following. The network takes as
input an XYZ image of size 3 x h X w and outputs a 2n x h x w
tensor, where n is the number of joints. The output represents
the uv and uz heatmaps for each keypoint, where each pixel
value determines the likelihood that a keypoint lies in that
position. To compute the predicted joint P; = [X;, Y}, Z;],
we exploit the maximum values of the heatmaps; for the uv
map, we get the 2D coordinates p; of the Gaussian peak; for

(a) Synthetic

(b) Real

Fig. 3. Examples for synthetic and real depth data. Then, XYZ image and the
novel SPDH representation, depicted through both the heatmap in uv space
and heatmap in uz space, are reported.

the uz map, we consider just the z coordinate of the Gaussian
peak which is then converted into a depth metric value as
follows: A

Zj = (ZAZ)+Zm1n (5)

Finally, p; is projected in the 3D space by applying the inverse
of the camera intrinsic matrix K and then multiplying by Z;,
obtaining the final prediction P;.

V. EXPERIMENTS
A. SimBa Dataset

To evaluate the proposed approach, we collected a new
dataset, namely SimBa, composed of both synthetic and real
images, which are used respectively for training and testing.

Among several collaborative robots, we choose the Rethink
Baxter, which has been widely used in the research commu-
nity. In the collected dataset, the Baxter moves respectively to
a set of random pick-n-place locations on a table, assuming
realistic poses.

Synthetic data. For the synthetic dataset, we use ROS for
interacting with the synthetic robot model, the cameras and the
environment, and Gazebo for rendering the simulated world.
The dataset consists of a set of sequences recorded from 3
RGB-D cameras (center, left, right) that are randomly moved
within a sphere of 1 meter diameter from their anchor. In
particular, we collect two simulation runs with different initial-
izations. Each run contains 20 recording sequences, composed
of 10 pick-n-place motions which are equally split between
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Fig. 4. Examples of synthetic and real RGBD frames acquired from different camera positions.

the left and right robot arm. Each sequence is recorded at the
same time by the three cameras, whose position is randomly
changed at the beginning of each sequence. The simulation
runs at 10 fps and records RGB (1920 x 1080) and depth
(512 x 424) frames from each camera, the 16 robot joints
positions, the pick-n-place locations, and the camera positions.
The synthetic dataset contains a total of 40 sequences with
over 350k annotated RGBD frames.

Real data. The real dataset was acquired using the ROS
framework. The time-of-flight Microsoft Kinect One (second
version) was used to record the moving robot from 3 camera
positions (center, left, right). In this case, each camera position
contains 20 pick-n-place sequences which are split equally
between the left and right arm. The recording runs at 15 fps
for the RGB (1920 x 1080) and depth (512 x 424) frames and
at 40 fps for the 16 robot joints positions. The real dataset
contains over 20k annotated RGBD frames.

After the acquisition of the synthetic and the real dataset,
we align each depth frame to the RGB sensor using the
corresponding extrinsic parameters. Some examples of the
frames recorded in both scenarios are depicted in Fig. 4, in
which different levels of precision and noise are visible.

B. Experimental setup

We split the dataset into 28 train sequences with over 26k
frames, 4 validation sequences with over 3.5k frames, and 8
test sequences with over 7k frames. For the training phase,
we sampled each synthetic sequence every 10 frames in order
to avoid pose redundancy. The synthetic test set was used
only to check the efficacy of the method in the initial phase
of the project. To evaluate the method and the competitors,
we sampled each sequence of the real dataset every 5 frames
obtaining a test set of 4k frames.

To generate the ground truth of the joint positions with
SPDH representation, we sampled a space Z = [500
mm, 3380 mm] with a depth step AZ = 15mm. The values of
the Z space were selected according to the range of the depth
sensor that is up to 5 m [11]. Both heatmaps are computed
with ¢ = 50 mm. Visual examples are depicted in Fig. 3.

We use as input a resized depth image Ip of resolution
384 x 192 applying a 3D data augmentation during training.
We first transform the depth image into a pointcloud and then

apply a random 3D rotation of [—5°,5°] along X or Y axis
and a random translation of [—80mm, 80mm)] along X or Z
axis. Then, the pointcloud is converted again into a depth
image from which the XYZ image is computed, as explained
in Section IV.

We adapt the state-of-the-art 2D HPE architecture called
HRNet-32 architecture [27] as the pose estimation model to
predict our SPDH from which the 3D robot pose is computed.
The network is trained from scratch for 30 epochs on our
synthetic dataset using the L2 loss between the predicted and
the ground-truth SPDH. We used a batch size of 16, Adam [40]
as optimizer and 1e~2 as learning rate with 10 as decay factor
after 50% and 75% of the training epochs. At test time, the
network is evaluated on the real dataset, without using any
domain adaptation techniques, differently from [18] which is
based on RGB images.

C. Metrics

For the 3D evaluation of the predicted robot poses, we
exploit the average distance metric (ADD) [18], [42], in
terms of the average distance of all 3D robot joints to their
ground truth positions. ADD metric is useful in order to merge
translation and rotation errors in a single value. In particular,
we compute ADD reporting L1 and L2 average distances
expressed in centimeters with standard deviations w.r.t. ground
truth positions. Here, lower results represent good perfor-
mance. In addition, we compute the mean Average Precision
(mAP), which expresses the percentage of 3D keypoints within
a certain threshold. In our experimental validation, we set 4
different thresholds at 40, 60, 80, 100 mm. Here, higher results
are better. We believe this metric shows the performance in a
more straightforward manner compared to ADD, highlighting
the accuracy of the system at different thresholds.

D. Competitors

In order to validate the proposed RPE approach, we compare
it with four alternatives, belonging to the HPE domain, that
can be adapted to predict the 3D robot pose:

e “2D to 3D from depth” is a two-step approach. Firstly,

a state-of-the-art HPE method [26]-[28] predicts the 2D
robot pose on depth images. Then, the Z value is sampled
from the depth to obtain the 3D joint coordinates.



TABLE I
COMPARISON BETWEEN OURS AND LITERATURE APPROACHES TRAINED USING AN XYZ IMAGE AS INPUT

mAP (%) 1 ADD (cm) |
Approach Network 40mm 60mm 80mm  100mm L1 L2
2D to 3D from depth  Stacked Hourglass (1 HG) [26] 8.98 31.21 49.12 66.11 15.63 +6.62  11.59 +£5.32
2D to 3D from depth  Stacked Hourglass (2 HG) [26] 10.13 31.94 50.54 67.14 14.88 +6.10  11.06 +5.04
2D to 3D from depth  FPM (MobileNet) [28] 9.83 29.09 49.13 66.70 16.25+6.66  11.66 £5.38
2D to 3D from depth  FPM (SqueezeNet) [28] 10.84 32.87 51.58 67.87 15.12+6.11  11.2245.07
2D to 3D from depth  HRNet-32 [27] 12.52 33.23 49.57 67.18 14.514+5.59  10.86 +4.64
2D to 3D from depth  HRNet-48 [27] 12.15 32.55 50.83 67.99 14.62+5.78  10.99 +4.81
3D regression ResNet-18 [41] 9.40 19.99 27.06 44.44 17.10+5.43  12.20 £4.12
2D to 3D lifting Martinez et al. [31] * 26.96 37.98 48.40 58.33 14.01 +4.84  10.03 £3.53
Volumetric heatmaps Pavlakos et al. [22] 18.15 42.24 61.60 86.15 10.35 £1.07 7.11 +0.65
SPDH (ours) HRNet-32 [27] 53.75 79.75 93.90 98.12 6.62 +1.53 4.41 +1.09
* relative joint positions
=== Stacked Hourglass (1 HG) - Depth ~ --- Stacked Hourglass (2 HG) - Depth FPM (MobileNet) - Depth === FPM (SqueezeNet) - Depth ~== HRNet-32 - Depth HRNet-48 - Depth
—— Stacked Hourglass (1 HG) - XYZ —— Stacked Hourglass (2 HG) - XYZ FPM (MobileNet) - XYZ —— FPM (SqueezeNet) - XYZ —— HRNet-32 - XYZ HRNet-48 - XYZ
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Fig. 5. Comparison on mAP scores between different networks trained giving as input just a depth image Ip or the proposed XYZ image Ixyz (dashed line

= input Ip, solid line = input Ixyz, same color = same network configuration).

o the “3D regression” method corresponds to an archi-
tecture that directly regresses the 3D joint coordinates
starting from a depth image. We empirically found that
the best performance is obtained using the well-known
ResNet [41] architecture, adapted and trained for regress-
ing the 3D robot joints.

o the “2D to 3D lifting” approach directly converts a
set of already predicted 2D joint locations to their 3D
counterpart, relative to a root joint. In particular, we select
the network proposed by Martinez et al. [31].

e a “volumetric heatmap” approach that outputs 3D
heatmaps. In our experimental validation, we adopt the
state-of-the-art method proposed in [22], which predicts a
volume with size d x w x h — with d = 64 — for each joint
and uses its maximum value as the 3D joint location.

E. Results

As shown in Table I, our method performs better than other
competitors in all the metrics, especially in terms of mAP
with low distance thresholds. We observe that the 2D to 3D
from depth approach leverages the high precision of 2D pose
estimation models, but is limited by the depth map; indeed, it
samples the depth values at the 2D joint coordinate, resulting
in predicting a 3D location on the robot surface rather than
onto the inner joint position. The approach based on direct
3D regression does not reach satisfactory results, confirming
that the task is not trivial. The 2D to 3D lifting method

uses a relative joints’ position with regard to a specific root
joint — the robot base in our case. Thus, this approach is not
directly comparable to our proposal, since it needs a post-
processing step in which the camera pose has to be known or
predicted and then applied to the 3D coordinates in order to
get the correct camera-to-robot values. However, we noticed
overfitting phenomena on synthetic training data, resulting in
low accuracy when testing on real data.

The approach based on volumetric heatmaps obtains a good
level of accuracy, even if still lower than our method. However,
the main issue of this approach is the high computational
load that predicting 3D volumes requires. Indeed, a volumetric
heatmap represents a quantized 3D space that quickly grows in
size in order to increase the precision of the method. This prob-
lem can be noticed during training when this approach requires
almost double the amount of GPU memory (8.3GB) than our
method (4.7GB). Summarizing, our approach achieves the best
results in predicting the inner joints of the robot, which is a
challenging task to solve with the alternative approaches.

Finally, some qualitative results of our method are depicted
in Fig. 6, in which is reported the initial depth image and the
final 3D robot skeleton.

F. Ablation study

To further evaluate our approach, we perform an ablation
study to investigate the impact of using different network
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Fig. 6. Real depth images and final predicted 3D robot pose for a random pick-and-place motion with both arms.

TABLE II
COMPARISON OF RESULTS USING DIFFERENT VALUES OF AZ

mAP (%) 1
Network AZ (mm) 40mm 60mm 80mm 100mm
Stacked HG (2 HG) [26] 7.5 46.83  78.08  89.52 96.07
Stacked HG (2 HG) [26] 15 43.94  81.50 92.39 99.06
Stacked HG (2 HG) [26] 30 44.55  76.04  87.22 99.03
HRNet-32 [27] 7.5 51.80  69.42  79.27 88.24
HRNet-32 [27] 15 53.75  79.75  93.90 98.12
HRNet-32 [27] 30 43.66  69.24  86.38 97.20

inputs and of sampling a different Z space when computing
the wz heatmap.

In the first experiment, we adapt three different 2D HPE
baselines [26]-[28] in order to learn the proposed SPDH
output. In particular, they were trained using two different
inputs: a depth image Ip and the proposed XYZ image Ixyz.
As can be seen in Fig. 5, the results confirm that the network
learning process benefits from an input Ixyz with explicit
3D information. Indeed, using only the depth values from Ip
makes the network independent from the intrinsic parameters
of the camera, which are needed to learn a meaningful 3D
representation of the world from a 2D space.

With the hypothesis that a smaller value of AZ should take
to higher mAP scores, the latter experiment explores different
sampling of the Z space. We select the networks [26], [27]
with the best performances and train them with three different
AZ values, ie. 7.5, 15 and 30 mm. We observe that using
AZ = 30 a bigger space Z = [0,5760]mm is sampled,
while for AZ = 7.5mm we adapt the input for our system
increasing the size of input images to 384 x 384 adding a
upper-lower padding and maintaining the same Z space as
our main experiment in Section V-B. Experimental results
reported in Table II reveal that the choice of the parameter
AZ, that can be potentially non-trivial since it changes the
size of the wz heatmap, does not have a significant impact
on the performance of the whole proposed system, tending to
avoid the need to ad hoc decrease or increase AZ value for
different application contexts.

VI. LIMITATIONS AND FUTURE WORK

Although our experimental section show promising results,
we observe that the output is limited to a single robot in
the acquired scene. In addition, the influence of other objects
in the scene on the final prediction needs to be investigated,

since these objects could change the visual appearance of the
scene or produce occlusions on robot surfaces. The proposed
system is one of the first attempts in this field, and it can be
improved in many terms, e.g. on the temporal smoothness of
the pose. Indeed, as future work we aim to insert the temporal
consistency in the learning process to refine the predicted
3D pose. In this way, the collected dataset can be directly
exploited, since it contains video sequences of robotic actions.
Moreover, the proposed method can be adapted to predict also
the pose of different agents in the scene, including humans,
enabling the reasoning on the HRI task through 3D poses.
This requires the collection of new synthetic and real data
with humans, and the non-trivial 3D annotations of them.

VII. CONCLUSION

In this paper, we present a depth-based 3D Robot Pose
Estimation approach that can be trained on fully synthetic data
and evaluated on real data with promising results. Leveraging
from a novel heatmap-based output representation, namely
Semi-Perspective Decoupled Heatmaps (SPDH), the proposed
method takes an XYZ image obtained from a depth map as
input and predicts two bi-dimensional heatmaps that are then
converted to 3D joint locations. We also present and publicly
release the SimBa dataset, that we use to evaluate the proposed
system in both synthetic and real environments. A thorough
experimental section compares the proposed method to alter-
native approaches derived from the HPE domain, confirming
its promising performance.

ACKNOWLEDGMENT

The authors would like to thank Margherita Peruzzini and
Riccardo Karim Khamaisi of XiLab Unimore for their invalu-
able help in collecting real sequences with the Baxter robot.
The authors are also grateful to Stan Birchfield and Timothy
E. Lee of NVIDIA for helpful discussions.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. A. Peshkin, J. E. Colgate, W. Wannasuphoprasit, C. A. Moore,
R. B. Gillespie, and P. Akella, “Cobot architecture,” IEEE Trans. Robot.,
vol. 17, no. 4, pp. 377-390, 2001.

M. A. Goodrich, A. C. Schultz, et al., “Human-robot interaction: a
survey,” Foundations and Trends® in Human—Computer Interaction,
vol. 1, no. 3, pp. 203-275, 2008.

V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human—
robot collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248-266, 2018.

E. Colgate, A. Bicchi, M. A. Peshkin, and J. E. Colgate, “Safety for
physical human-robot interaction,” in Springer Handbook of Robotics.
Springer, 2008, pp. 1335-1348.

N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita, “Adapt-
ing robot behavior for human—robot interaction,” IEEE Trans. Robot.,
vol. 24, no. 4, pp. 911-916, 2008.

M. Geravand, F. Flacco, and A. De Luca, “Human-robot physical
interaction and collaboration using an industrial robot with a closed
control architecture,” in Proc. IEEE Int. Conf. Robot. Autom., 2013, pp.
4000-4007.

A. Paulikovd, Z. Gyurdk Babel’ovd, and M. Ubdrovd, “Analysis of the
impact of human—cobot collaborative manufacturing implementation on
the occupational health and safety and the quality requirements,” Int. J.
Environ. Res. Public Health, vol. 18, no. 4, p. 1927, 2021.

A. Palazzi, S. Calderara, N. Bicocchi, L. Vezzali, G. A. Di Bernardo,
F. Zambonelli, and R. Cucchiara, “Spotting prejudice with nonverbal be-
haviours,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2016, pp. 853-862.

H. Hasegawa, Y. Mizoguchi, K. Tadakuma, A. Ming, M. Ishikawa, and
M. Shimojo, “Development of intelligent robot hand using proximity,
contact and slip sensing,” in Proc. IEEE Int. Conf. Robot. Autom., 2010,
pp. 777-784.

M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead, and
N. Vitzilaios, “Fiducial markers for pose estimation,” Journal of Intel-
ligent & Robotic Systems, vol. 101, no. 4, pp. 1-26, 2021.

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing:
Structured-light versus time-of-flight kinect,” Computer Vision Image
Understanding, vol. 139, pp. 1-20, 2015.

M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang, and J. Gall, “A survey on
human motion analysis from depth data,” in Time-of-Flight and Depth
Imaging. Sensors, Algorithms and Applications.  Springer, 2013, pp.
149-187.

T. L. Munea, Y. Z. Jembre, H. T. Weldegebriel, L. Chen, C. Huang,
and C. Yang, “The progress of human pose estimation: a survey and
taxonomy of models applied in 2d human pose estimation,” [EEE
Access, vol. 8, pp. 133330-133 348, 2020.

J. Bohg, J. Romero, A. Herzog, and S. Schaal, “Robot arm pose
estimation through pixel-wise part classification,” in Proc. IEEE Int.
Conf. Robot. Autom., 2014, pp. 3143-3150.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio,
R. Moore, P. Kohli, A. Criminisi, A. Kipman, et al., “Efficient human
pose estimation from single depth images,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 35, no. 12, pp. 2821-2840, 2012.

F. Widmaier, D. Kappler, S. Schaal, and J. Bohg, “Robot arm pose
estimation by pixel-wise regression of joint angles,” in Proc. IEEE Int.
Conf. Robot. Autom., 2016, pp. 616-623.

Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “Single-view robot pose
and joint angle estimation via render & compare,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2021, pp. 1654-1663.

T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer,
D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a
single image,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 9426—
9432.

S. Li, C. Xu, and M. Xie, “A robust o (n) solution to the perspective-
n-point problem,” IEEE Trans. Pattern Anal. Machine Intell., vol. 34,
no. 7, pp. 1444-1450, 2012.

J. Lambrecht and L. Kistner, “Towards the usage of synthetic data for
marker-less pose estimation of articulated robots in rgb images,” in IEEE
Int. Conf. Adv. Robot., 2019, pp. 240-247.

J. Tremblay, S. Tyree, T. Mosier, and S. Birchfield, “Indirect object-to-
robot pose estimation from an external monocular rgb camera,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2020, pp. 4227-4234.

G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-
fine volumetric prediction for single-image 3d human pose,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 7025-7034.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

X. Ji, Q. Fang, J. Dong, Q. Shuai, W. Jiang, and X. Zhou, “A survey
on monocular 3d human pose estimation,” Virtual Reality & Intelligent
Hardware, vol. 2, no. 6, pp. 471-500, 2020.

M. Fabbri, F. Lanzi, S. Calderara, S. Alletto, and R. Cucchiara, “Com-
pressed volumetric heatmaps for multi-person 3d pose estimation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 7204-7213.
C. Zheng, W. Wu, T. Yang, S. Zhu, C. Chen, R. Liu, J. Shen, N. Ke-
htarnavaz, and M. Shah, “Deep learning-based human pose estimation:
A survey,” arXiv preprint arXiv:2012.13392, 2020.

A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Proc. Europ. Conf. Comput. Vis., 2016, pp.
483-499.

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representa-
tion learning for human pose estimation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2019, pp. 5693-5703.

A. Martinez-Gonzalez, M. Villamizar, O. Canévet, and J.-M. Odobez,
“Efficient convolutional neural networks for depth-based multi-person
pose estimation,” [EEE Trans. Circuits Syst. Video Technol., vol. 30,
no. 11, pp. 4207-4221, 2019.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet
effective baseline for 3d human pose estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2017.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2011, pp. 1297-1304.

A. D’Eusanio, S. Pini, G. Borghi, R. Vezzani, and R. Cucchiara, “Manual
annotations on depth maps for human pose estimation,” in Proc. Int.
Conf. Image Anal. Process., 2019, pp. 233-244.

D. Ballotta, G. Borghi, R. Vezzani, and R. Cucchiara, “Head detection
with depth images in the wild,” in Proc. Int. Joint Conf. Comp. Vis.,
Imaging and Comp. Graph. Theory Appl., vol. 5, 2018, pp. 56-63.

T. Schniirer, S. Fuchs, M. Eisenbach, and H.-M. GroB, “Real-time 3d
pose estimation from single depth images,” in Proc. Int. Joint Conf.
Comp. Vis., Imaging and Comp. Graph. Theory Appl., vol. 5, 2019, pp.
716-724.

A. Martinez-Gonzalez, M. Villamizar, O. Canévet, and J.-M. Odobez,
“Real-time convolutional networks for depth-based human pose estima-
tion,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 41-47.
S. Pini, G. Borghi, R. Vezzani, D. Maltoni, and R. Cucchiara, “A sys-
tematic comparison of depth map representations for face recognition,”
Sensors, vol. 21, no. 3, p. 944, 2021.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE Int. Conf. Intell. Robots
Syst., 2017, pp. 23-30.

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.
Workshops, 2018, pp. 969-977.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp. 770-778.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
Robotics: Science and Systems, 2018.



	I Introduction
	II Related work
	II-A Robot Pose Estimation (RPE)
	II-B Human Pose Estimation (HPE)

	III Semi-Perspective Decoupled Heatmaps
	IV 3D Robot Pose Estimation
	IV-A Depth Data Acquisition
	IV-B Data pre-processing
	IV-C Model Architecture

	V Experiments
	V-A SimBa Dataset
	V-B Experimental setup
	V-C Metrics
	V-D Competitors
	V-E Results
	V-F Ablation study

	VI Limitations and Future Work
	VII Conclusion
	References

