
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022 1

TANDEM: Learning Joint Exploration and Decision
Making with Tactile Sensors

Jingxi Xu1, Shuran Song1 and Matei Ciocarlie2

Abstract—Inspired by the human ability to perform complex
manipulation in the complete absence of vision (like retrieving an
object from a pocket), the robotic manipulation field is motivated
to develop new methods for tactile-based object interaction.
However, tactile sensing presents the challenge of being an active
sensing modality: a touch sensor provides sparse, local data, and
must be used in conjunction with effective exploration strategies
in order to collect information. In this work, we focus on the
process of guiding tactile exploration, and its interplay with
task-related decision making. We propose TANDEM (TActile
exploration aNd DEcision Making), an architecture to learn effi-
cient exploration strategies in conjunction with decision making.
Our approach is based on separate but co-trained modules for
exploration and discrimination. We demonstrate this method on
a tactile object recognition task, where a robot equipped with a
touch sensor must explore and identify an object from a known
set based on binary contact signals alone. TANDEM achieves
higher accuracy with fewer actions than alternative methods and
is also shown to be more robust to sensor noise.

Index Terms—Force and Tactile Sensing, Reinforcement
Learning, Recognition, Deep Learning, Tactile Exploration.

I. INTRODUCTION

TACTILE sensing plays an important role for robots
aiming to perform complicated manipulation tasks when

vision is unavailable due to factors like occlusion, lighting,
restricted workspace, etc. The ability of touch to provide useful
information in the absence of vision is immediately clear in
the case of human manipulation: we are able to search and
manipulate efficiently inside of a bag or pocket without visual
data. In particular, we have little problem in distinguishing
between similar objects from tactile cues only.

However, a number of challenges remain before tactile sens-
ing can be used with similar effectiveness by robotic manipu-
lators. Fundamentally, touch is an active sensing modality, and
individual tactile signals are very local and sparse. Guidance
becomes critical: tactile sensors need to be physically moved
by a robotic manipulator to obtain new signals, introducing
additional costs for every sensor measurement. Without smart
guidance, we can only blindly scan/grope on a surface [1],
[2] or continuously make repetitive and high amounts of

Manuscript received: February 24, 2022; Revised: June 18, 2022; Accepted:
July 6, 2022.

This paper was recommended for publication by Ashis Banerjee upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by NSF grants CMMI-2037101, ECCS-
2143601 and ONR grants N00014-19-1-2062, N00014-21-1-4010.

1Department of Computer Science, Columbia University, New York, NY
10027, USA. {jxu, shurans}@cs.columbia.edu

2Department of Mechanical Engineering, Columbia University, New York,
NY 10027, USA. matei.ciocarlie@columbia.edu

Digital Object Identifier (DOI): see top of this page.

Step 0

Step 15

Step 30

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨⓪

0 1
Probabilities

0
1
2
3
4
5
6
7
8
9

0 1
Probabilities

0
1
2
3
4
5
6
7
8
9

0 1
Probabilities

0
1
2
3
4
5
6
7
8
9

(a) Setup (c) Active Exploration

(b) Random Polygons

Fig. 1. Object recognition based on tactile feedback alone. (a) Real robot
setup. Our tactile finger is mounted on a robot arm, and the target object
(unknown identity and orientation) is placed roughly around the workspace
center. (b) Known object set of 10 randomly-generated polygons. (c) Active
exploration. Using our framework, our robot collects data and quickly con-
verges on the correct object identity (object 4 from the set).

contacts at tightly controlled positions [3], [4], [5], [6], [7].
These strategies are extremely inefficient and often incur
prohibitively high costs and burdens. Furthermore, it is also
important to have an intelligent way to rearrange or encode
such local and sparse signals into a global representation.

In this work, we focus on the process of guiding tac-
tile exploration, and its interplay with task-related decision
making. Our goal is to provide a method that can train
effective guidance (exploration) strategies. The task we chose
to highlight this interplay and to develop our method is tactile
object recognition, in which one object must be identified
out of a set of known models based only on touch feedback
(Fig. 1). The goal of our method is to correctly recognize the
object with as few actions as possible.

In order to learn efficient guidance for such tasks, we
propose an architecture combining an exploration strategy (i.e.
explorer) and a discrimination strategy (i.e. discriminator).
The explorer guides the tactile exploration process by provid-
ing actions to take; the discriminator attempts to identify the
target object and determines when to terminate the exploration
after enough information has been collected. To convert local
and sparse tactile signals into a global representation, we also

ar
X

iv
:2

20
3.

00
79

8v
3 

 [
cs

.R
O

] 
 2

1 
Ju

l 2
02

2



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

use an encoding strategy (i.e. encoder). In our current version,
the encoder simply rearranges sparse tactile signals into an
occupancy grid, but more complex implementations could be
used for future tasks.

In our proposed architecture, both the explorer and the
discriminator are learned using data-driven methods; in par-
ticular, the explorer is trained via reinforcement learning (RL)
and the discriminator is trained via supervised learning. In
our current implementation, both of these components are
trained in simulation. The use of binary touch data, which is
easier to simulate accurately compared to other tactile features,
facilitates zero-shot sim-to-real transfer, which we demonstrate
in the real robot experiments.

Critically, even though our architecture separates the ex-
ploration and decision making, we interleave their training
process: we propose a co-training framework that allows batch
and repeated training of the discriminator on a set of samples
collected by the explorer. We call our method TANDEM, for
TActile exploration aNd DEcision Making. In summary, the
main contributions of this paper include:
• We propose a new architecture to learn an efficient and

active tactile exploration policy, comprising distinct mod-
ules for exploration, discrimination, and world encoding.
We also propose a novel framework to co-train the explo-
ration policy along with the task-related decision-making
module, and show that they co-evolve and converge at
the end of the training process.

• We demonstrate our method on a tactile object recog-
nition task. In this context, we compare our approach
against multiple baselines, including all-in-one learning-
based approaches that do not distinguish between our
proposed components, and other methods traditionally
used for exploration (such as random-walk, info-gain,
etc.) or tactile recognition (such as ICP). Our experi-
ments, performed in simulation and validated on real
robots, show that our proposed method outperforms these
alternatives, achieving a higher success rate in identifying
the correct object while also using fewer actions, and is
robust to sensor noise.

II. RELATED WORK

A. Tactile Object Recognition
Object recognition is a key problem in robotics and is a

fundamental step to gaining information about the environ-
ment. Conventionally, visual perception has been the primary
sensing modality for object recognition. However, due to the
limitations of vision such as illumination and occlusion and
with the development in tactile perception technology such as
DISCO [8], object recognition with only tactile information is
receiving increasingly wider attention in robotics research.

Tactile object recognition can be roughly divided into three
major categories depending on the characteristics of the ob-
ject [9]: (1) rigid object recognition (the problem in this paper),
(2) material recognition, and (3) deformable object recogni-
tion. However, many existing works are either using predefined
action sequences or a heuristic-based exploration policy such
as contour following, while we focus on developing a learning-
based active exploration policy.

B. Tactile Exploration Policy

The Exploration Policy (EP) is the sequence of exploratory
actions the agent executes to gather tactile information. Since
tactile information can only be obtained by interacting with
the target object, the EP plays a critical role. We divide tactile
sensing EPs into three major categories.

1) Passive mode: The robotic manipulator is fixed, and the
human operator hands over the object to the manipulator, often
times in random orientations and/or translations to collect
tactile data [10], [11], [12].

2) Semi-active mode: The manipulator interacts with the
object according to a prescribed trajectory and does not need
to react based on sensor data, maybe except being compliant
to avoid damage. Examples include poking the object from
uniformly sampled directions or grasping it multiple times
with a predefined set of grasps [13], [14], [3].

3) Active mode: The manipulator finds the object and
explores it reactively in a closed-loop fashion. The exploratory
action is a function of current and/or past sensor data. EPs can
be heuristic- or learning-based.

Some of the most popular heuristic-based exploration poli-
cies range from contour following [15], [16], [17], [18] to
information gain (uncertainty reduction) [19], [20], [21], [22].
Other heuristics to decide the regions of interest to explore
include attention cubes [23], Monte Carlo tree search [24]
and dynamic potential fields [5]. However, while heuristic-
based EPs require no training and can reduce the number
of actions effectively, they are also sensitive to sensor noise
and the performance of a particular heuristic can be task-
dependent. In contrast, our learning-based EP is trained with
sensor noise, and thus outperforms heuristic-based baselines
when such noise is present in the evaluation.

Similar to ours, other works combine exploration and
decision making, whereby a classifier is pre-trained from
pre-collected data and used to estimate action quality with
Bayesian methods to reduce uncertainty [25], [26], [27], [28],
[29]. Most of these make effective use of high-dimensional or
multimodal tactile data. Our use of relatively simple contact
signals allows training an exploration policy through trial and
error in simulation, with zero-shot transfer to real robots,
eliminating the need for training on physical objects. Never-
theless, we achieve high recognition accuracy with relatively
few actions, which we attribute in part to the fact that, unlike
in previous methods, our discriminator is constantly updated
as the exploration policy improves.

III. ARCHITECTURE

Our work aims to develop a framework that combines
effective exploration and decision-making when using an
active and local sensing modality, such as touch. Our key
insight is that exploration and decision-making are distinct,
yet deeply intertwined components of such a framework. An
ideal exploration strategy will strive to reveal information
that the decision-making component can make the best use
of. Similarly, a decision-making component will adapt to the
constraints of a real-world robot collecting touch data, which
can only be obtained sequentially and incrementally.



XU et al.: TANDEM: LEARNING JOINT EXPLORATION AND DECISION MAKING WITH TACTILE SENSORS 3

Discriminator Explorer
Terminate

with prediciton

yes

no

occupancy
grid

sensor
data

binary
collision
signal

global
representation

prediction
confidenceoccupancy grid

if confidence 
> threshold

action

Encoder
Environment

60 x 60

conv2D (32, 3, 1)
 

conv2D (64, 3, 1)
max pool (2)

fc (50176, 128)

fc (128, 4) fc (128, 1)

singal sequence 

flatten

actor critic

conv2D (32, 3, 1)
 

conv2D (64, 3, 1)
max pool (2)

dropout (0.25)

fc (50176, 128)

fc (128, 10)
softmax softmax

dropout (0.5)

flatten

up
rightleft

down

Fig. 2. An overview of the proposed architecture, and its application to tactile object recognition. The tactile finger interacts with the target object and
generates local and sparse sensor data (in this task, binary collision signals). The encoder keeps a history buffer of such sequential signals and converts them
into a global representation. Our encoder in this task rearranges them into an occupancy grid image. The discriminator takes in the global representation and
attempts to identify the object along with a confidence estimate. If the confidence is higher than a predefined threshold, the exploration is terminated and the
final prediction is produced. Otherwise, the explorer reads the representation and generates the next move. The neural networks used by the discriminator and
explorer are shown inside their respective block. The parameters of the conv2D layer are the number of filters, kernel size, and stride. The parameters of the
max pool layer is stride. The parameters of the fc layer are input dimension and output dimension. The parameter of dropout layer is the probability
of an element being zeroed out.

The concrete task we develop and test our method on is
touch-only object recognition using a robot arm equipped with
a tactile finger. We assume a set of known two-dimensional
object shapes (randomly-generated polygons). One object is
placed in the robot’s workspace, in an unknown orientation.
The robot must determine the object’s identity using only tac-
tile data, and with as little movement as possible. Performance
is measured by both identification accuracy and the number
of robot movements.

Our proposed architecture is illustrated in Fig. 2. The
key components are the following: (1) The explorer, which
generates an action for the robot to take in order to collect
more data. In our implementation, the explorer consists of
a policy trained via deep RL. (2) The discriminator, which
predicts the identity of the object, along with a confidence
value. This is a supervised learning problem, implemented in
this case as a Convolutional Neural Network (CNN). Finally,
in addition to the explorer and discriminator, we distinguish
one additional component, namely (3) the encoder which
converts the sequence of local and sparse tactile signals into
a global representation. For our object recognition problem,
the encoder simply aggregates binary touch signals into an
occupancy grid.

An equally important aspect of the proposed architecture
is the training process. While we formulate distinct explorer
and discriminator modules, trained via different formalisms
(RL vs. supervised learning), we choose to interweave their
training processes. This allows us to train the discriminator
with data batches gathered by the explorer, which significantly
improves data efficiency compared to an all-in-one approach
that combines exploration and decision-making into a single
component. In the co-training process, the explorer learns to
increase the discriminator’s confidence as fast as possible, and
the discriminator learns to predict object identity based on the
type of data generated by the explorer.

A. Encoder

The job of the encoder is to maintain a history buffer
of the sequence of contact data, convert that history into a
global representation, and provide this representation as input

to both the explorer and the discriminator. In our current
implementation, we use binary signals indicating touch / no-
touch. The encoder simply integrates these into an occupancy
grid representation of the world, as shown in Fig. 2.

All pixels of the occupancy grid are initially grey (unex-
plored). After each action, if contact is detected, the corre-
sponding pixel is colored white; otherwise, it is colored black.
We also use a special value (light grey) to mark the current
position of the finger on the grid. Knowing the current location
of the finger is useful for the explorer to compute the next
action; however, this special color is eliminated when the
grid is provided as input to the discriminator because such
information is not necessary for predicting the object identity.

For the task addressed here, we believe an occupancy grid
works well due to its simple nature, ability to represent
geometrical information, and small size in memory. However,
when aggregating more complex information (e.g. from tactile
sensors providing more than binary touch signals) or for more
complex tasks, we expect that different encoding methods will
be needed, even while the role in the architecture will be
the same. We hope to explore more complex, learning-based
encoders for our architecture in future studies.

B. Discriminator

The discriminator is the component of our pipeline in charge
of interpreting sensor data for task-related purposes. Thus,
for our problem, its job is to provide a prediction regarding
the object identity, along with an associated confidence value.
Making a confident prediction also implicitly terminates the
exploration.

In our implementation, underlying the discriminator is a
CNN, as shown in Fig. 2, taking as input the occupancy
grid produced by the encoder. The network consists of two
convolutional layers followed by a max-pool layer. After the
dropout layer, the input is then flattened to go through another
two fully-connected layers. A softmax function is applied to
the raw 10-dimensional output from the fully-connected layer
to generate a probability distribution. The object with the
highest probability is chosen as the predicted identity and
its corresponding probability is the confidence estimate. If



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

the prediction confidence is greater than a preset threshold,
the exploration is terminated and a final prediction is made.
Otherwise, the occupancy grid is passed to the explorer to
generate the next move.

As part of the co-training process, the discriminator is
trained on partially complete occupancy grids, which can
be ambiguous over objects, especially when very few pixels
have been explored. This ambiguity is in fact the supervision
needed to learn a confidence estimate. For instance, if the
discriminator data buffer contains multiple duplicates of a
highly incomplete grid, each with a different object label,
then, in order to minimize the loss, the discriminator network
will assign equal probabilities to all candidate objects, thus
decreasing the confidence in each individual prediction.

C. Explorer

The job of the explorer is to generate the next action for
the robot, actively collecting additional information. For our
task, this means selecting the next move (up, down, left, or
right). Tactile data is collected automatically during the move
and passed to the encoder as described above.

We implement the explorer as a Proximal Policy Optimiza-
tion (PPO) [30] agent taking the occupancy grid provided
by the encoder as input. It has a similar architecture as the
discriminator but the last fully-connected layer is replaced
by a separate fully-connected layer for both the actor and
critic, as shown in Fig. 2. Even though the discriminator and
explorer share part of the same architecture, we found through
experiments that keeping the weights separate has a much
better performance. This is likely because the discriminator
and explorer focus on different aspects of the grid and should
learn separate intermediate embeddings. As mentioned earlier,
the grid input to the explorer has an extra bit of information
providing the current location of the agent.

The reward structure warrants additional discussion. The
explorer receives a reward if the discriminator reaches a confi-
dence level that exceeds a preset threshold and thus terminates
the exploration. However, the reward for the explorer is not
conditioned on the correctness of the prediction. This is in
keeping with our tenet of separating the exploration from
decision making: the explorer is not aware of prediction
correctness and it is rewarded as long as the discriminator
is confident enough to make a prediction.

D. Co-training

While our architecture is constructed around separate dis-
criminator and explorer modules, we find that the interplay
and inter-dependencies between the two components make
independent training infeasible and suggest a co-training
framework. On one hand, training the discriminator requires
a labeled dataset with partial observations of object geometry,
but the distribution of partial observability highly depends on
the exploration policy. On the other hand, training the explorer
needs termination signals provided by the discriminator. This
termination signal can highly affect the explorer’s learning ef-
ficiency. Co-training is also important because any pre-trained
discriminator will not generalize well as the explorer evolves

0M 10M 20M 30M 40M
Steps (in Millions)

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

180

0M 10M 20M 30M 40M
Steps (in Millions)

0M 10M 20M 30M 40M
Steps (in Millions)

40

60

80

100

120

140

160

180

#
A

ct
io

n
s

Discriminator

Affect 
episode 

termination

Affect 
training

data 
distribution

Explorer

Fig. 3. Training plots of the discriminator and explorer, and illustration of
how they affect each other in the co-training process. The left and right plots
show the success rate and the number of actions over the last 100 episodes.
Results are averaged over three random seeds and one standard deviation is
shaded.

and implicitly changes the distribution of the data presented to
the discriminator. To handle this shift, the discriminator needs
to co-evolve with the explorer.

Our co-training process is shown in Alg. 1. Initially, both
discriminator and explorer are initialized randomly. We collect
an initial data buffer of labeled samples for the discriminator
with a randomly initialized explorer. In the co-training loop,
we first train the discriminator using the data buffer. Then
we fix the discriminator, train the explorer, and, at the same
time, push the partially observed occupancy grids collected by
the explorer along with their ground truth identities into the
data buffer. The updated data buffer is used for discriminator
training in the next iteration.

Algorithm 1: Co-training Discriminator and Explorer

Initialize discriminator randomly;
Initialize explorer randomly;
Collect an initial data buffer D using the explorer;
while steps < maximum step do

Train the discriminator for Nd epochs;
Fix the discriminator, train the explorer for Ne

steps, and push all occupancy grids (with object
identity labels) collected by the explorer into data
buffer D;

end

In this process, the discriminator affects episode termination
and the explorer affects partial observability of the labeled
training data (Fig. 3). The explorer is rewarded when the
discriminator becomes certain and terminates the episode;
thus, it learns to make the discriminator confident as quickly
as possible. Batch training of the discriminator with samples
collected by the explorer also facilitates data reuse and effi-
ciency. Every time one component gets improved, the other
component adapts to the distributional shift. Because updates
happen with each iteration, this shift is manageable. As a
result, the discriminator and the explorer co-evolve, gradually
pushing the other to improve and eventually converge.

IV. EXPERIMENTS

In this section, we describe our experimental setup, in both
simulation and the real world1. Our method is trained entirely

1For real-world video demonstrations or more information, please visit our
project website at https://jxu.ai/tandem.

https://jxu.ai/tandem


XU et al.: TANDEM: LEARNING JOINT EXPLORATION AND DECISION MAKING WITH TACTILE SENSORS 5

TABLE I
COMPARATIVE PERFORMANCE OF VARIOUS METHODS IN SIMULATION UNDER 0.1% AND 0.5% SENSOR FAILURE RATE. FOR EACH METHOD, WE

PRESENT THE NUMBER OF ACTIONS TAKEN (#ACTIONS) AND THE NUMBER OF PIXELS EXPLORED (#EXPLORED PIXELS) BEFORE MAKING A
PREDICTION, AS WELL AS THE SUCCESS RATE IN IDENTIFYING THE CORRECT OBJECT (SUCCESS RATE). MEAN AND STANDARD DEVIATION OVER 1,000

TRIALS ARE SHOWN. A DETAILED DESCRIPTION OF EACH METHOD CAN BE FOUND IN SEC. IV-C.

Methods 0.1% Sensor Failure 0.5% Sensor Failure
#Actions #Explored Pixels Success Rate #Actions #Explored Pixels Success Rate

Random-walk 1427 ± 654.8 354.8 ± 148.9 0.31 1350 ± 667.4 338.3 ± 148.5 0.27
Not-go-back 684.5 ± 565.9 466.6 ± 320.4 0.49 621.4 ± 524.7 427.9 ± 293.8 0.43

Info-gain 435.1 ± 397.5 341.7 ± 250.3 0.45 365.1 ± 360.6 291.2 ± 232.2 0.42
Edge-follower 60.05 ± 218.6 33.01 ± 15.95 0.91 95.24 ± 282.5 32.48 ± 32.81 0.75

Edge-ICP 136.1 ± 339.1 72.29 ± 16.78 0.94 400.6 ± 719.4 75.63 ± 41.35 0.81
PPO-ICP 921.2 ± 679.1 286.2 ± 189.6 0.35 860.4 ± 698.3 231.7 ± 172.4 0.31
All-in-one 28.63 ± 207.8 3.827 ± 6.735 0.23 66.05 ± 328.0 6.229 ± 15.15 0.22

TANDEM (ours) 54.97 ± 106.5 44.74 ± 37.32 0.96 64.76 ± 109.3 49.71 ± 36.27 0.95

in simulation; it can then be tested either in simulation or
on a real robot. We present an extensive set of comparisons
against a number of baselines in simulation, then validate the
performance of our method on real hardware.

A. Setup

Our experiments assume a tactile finger that moves on
a 30cm by 30cm plane and is always perpendicular to the
plane (Fig. 1). The target object is placed roughly at the
center of the workspace in any random orientation. The
object is fixed and does not move after interaction with the
finger. At each time step t, the robot can execute an action
at ∈ A = {up, right, down, left} which corresponds to a 5mm
translation in the 4 directions on the plane. After each action,
the robot receives a binary collision signal st ∈ {0, 1}, where 0
indicates collision and 1 indicates collision-free. As described
above, this information is encoded in an occupancy grid with
a 5mm cell size.

In real-world experiments, we use the DISCO finger [8]
as our tactile sensor (Fig. 1), but discard additional tactile
information (such as contact force magnitude) and only rely
on touch/no-touch data. We mount the finger on a UR5 robot
arm. For simulation, we use the PyBullet engine and assume
a floating finger with similar tactile capabilities.

Sensor noise is an important consideration since most real-
world tactile sensors exhibit some level of noise in their
readings, and ours is no exception. It is important for any
tactile-based methods to be able to handle erroneous readings
without compromising efficiency or accuracy. In particular, we
found through empirical observations of our sensors that the
chance of an incorrect touch signal being reported is around
0.3% - 0.5%. We thus compared all the methods presented
below for relevant levels of tactile sensor noise. For learning-
based methods, we also have the option of simulating noise
during the training process in order to increase robustness; in
our case, we simulate a 0.5% sensor failure rate in the co-
training process for our method.

We generate 10 polygons with random shapes as our test
objects, as shown in Fig. 1. These polygons are generated by
walking around the circle, taking a random angular step each
time, and at each step putting a point at a random radius.
The maximum number of edges is 8 and the maximum radius
for each sampled point is 10cm. We 3D-print these polygons

for real-world experiments or use their triangular meshes for
the simulated versions. For simulation, we decompose each
polygon into a set of convex parts for collision checking.

Each episode is terminated when the confidence of the
discriminator is greater than the preset threshold of 0.98 or
the number of actions has exceeded 2,000. At termination, the
prediction of the discriminator is compared to the ground truth
identification of that object to check success.

B. Training

We train our proposed method entirely in simulation. In each
co-training iteration, the discriminator is trained for Nd = 15
epochs on the data buffer of size |D| = 1e6, and the explorer
is trained for Ne = 2e5 steps. A 0.5% sensor failure noise is
applied during training.

Fig. 3 shows the training plots during our co-training
process. Our method’s ability to correctly recognize the ob-
ject (success rate) improves consistently during the process;
however, the number of actions taken for the explorer to
make the discriminator confident starts at a low level, first
increases, and then drops after peaking at around 5M steps.
Our discriminator is initialized randomly and when the training
starts, it is making bold decisions to terminate the exploration
quickly. This is why the number of actions starts low and the
success rate is also bad in the beginning. However, as more
and more labeled counter-examples of such wrong termination
are gathered by the explorer and added to the data buffer of
the discriminator, the discriminator starts to become cautious,
and thus the number of actions to make it confident grows. At
around 5M steps, a decent enough discriminator is obtained
for the explorer and discriminator to start co-evolving until
convergence.

C. Baselines

In order to evaluate the effectiveness of our learned ex-
ploration policy on the tactile object recognition task, we
choose to compare our approach to learned all-in-one (without
separating exploration and discrimination) and non-learned
(heuristic-based) baselines. The metrics that we are most
interested in are the number of actions and the success rate in
accurately identifying the objects. The methods we evaluate
are as follows:



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

1) Random-walk: This method generates a random move
at each step. A discriminator is trained with this exploration
policy for object identification and terminating exploration. We
apply a 0.5% sensor failure rate during training.

2) Not-go-back: Similar to Random-walk, except that the
random move generated at each time step is always to an
unexplored neighboring pixel.

3) Info-gain: This method uses the info-gain heuristics: it
also picks an action that leads to an unexplored pixel, but,
unlike Not-go-back which picks it randomly, it picks the action
that provides the most salient information. At time step t, let
p denote the probability distribution over 10 objects predicted
by the discriminator on the current grid. Let pw and pb denote
the new probability distributions if the newly explored pixel
turns out to be white and black respectively, after applying a
particular action. Then the action at is chosen by:

at = argmax
a∈A

{
H(p)−

(
1

2
H(pw) +

1

2
H(pb)

)}
where H denotes the entropy of a probability distribution. It
uses entropy as a measure of uncertainty and picks an action
that provides the most information gain (reduces the most
uncertainty). A discriminator is trained and we apply a 0.5%
sensor failure rate during training.

4) Edge-follower: This method uses the popular contour-
following heuristic as the exploration policy. A discriminator
is trained in this method but we do not apply sensor noise
during training. We notice that when applying sensor noise
during training, the performance of the Edge-follower drops
significantly. This is because Edge-follower can sometimes get
trapped at locations where a collision-free pixel is identified as
collision and starts circling that pixel. In such a case, unlike
other methods such as Random and Not-go-back, the Edge-
follower can not keep exploring with random actions. Thus, the
discriminator trained in Edge-follower becomes unnecessarily
cautious but its exploration policy is not able to increase its
confidence.

5) Edge-ICP: This method uses the same exploration pol-
icy as Edge-follower. However, instead of training a learning-
based discriminator, it uses the Iterative Closest Point (ICP)
algorithm. The occupancy grid is converted to a point cloud
using the center location of each pixel. The discriminator runs
ICP to match the point cloud to each object using 36 different
initial orientations evenly spaced between [0◦, 360◦]. For each
object, the minimum error among all orientations represents
the matching quality. If the error is smaller than 0.0025cm
then the object is marked as a match. The output probability
distribution assigns equal probabilities to the matched objects
and zeroes to not-matched ones. There is no training required
for this method.

6) PPO-ICP: This method trains a PPO explorer using the
ICP discriminator as in Edge-ICP. A 0.5% sensor failure rate
is applied during training.

7) All-in-one: This method does not separate explorer and
discriminator. It has the same structure as the PPO explorer
proposed in our approach except that the action space has been
expanded to 14 actions. The first 4 actions correspond to a
move and the remaining 10 actions correspond to a prediction.

TA
N

D
E
M

(o
u
rs

)

E
d

g
e
-f

o
llo

w
e
r

(a) Performance Plots with Sensor Noise

(b) Exploration Behavior with Sensor Noise
(i) (ii) (iii) (iv)

75

100

125

#
A

ct
io

n
s

0.6

0.7

0.8

0.9

E
ff

e
ct

iv
e
 A

ct
io

n
 R

a
te

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Sensor Failure Rate (%)

0.4

0.6

0.8

S
u
cc

e
ss

 R
a
te

TANDEM (ours)

Edge-follower

Fig. 4. (a) Performance of TANDEM and Edge-follower as the sensor failure
rate increases from 0.6% to 2.5%. For #Actions, ± 0.1 standard deviation is
shaded. For Effective Action Rate, ± 0.2 standard deviation is shaded. With
higher sensor noise, both methods need more actions. However, TANDEM
retains a high success rate and action efficiency while those of Edge-follower
deteriorate continuously. (b) Exploration behavior of TANDEM and Edge-
follower when sensor failure happens. The location of the sensor failure
is circled in red (in the simulation we can ensure it occurs at the same
location for both methods). (i)(iii) show a sensor failure after contacting
object 1, and (ii)(iv) show a sensor failure before contacting object 5. For
these two examples, Edge-follower makes the wrong prediction with 39 and
6 actions while TANDEM correctly identifies the objects with 38 and 79
actions respectively.

If a prediction is made, the episode is terminated. A reward
of 1 is given only when the episode is terminated and the
prediction is correct. A 0.5% sensor failure rate is applied
during training.

8) TANDEM: This is our proposed method.

D. Comparative Performance Analysis

We compare all methods described above over a large set
of simulated experiments, as shown in Table I.

For both sensor noise levels we consider, TANDEM out-
performs the baselines in terms of both success rate and the
number of actions required. Only All-in-one uses fewer actions
at 0.1% sensor noise but at the price of an extremely low
success rate.

We attribute this gap in performance to multiple factors. For
example, while Random-walk or Not-go-back are clearly inef-
ficient exploration strategies, Info-gain is a popular heuristic-
based method and has been shown to be efficient in other
contexts by previous works. However, we found it to not work
well in conjunction with a CNN discriminator. Compared to
other methods, the Info-gain explorer is more dependent on



XU et al.: TANDEM: LEARNING JOINT EXPLORATION AND DECISION MAKING WITH TACTILE SENSORS 7

Fi
n
a
l 
G

ri
d

O
b
je

ct
 P

o
se

R
e
su

lt
s #Actions: 100

#Explored Pixels: 72
Ground Truth: 0

Prediction: 0

#Actions: 63
#Explored Pixels: 55

Ground Truth: 1
Prediction: 1

#Actions: 40
#Explored Pixels: 35

Ground Truth: 2
Prediction: 2

#Actions: 77
#Explored Pixels: 69

Ground Truth: 3
Prediction: 3

#Actions: 44
#Explored Pixels: 30

Ground Truth: 4
Prediction: 4

#Actions: 75
#Explored Pixels: 61

Ground Truth: 5
Prediction: 5

#Actions: 38
#Explored Pixels: 32

Ground Truth: 7
Prediction: 7

#Actions: 85
#Explored Pixels: 64

Ground Truth: 8
Prediction: 8

#Actions: 29
#Explored Pixels: 29

Ground Truth: 9
Prediction: 7

#Actions: 56
#Explored Pixels: 53

Ground Truth: 6
Prediction: 6

Fig. 5. 10 examples of our method on real robot experiments. The top row shows the object poses, the medium row shows the occupancy grids at termination,
and the last row shows the results for each trial. The first 9 examples are successful and the last one is a failure case. While sensor noise can happen anywhere
in a trial, it is easier to identify when it occurs before the contact. We highlight in red circles such sensor noise for objects 3 and 8. Our method is able to
bypass the noisy pixel, continue exploring and make the correct prediction.

4045505560657075808590
#Actions

0.75

0.80

0.85

0.90

0.95

1.00

Su
cc

es
s R

at
e 0.99 0.98

0.95
0.90.85

0.8
0.75

Fig. 6. Success Rate and #Actions when using different threshold values
(annotated in text box) in co-training. Each number is computed with 1,000
trials. Note that a threshold of 1 is too strict and the models converge at
around 1,500 actions and a 0.4 success rate.

the discriminator because the discriminator affects not only
the termination of each episode but also the action selection
at each time step. For the Info-gain explorer to be effective, it
likely requires a discriminator with high accuracy to begin
with, which our method does not. The All-in-one method,
which is not equipped with a dedicated discriminator, cannot
train decision-making directly using the labeled samples col-
lected by the explorer, leading to inefficient training and much
worse performance if given the same amount of training time
as TANDEM.

Edge-following, unsurprisingly, is an efficient exploration
heuristics for our task, given its 2D nature. Edge-follower
and Edge-ICP have the best performance among all baselines.
However, they are shown to be very sensitive to sensor noise,
in terms of both accuracy and efficiency. To further investigate
this aspect, we compared TANDEM and Edge-follower for
sensor failure chance further increased up to 2.5%. As shown
in Fig. 4, despite being trained with a fixed 0.5% sensor
noise, TANDEM maintains a high success rate even in the
presence of more noise. We also report the Effective Action
Rate (EAR) in this experiment, where EAR is computed as
#Explored Pixels / #Actions per episode, a metric reflecting
the effectiveness of the move in exploring new locations. We
can see that the actions generated by our method maintain
high exploration efficiency as shown by the EAR plot. In
comparison, both EAR and success rate drop as the sensor
failure rate increases for Edge-follower. Both methods need
longer episode lengths to handle larger sensor noise. Two
examples of exploration behavior under noise are shown in
Fig. 4. Edge-follower makes the wrong prediction for both

examples while TANDEM successfully handles both. This is
due to Edge-follower’s discrimination policy overfitting to the
edge-following behavior and not being able to explore further
after being trapped at an incorrect collision signal.

Unlike Edge-ICP, PPO-ICP struggles to achieve similar
performance. ICP needs a sufficient number of points to
achieve decent recognition accuracy and terminate the explo-
ration because it is not able to utilize non-collision pixels.
While the edge-following policy is good at collecting points
through constantly touching the object, the PPO explorer
struggles at learning similar behavior because of the extremely
sparse termination reward provided by ICP.

E. Confidence Threshold

The confidence threshold used by the discriminator to deter-
mine termination has a large effect on the performance of the
co-training framework. Our threshold value of 0.98 is chosen
empirically. Fig. 6 shows the number of actions and success
rate with different thresholds used in co-training. Smaller
confidence thresholds make the discriminator terminate the
exploration earlier. Thus, when the co-training converges,
fewer actions are needed but at the same time, the success
rate of correctly identifying the objects is worse. We choose
0.98 because it achieves a good trade-off between the success
rate (≥ 0.95) and the number of actions (≤ 65).

F. Real-World Performance

We validate the performance of TANDEM on a real robot.
We run 3 trials for each of 10 objects with random orientations
(30 trials total), with results shown in Table II.

Our method still achieves a high identification accuracy,
even if slightly lower when compared to simulation results at
a 0.5% sensor failure rate. Exploration efficiency, as illustrated
by the number of actions, is at similar levels. We attribute the
sim-to-real gap to imperfections in our noise models, shape
printing, and robot control.

Fig. 5 shows ten examples of TANDEM in operation, one
for each object in a random orientation, also showing the
occupancy grid at the moment that a decision is made. This
decision is correct 90% of the time despite the limited nature
of the information collected by that point. We also note that



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

TABLE II
REAL ROBOT EXPERIMENT RESULTS (MEAN AND STANDARD DEVIATION

OVER 30 TRIALS).

Method #Actions #Explored Pixels Success Rate

TANDEM 67.33 ± 23.47 53.95 ± 18.16 0.90 (27/30)

our method is robust enough to handle sensor noise, even
before making first contact (objects 3 and 8). We also show a
failure case where our method incorrectly recognizes object 9
as object 7: both these polygons have a large opening triangle,
which makes them hard to distinguish when this area is under
contact. Our learned exploration policy is often similar to
edge-following, but has the added ability to handle sensor
noise, and also learns to take shortcuts when appropriate and
take advantage of non-collision pixels for discrimination: the
discriminator terminates the episode at a non-collision location
for object 0.

V. CONCLUSION

We present TANDEM, a new architecture to learn active and
efficient exploration policy with task-related decision making.
Our approach consists of distinct modules for exploration,
discrimination, and world encoding. Even though our approach
separates exploration and discrimination, they are co-trained
interweavingly. The explorer learns to reveal useful infor-
mation to the discriminator efficiently and the discriminator
adapts to the partial observability of labeled data collected by
the explorer. We show that they co-evolve and converge at
the end of the training process. We demonstrate our method
on tactile object recognition and compare our approach against
multiple baselines for exploration (such as edge-following and
info-gain) and recognition (such as ICP). Our experiments
show that TANDEM recognizes objects with a higher success
rate and lower number of movements. Our real-robot exper-
iments demonstrate that our approach, despite being trained
purely in simulation, transfers well to the real hardware, and
is robust to sensor noise. Future directions include generalizing
to high-dimensional tactile data and extending our framework
to also estimate object orientations and locations along with
object identities.

REFERENCES

[1] A. M. Okamura and M. R. Cutkosky, “Feature detection for haptic
exploration with robotic fingers,” The Intl. Journal of Robotics Research,
vol. 20, no. 12, pp. 925–938, 2001.

[2] P. K. Allen, “Object recognition using vision and touch,” 1985.
[3] M. Meier, M. Schopfer, R. Haschke, and H. Ritter, “A probabilistic ap-

proach to tactile shape reconstruction,” IEEE Transactions on Robotics,
vol. 27, no. 3, pp. 630–635, 2011.

[4] P. K. Allen, “Integrating vision and touch for object recognition tasks,”
The Intl. Journal of Robotics Research, vol. 7, no. 6, pp. 15–33, 1988.

[5] A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann, “Grasp affor-
dances from multi-fingered tactile exploration using dynamic potential
fields,” in 2009 9th IEEE-RAS Intl. Conf. on Humanoid Robots. IEEE,
2009, pp. 168–174.

[6] P. C. Gaston and T. Lozano-Perez, “Tactile recognition and localization
using object models: The case of polyhedra on a plane,” IEEE transac-
tions on pattern analysis and machine intelligence, no. 3, pp. 257–266,
1984.

[7] S. Skiena, “Problems in geometric probing,” Algorithmica, vol. 4, no. 4,
pp. 599–605, 1989.

[8] P. Piacenza, K. Behrman, B. Schifferer, I. Kymissis, and M. Ciocarlie, “A
sensorized multicurved robot finger with data-driven touch sensing via
overlapping light signals,” IEEE/ASME Transactions on Mechatronics,
vol. 25, no. 5, pp. 2416–2427, 2020.

[9] H. Liu, Y. Wu, F. Sun, and D. Guo, “Recent progress on tactile object
recognition,” Intl. Journal of Advanced Robotic Systems, vol. 14, no. 4,
p. 1729881417717056, 2017.

[10] A. Schmitz, Y. Bansho, K. Noda, H. Iwata, T. Ogata, and S. Sugano,
“Tactile object recognition using deep learning and dropout,” in 2014
IEEE-RAS Intl. Conf. on Humanoid Robots, pp. 1044–1050.

[11] C. Strub, F. Wörgötter, H. Ritter, and Y. Sandamirskaya, “Using haptics
to extract object shape from rotational manipulations,” in 2014 Intl. Conf.
on Intelligent Robots and Systems, pp. 2179–2186.

[12] F. Pastor, J. M. Gandarias, A. J. Garcı́a-Cerezo, and J. M. Gómez-
de Gabriel, “Using 3d convolutional neural networks for tactile object
recognition with robotic palpation,” Sensors, vol. 19, no. 24, p. 5356,
2019.

[13] P. K. Allen and K. S. Roberts, “Haptic object recognition using a multi-
fingered dextrous hand,” 1988.

[14] D. Watkins-Valls, J. Varley, and P. Allen, “Multi-modal geometric
learning for grasping and manipulation,” in 2019 Intl. Conf. on robotics
and automation. IEEE, 2019, pp. 7339–7345.

[15] U. Martinez-Hernandez, G. Metta, T. J. Dodd, T. J. Prescott, L. Natale,
and N. F. Lepora, “Active contour following to explore object shape
with robot touch,” in 2013 World Haptics Conf. (WHC). IEEE, 2013,
pp. 341–346.

[16] K.-T. Yu, J. Leonard, and A. Rodriguez, “Shape and pose recovery from
planar pushing,” in 2015 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems. IEEE, 2015, pp. 1208–1215.

[17] S. Suresh, M. Bauza, K.-T. Yu, J. G. Mangelson, A. Rodriguez, and
M. Kaess, “Tactile slam: Real-time inference of shape and pose from
planar pushing,” arXiv preprint arXiv:2011.07044, 2020.

[18] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager, “Tactile-
object recognition from appearance information,” IEEE Transactions on
Robotics, vol. 27, no. 3, pp. 473–487, 2011.

[19] P. Hebert, T. Howard, N. Hudson, J. Ma, and J. W. Burdick, “The next
best touch for model-based localization,” in 2013 IEEE Intl. Conf. on
Robotics and Automation. IEEE, 2013, pp. 99–106.

[20] D. Xu, G. E. Loeb, and J. A. Fishel, “Tactile identification of objects
using bayesian exploration,” in 2013 IEEE Intl. Conf. on Robotics and
Automation. IEEE, 2013, pp. 3056–3061.

[21] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and
W. Burgard, “Object identification with tactile sensors using bag-of-
features,” in 2009 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems. IEEE, 2009, pp. 243–248.

[22] D. Driess, P. Englert, and M. Toussaint, “Active learning with query
paths for tactile object shape exploration,” in 2017 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems. IEEE, 2017, pp. 65–72.

[23] S. Rajeswar, C. Ibrahim, N. Surya, F. Golemo, D. Vazquez, A. Courville,
and P. O. Pinheiro, “Touch-based curiosity for sparse-reward tasks,”
arXiv preprint arXiv:2104.00442, 2021.

[24] M. M. Zhang, N. Atanasov, and K. Daniilidis, “Active end-effector pose
selection for tactile object recognition through monte carlo tree search,”
in 2017 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. IEEE,
2017, pp. 3258–3265.

[25] J. A. Fishel and G. E. Loeb, “Bayesian exploration for intelligent
identification of textures,” Frontiers in neurorobotics, vol. 6, p. 4, 2012.

[26] N. F. Lepora, U. Martinez-Hernandez, and T. J. Prescott, “Active touch
for robust perception under position uncertainty,” in 2013 IEEE Intl.
Conf. on Robotics and Automation. IEEE, 2013, pp. 3020–3025.

[27] U. Martinez-Hernandez, T. J. Dodd, M. H. Evans, T. J. Prescott, and N. F.
Lepora, “Active sensorimotor control for tactile exploration,” Robotics
and Autonomous Systems, vol. 87, pp. 15–27, 2017.

[28] M. Kaboli, D. Feng, K. Yao, P. Lanillos, and G. Cheng, “A tactile-
based framework for active object learning and discrimination using
multimodal robotic skin,” IEEE Robotics and Automation Letters, vol. 2,
no. 4, pp. 2143–2150, 2017.

[29] M. Kaboli, K. Yao, D. Feng, and G. Cheng, “Tactile-based active object
discrimination and target object search in an unknown workspace,”
Autonomous Robots, vol. 43, no. 1, pp. 123–152, 2019.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.


	I Introduction
	II Related Work
	II-A Tactile Object Recognition
	II-B Tactile Exploration Policy
	II-B1 Passive mode
	II-B2 Semi-active mode
	II-B3 Active mode


	III Architecture
	III-A Encoder
	III-B Discriminator
	III-C Explorer
	III-D Co-training

	IV Experiments
	IV-A Setup
	IV-B Training
	IV-C Baselines
	IV-C1 Random-walk
	IV-C2 Not-go-back
	IV-C3 Info-gain
	IV-C4 Edge-follower
	IV-C5 Edge-ICP
	IV-C6 PPO-ICP
	IV-C7 All-in-one
	IV-C8 TANDEM

	IV-D Comparative Performance Analysis
	IV-E Confidence Threshold
	IV-F Real-World Performance

	V Conclusion
	References

