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Abstract—One of the main challenges in autonomous racing
is to design algorithms for motion planning at high speed, and
across complex racing courses. End-to-end trajectory synthesis
has been previously proposed where the trajectory for the
ego vehicle is computed based on camera images from the
racecar. This is done in a supervised learning setting using
behavioral cloning techniques. In this paper, we address the
limitations of behavioral cloning methods for trajectory synthesis
by introducing Differential Bayesian Filtering (DBF), which uses
probabilistic Bézier curves as a basis for inferring optimal
autonomous racing trajectories based on Bayesian inference. We
introduce a trajectory sampling mechanism and combine it with
a filtering process which is able to push the car to its physical
driving limits. The performance of DBF is evaluated on the
DeepRacing Formula One simulation environment and compared
with several other trajectory synthesis approaches as well as
human driving performance. DBF achieves the fastest lap time,
and the fastest speed, by pushing the racecar closer to its limits
of control while always remaining inside track bounds.

SUPPLEMENTARY VIDEO

This paper is accompanied by a narrated video of the
performance: https://youtu.be/5SezU0ICaug

I. INTRODUCTION

In motorsport racing, there is a saying that If everything
seems under control, then you are not going fast enough.
Expert racing drivers have split second reaction times and
routinely drive at the limits of control, traction, and agility
of the racecar - under high-speed and close proximity situa-
tions. Autonomous racing presents unique opportunities and
challenges in designing algorithms that can operate firmly on
the limits of perception, planning, and control.

While autonomous vehicle research and development is
focused on handling routine driving situations, achieving the
safety benefits of autonomous vehicles also requires a focus
on driving at the limits of the control of the vehicle. In
recent years autonomous racing competitions, such as F1/10
autonomous racing [1], [2] and the Indy Autonomous Chal-
lenge [3] are becoming proving grounds for testing motion
planning, and control algorithms at high speeds. With the
autonomous racing application in mind, this paper focuses on
the problem of trajectory synthesis or motion planning for
an autonomous racecar. In our previous work [4], we have
demonstrated end-to-end autonomous racing in the widely
popular Formula One (F1) game used by real F1 drivers.
Deep learning based approaches for trajectory synthesis for
autonomous vehicles have either been one where a trajectory

Fig. 1. The key idea in Differential Bayesian Filtering is that we fit Gaussian
distributions over a Bézier curve’s control points to generate a distribution of
trajectories that respect the ego vehicle’s dynamic limits.

is predicted via a prediction of future waypoints for the ego
vehicle to follow, or in some cases a parameterized curve
is predicted instead and waypoints are sampled from the
curve [5]–[7]. In either case, these techniques still rely on
supervised learning from expert behavior for predicting the
trajectory of the ego vehicle. Once the predicted trajectory
is computed a low-level controller such as pure-pursuit or a
model predictive control can follow that trajectory.

However, behavior cloning based trajectory synthesis is
brittle [8] because at best it can generate trajectories which
are averaged from the input/training data. These methods do
not generalize to computing trajectories which respect vehicle
dynamics, or track bounds at all times. Nor can they leverage
the knowledge of vehicle dynamics.

In this paper, we address major limitations of supervised
learning methods for trajectory synthesis for autonomous rac-
ing by introducing a new method called Differential Bayesian
Filtering (Fig. 1). This is a significant improvement over
previous methods for trajectory synthesis, and can be summed
up with 3 major contributions:

1) The ability to learn distributions over the space of desired
trajectories.

2) A Monte-Carlo sampling method for inferring closer-to-
optimal trajectories from those distributions

3) A filtering method to combine deep learning trajectory
synthesis with knowledge of the vehicle’s feasibility
limits.

We show empirically in Section VII that our novel framework,
built on top of Probabilistic Bèzier Curves and Monto-Carlo
based Bayesian inference, generates trajectories which are out-

ar
X

iv
:2

20
7.

07
58

7v
1 

 [
cs

.R
O

] 
 1

5 
Ju

l 2
02

2

https://youtu.be/5SezU0ICaug


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

side of the training data distribution and results in significantly
better performance than the best human driving example in the
training data.We select autonomous racing as the application
domain for our work, but it can generalize to motion planing
for any autonomous vehicle.

II. RELATED WORK

There is existing work on trajectory synthesis for au-
tonomous driving [9]–[11]. However, these works only con-
sider a “0th” order view of the problem i.e. planning a
trajectory based only on the ego vehicle’s position. They do
not consider any differential or higher order constraints which
are desirable for speed and acceleration behavior.

In [12], authors present a probabilistic approach for trajec-
tory synthesis which predicts a 4th order spline. However, [12]
does not consider distributions over the space of polynomials,
as we do, but uses Gaussians over fixed points along a
predicted polynomial as a convenient means of constructed
their network’s loss function. Additionally, [12] only uses
behavioral cloning which is not optimal and does not align
with the goal of pushing the vehicle to its limits.

Researchers have looked at the problem of determining an
optimal raceline [13], [14]. In these works, the raceline is
determined by an offline optimization that can incorporate
knowledge of vehicle dynamics. Our method, on the other
hand, is online and infers optimal behavior from desirable
characteristics of the vehicle’s motion at runtime. We aren’t
proposing a new method to find the optimal raceline for a
track, rather we are proposing a runtime method, that generates
fast trajectories for a racecar - which converges to the optimal
raceline when the racecar runs by itself but can also be
extended to multi-agent racing situations.

In [15]–[17], the authors use fully end-to-end style architec-
tures. I.e. images from the driver’s point of view are mapped
directly to control outputs for the car (steering and throttle).
However, this approach is very brittle and usually does not
generalize well to out-of-distribution images. Other work [18],
[19] remedies this limitation by using neural networks to
predict a series of waypoints for the autonomous vehicle to
follow. Waymo’s ChauffeurNet [20] learns to follow specified
waypoints and specified speeds. The survey in [21] also
lists several end-to-end architectures for autonomous driving.
Most use some form of Convolutional Neural Networks,
sometimes integrated with LSTM cells or another form of
recurrent network. For example, in [22], the authors utilize
a CNN-LSTM architecture for predicting a fixed number of
waypoints and velocities for the car to follow, similiar to
[20]. However, predicting sufficient waypoints leads to the
curse of dimensionality as the neural network needs to predict
proportionally more parameters to specify more waypoints. In
our method, we only need to predict the control points of
a parameterized Bezier curve, which fixes the dimensionality
of our problem and allows implicit encoding of the predicted
trajectories derivatives. [23] is an example of work which uses
Deep Reinforcement Learning (DRL) to autonomously race in
the Gran Turismo game. This is close to our work in terms of
the problem setting but very different in terms of methodology.

DRL techniques require numerous exploration runs of the
action space, including experiencing many crashes while learn-
ing to maximize racing related rewards. Our method requires
only a few hours worth of training data and is able to push the
car to its limits. Additionally, our Formula One DeepRacing
framework does not require any special access to the internal
state of the game engine - it is reproducible by anyone who
owns the game unlike the Grand Turismo work which required
changing game state to enable DRL.

We build upon our previous work in [24], [25] that uses
a neural network to predict a Bèzier curve as a canonical
representation of a desired trajectory for the autonomous
vehicle. This model was shown to outperform waypoint pre-
diction, and the parameterized representation is a convenient
form for applying Bayesian inference techniques to estimate a
more-optimal trajectory. We next present a brief overview of
probabilistic Bézier curves, an extension of Bèzier curves to a
Gaussian probability model, which will form the basis of our
Bayesian method for agile trajectory synthesis.

III. PROBABILISTIC BÈZIER CURVES

A Bézier curve is a parametric curve used in computer
graphics and related fields. The curve, a linear combination
of Bernstein polynomials, is named after Pierre Bézier, who
developed them to model Renault racecars. A Bézier curve is
formed from a combination of Bernstein polynomials (Eq 1)
that maps a scalar parameter s ∈ [0, 1] to a point in a euclidean
space of dimension d, Rd. More specifically, a Bézier curve
is a polynomial combination of a set of “control points”. A
Bézier curve of degree k isdefined by k+1 control points:
{C0,C1,C2, ...,Ck ∈ Rd}. The corresponding Bézier curve,
B : [0, 1]→ Rd, as a function of a unitless scalar, s, is:

bi,k(s) =

(
k

i

)
(1− s)k−isi (1)

B(s) =

k∑
i=0

bi,k(s)Ci (2)

Note that a Bézier curve always starts at C0 (s = 0) and ends
at Ck (s = 1). A Bézier curve’s derivative w.r.t s is:

dB

ds
= k

k−1∑
i=0

bi,k−1(s)(Ci+1 −Ci) (3)

Under this formulation, the scalar parameter s is just unitless
parameter on [0, 1]. To express the curve as a function of time,
we specify a total amount of time, ∆t, for the curve to go
from C0 to Ck. I.e. time, t, can be expressed as t = s∆t.
Equivalently, s = t

∆t . Under this formulation, the velocity
vector, w.r.t time, of a Bézier curve is simply:

ds

dt
=

1

∆t
(4)

dB

dt
=
ds

dt

dB

ds
=

1

∆t

dB

ds
(5)

∆t determines how fast the curve is as a function of time,
smaller ∆t implies a faster curve and a larger ∆t implies
a slower curve. How this chosen constant determines the
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Fig. 2. High-level view of autonomous racing. The driveable and undrivable
areas are L and ¬L, respectively. We present a Bayesian approach to
determining an optimal trajectory, Tθ , for the ego vehicle to follow.

velocity of the curve will be important for our Bayesian
formulation of path planning.

Hug et al. [26] introduced the concept of probabilistic
Bézier curves. A probabilistic curve is defined not by a fixed
set of control points, but by a set of mutually-independent
Gaussian distributions over each control point, where each
Gaussian vector is defined by a mean, Ci ∈ Rd, and a
covariance matrix, Σi ∈ Rd×d. I.e. a probabilistic Bézier
curve, B(s), is defined by:

{C0 ∼ N (C0,Σ0), ... , Ck ∼ N (Ck,Σk)} (6)

B(s) ∼
k∑
i=0

bi,k(s)Ci (7)

Where each Ci ∼ N (Ci,Σi) is independent of the others.

IV. PROBLEM FORMULATION

This work is focused on a Bayesian interpretation of tra-
jectory synthesis for autonomous racing. Given some sensor
inputs, an autonomous racing agent needs to generate a
trajectory to follow that represents desirable racing behavior,
where “desirable” means a trajectory that is as fast as possible
without violating any kinematic/dynamic constraints of the
vehicle or going outside the boundaries of the track. In this
work, a trajectory, which we denote as T , is a smooth curve in
the ego vehicle’s task space: R2. T is a set of points that can
be expressed as a C∞ function of time, such that the terms
velocity and acceleration have their intuitive meaning: the first
and second time derivatives of the curve, respectively. For this
work, we focus on trajectories that can be fully described by a
set of parameters: θ. We denote such a parameterized trajectory
as Tθ. For this work, we take θ to be the control points of a
Bèzier Curve. Figure 2 gives a high-level overview of this
problem setting. An autonomous racing agent needs to select
a parameterized trajectory that is as fast as possible without
leaving the drivable area or exceeding the car’s physical
limits. Once a trajectory is selected, a classical path-following
algorithm can be used to decide on steering and throttle
commands for the ego vehicle. In this work, we select a Pure
Pursuit controller [27], but other path-following algorithms
(such as a Model Predictive Controller) could be used - the

Fig. 3. A neural network is trained the predict T ∗ (in black) 2.25[s] into
the future based on images from the driver’s point-of-view. However, it’s
predictions (in green) can be incorrect. We show that our Bayesian framework
can mitigate the effect of incorrect network predictions and produce more
optimal behavior.

choice is agnostic to our framework. The optimal racing line
(ORL), T ∗, is the trajectory with maximal average velocity
(over time, t) that is both achievable under the car’s dynamic
limits and is wholly contained within the track boundaries.
Let Λ(T ) be a boolean function that is true iff T is physically
achievable. We denote the region within the track bounds with
the symbol L. If Ṫ and |Ṫ | represent the velocity and speed,
respectively, of T , the optimal racing line is:

T ∗ = argmax(T ) Et[|Ṫ |] : (T ⊂ L) ∧ Λ(T ) (8)

We present a method of Bayesian inference, called Differential
Bayesian Filtering, to estimate T ∗, which can then be passed
to a path-following algorithm. This technique is an extension
of our previous work in [24], [25] that uses a sequence of
images as the input to a neural network, called AdmiralNet,
that was trained to predict the control points of a Bèzier curve
approximation to T ∗. For details on AdmiralNet’s architecture,
we refer the reader to [24]. However, our work in [24] only
provides a deterministic Bèzier curve that might be incorrect
for images that the neural network has never seen before
(Fig. 3). To address this limitation, we use Bayesian inference
for improving the point estimate by taking the output of that
neural network as the mean of a probabilistic Bèzier curve to
serve as a Gaussian prior distribution for Bayesian inference.

V. RACELINE ESTIMATION

We utilize Sequential Quadratic Programming (SQP) to
specify the optimal racing line that the neural network is
trained to predict. To start, we select the minimum curvature
path that completes the entirety of the racetrack and stays
within the track boundaries, a set of points, P :

P =
argmin

[p0, p1, ..., pN−1]

N−1∑
i=0

κi (9)

Where [p0, p1, ..., pN−1] ∈ R2 traverses the entirety of the
racetrack and κi is the curvature of the path at pi. However,
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this is just a set of points in R2. To specify the optimal
raceline as a trajectory (a function of time), we utilize SQP
optimization to assign a speed at each point on the minimum
curvature path, from which a time at each point readily
follows. We uniformly sample points at 1.5m intervals from
the minimum curvature path , such that vi is the desired speed
along the path at the point pi. We then impose two inequality
constraints on the square of the car’s speed (v2) at each point:

First, we limit the centripetal (lateral) acceleration, ac, of
the car to 26.5 [m/s2] (∼2.7G). Real F1 cars experience ∼
3− 4G of centripetal acceleration, so we select this limit as a
conservative estimate.

v2
i

Ri
≤ 26.5[m/s2] ∀i (10)

Where Ri = 1
κi

is the radius of curvature of the path at
pi. Second, we limit the longitudinal acceleration, al, of the
car by assuming the car’s longitudinal acceleration is constant
between each pi. Let ∆r represent the path-length between any
two adjacent points on the path and al represent longitudinal
(forward) acceleration. This constraint is then:

vi
2 = vi−1

2 + 2ali−1∆r (11)

Because we discretize the path at intervals of ∆r = 1.5[m]:

amin(vi−1) ≤ vi
2 − vi−1

2

3
≤ amax(vi−1) (12)

amax is a function that maps the car’s speed to the maximum
forward acceleration the car can achieve at that speed, which
decreases as the car goes faster due to drag. amin is a function
that maps the car’s speed to the fastest braking rate the car can
achieve at that speed (a negative sign here indicates braking).
This will also decrease (braking is negative acceleration) as the
car goes faster, because drag helps the car slow down more
at higher speeds. The closed form of amax and amin is very
complex, as they both involve the complex aerodynamics of an
F1 car body. For this work, we determine amin and amax with
step-response test on the car in the DeepRacing testbed and
measured the maximum achievable acceleration and braking
as a function of speed. We use linear interpolation on these
data as amax and amin.

Setting optimal velocities at each point then becomes
a vector-space optimization problem. Given a vector
v = [v2

0, v
2
1, ..., v

2
N−1], we determine velocities on the

minimum-curvature path to be the solution to:

max

N−1∑
i=0

vi s.t. Av ≤ γ1, Bv ≤ γ2, Bv ≥ γ3 (13)

A = diag([
1

R0
,

1

R1
, ...,

1

RN−1
]) (14)

B =


−1
3

1
3

0 ... 0
0 −1

3
1
3

... 0
...

0 0 ... −1
3

1
3

1
3

0 ... 0 −1
3



γ1 =


26.5
26.5
...

26.5
26.5

 γ2 =


amax(v0)
amax(v1)

...
amax(vN−2)
amax(vN−1)

 γ3 =


amin(v0)
amin(v1)

...
amin(vN−2)
amin(vN−1)


We then train our neural network architecture to predict

this raceline, T ∗, 2.25[s] into the future. 2.25[s] was selected
as the duration of a typical braking zone for an F1 car.
The input to this neural network is a sequence of images
from the ego vehicle’s point of view. Its output is a Bézier
curve approximation of T ∗, starting at a point on the raceline
closest to the ego vehicle, as seen in Figure 3. However,
since this output is generated using supervised learning, it
may not be correct as the network may encounter input image
sequences which are outside of the training distribution. This
network prediction serves to specify a prior distribution for
our Bayesian filtering framework.

VI. DIFFERENTIAL BAYESIAN FILTERING

Since the differential properties of T ∗ are well-defined, they
can serve as the basis for inferring the optimal raceline given
a prior. Specifically, for the optimal raceline:

1) E[| ˙T ∗|] (Eq. 8) is maximized.
2) T ∗ respects the vehicle’s dynamic constraints.
3) The signed distance from T ∗ to the track bounds is

strictly non-positive. “Signed distance” means euclidean
distance to the track boundary, but with a negative sign
for points inside the track boundaries.

The goal of Differential Bayesian Filtering is to infer a
Bèzier curve approximation of T ∗ by performing Bayesian
estimation on T ∗’s differential properties, even if the global
properties of T ∗ are not known. In the context of our problem,
this means that the resulting curve should have a higher
average velocity, but still be within the track bounds and be
physically achievable by the ego vehicle.

Recall that we take the control points of Bèzier curve to
be the parameters, θ, of our estimate of the optimal raceline:
Tθ. I.e. θ = {C0,C1, ...,Ck−1} as described in section
III. We use a probabilistic Bèzier curve, Equation 6 from
Section III, as a prior distribution, p(θ), and apply recursive
Bayesian estimation with a likelihood function derived from
T ∗’s differential properties to infer a more accurate estimate
of true optimal behavior. In general, for any curve that can be
parameterized by θ, Bayes’ Theorem says:

p(θ|x) =
l(θ|x)p(θ)∫
l(θ|x)p(θ)dθ

(15)

The evidence, x, is sensor data or other state information that
is available to the autonomous agent. For this work, we take
this evidence to be the following:

1) A permissible offset distance from the track boundaries
2) The maximum allowed longitudinal acceleration.
3) The maximum allowed centripetal acceleration.

l(θ|x) is a function of θ and x that represents the likelihood
that Tθ (the trajectory defined by θ) is the optimal raceline
given the evidence, x. The prior, p(θ), and likelihood function,
l(θ|x), are the defining features of a Differential Bayesian
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Filtering model. Intuitively, this likelihood should be selected
such that curves with desirable differential properties have
a higher likelihood and curves with undesirable differential
properties should have a lower likelihood, such that the pos-
terior distribution, p(θ|x), represents a more accurate belief
about T ∗. Other desirable racecar behaviors such as collision-
free trajectories for multi-agent racing could be incorporated
as another likelihood function in the future.

A. Gaussian Prior on T ∗

For this work, we use a Probabilistic Bezier Curve as the
basis for a prior distribution on the parameters of the optimal
racing line. We take the point-estimate output of our neural
network model in [24] as the mean of our prior distribution
and with identity covariance. I.e. our prior p(θ) is as follows:

{N (Ĉ0,

[
1.0 0
0 1.0

]
), ... N (Ĉk,

[
1.0 0
0 1.0

]
)} (16)

Where {Ĉ0 ... Ĉk} are the point-estimate control points of
the curve predicted by our neural network. Identity covariance
is chosen for this initial work for simplicity, but other priors
could be specified, e.g. where the covariance is determined
based on the trajectories from the training data.

B. Likelihood Specification for T ∗

We want to specify our Bayesian model to make physically
infeasible or out-of-bounds curves less likely and feasible
curves that remain in-bounds more likely. To achieve this goal,
we utilize Bayes’ Theorem where the likelihood function is a
function of the differential properties of the trajectory defined
by θ, rather than a function of only θ:

p(θ|x) =
l(Tθ, Ṫθ, T̈θ|x)p(θ)∫
l(Tθ, Ṫθ, T̈θ|x)p(θ)dθ

(17)

Note that under this formulation, there need not be a direct
connection between the evidence, x, and the true parameters
of T ∗. In our case, the likelihood is a function of the
derivatives of T ∗. To formally specify this likelihood, let
ac and al represent centripetal and longitudinal acceleration,
respectively. Let d(Tθ) be the maximum signed distance from
Tθ to the track boundaries. In this context, “signed distance”
is Euclidean distance but with a negative sign for points on Tθ
that are inside the track bounds and a positive sign for points
outside the bounds. We define acceleration likelihoods (Eqs.
18, 19) and a boundary likelihood (Eq. 20) as follows:

l1(Ṫθ, T̈θ) =

{
e−β1∆ac(Ṫθ,T̈θ), ∆ac(Ṫθ, T̈θ) > 0

1, otherwise
(18)

l2(Ṫθ, T̈θ) =

{
e−β2∆al(Ṫθ,T̈θ), ∆al(Ṫθ, T̈θ) > 0

1, otherwise
(19)

l3(Tθ ⊂ L) =

{
e−β3(d(Tθ)−dmin), d > dmin
1, otherwise

(20)

In this context, ∆ac(Ṫθ, T̈θ) represent how much Tθ violates
the centripetal acceleration limits of the car; ∆ac(Ṫθ, T̈θ) > 0

implies the curve is too aggressive (too much centripetal accel-
eration) and ∆ac(Ṫθ, T̈θ) <= 0 implies the curve is within the
limit. ∆al represents the same function, but for longitudinal
acceleration (braking/throttling). These deltas refer to the same
feasibility limits (linear and centripetal acceleration) that were
used when determining the optimal raceline for training the
neural network. We refer to trajectories that exceed these
acceleration limits as infeasible trajectories and to trajectories
within the limits as feasible trajectories. β1, β2, β3, and dmin
are all tuneable hyperparameters. These parameters represent
how strongly each factor of the likelihood function should be
weighted. Our likelihood function for Bayesian inference is
the product of these three factors:

l(Tθ, Ṫθ, T̈θ|x) = l1(Ṫθ, T̈θ)l2(Ṫθ, T̈θ)l3(Tθ ⊂ L) (21)

The core idea is that, given a prior distribution that is at
or beyond the limits of control, our likelihood model infers
optimal behavior by encouraging feasible trajectories that are
within bounds and discouraging infeasible or out-of-bounds
trajectories. Our method is not limited to these definitions of
feasibility or to these specific acceleration limits, they are just
a simplifying choice. More complex vehicle dynamics could
also be included in our approach by specifying an appropriate
likelihood function based on such a model, to account for slip
angles, tire forces etc.

C. Sampling-Based Differential Bayesian Filtering

The closed-form solution to the posterior distribution under
our formulation is not readily obvious. To remedy this, we now
describe a sampling-based approach for generating samples
from the posterior distribution without the need to solve for
it analytically. We employ Monte Carlo-based sampling from
the posterior distribution over θ given the likelihood specified
in subsection VI-B and the prior from subsection VI-A, p(θ).
We draw a sample of N curves p(θ): [θ1, θ2, θ3, ..., θN ] from
p(θ). These N curves are then assigned a weight based on
equations 18, 19, and 20. This approach is extensible to
more sophisticated sampling schemes such as Adaptive Monte
Carlo, but a fixed number of samples is used in this work. We
then employ a re-sampling step to infer a posterior distribution.
Each sample θi is assigned a weighting factor γi according to:

α(θi) = l1( ˙Tθi , T̈θi)l2( ˙Tθi , T̈θi)l3(Tθi ⊂ L) (22)

γ(θi) =
α(θi)∑N
i=1 α(θi)

(23)

l1, l2, and l3 refer to equations 18, 19, and 20, respectively. The
mean of the posterior distribution is then taken as

∑N
i=1 γi∗θi.

This process repeats for a desired number of iterations. Algo-
rithm 1 describes the high-level loop of our approach. Figure 4
depicts our approach graphically. After sampling the grey
curves and assigning their weights, γi, the posterior mean (in
green) is inside the track bounds and is dynamically feasible
while maintaining a high speed.
Novelty of DBF compared to Behavioral Cloning ap-
proaches: The novelty of the DBF method is the following:
(1) Instead of tuning a neural network for predicting a single
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Fig. 4. One step of the Differential Bayesian Filtering algorithm. The prior
(unfiltered) curve in red is infeasible, with too much centripetal acceleration.
Our filtering approach produces a posterior (in green) that is closer to optimal
with a softer arch that still maintains it’s speed.

parameterized trajectory as one would in a behavioral cloning
setting, we view the problem as one of learning probability
distributions over the parameters of the optimal trajectory;
(2) At runtime, we sample from the learned distributions to
create candidate trajectories; (3) Using our likelihood speci-
fication, we emphasize samples with desirable properties and
discourage samples with undesirable properties; (4) Finally, we
use a weighting factor based on this likelihood to generate a
posterior distribution that exhibits more optimal behavior. This
approach differs from the typical view of a machine-learned
trajectory synthesis model by incorporating knowledge of the
vehicle’s dynamics to improve the point-estimate produced by
a deep model.

VII. EXPERIMENTS & RESULTS

We now present an empirical evaluation of Differential
Bayesian Filtering in a high-speed, Formula One racing en-
vironment. We use the neural network architecture from our
previous work in [24] to provide a point estimate of a Bèzier
Curve approximation to the optimal racing line, T ∗, given a
sequence of images taken from the driver’s point-of-view, as
shown in Figure 3. This point estimate serves as the mean
of our prior distribution, but with one key change. We scale
the time delta, ∆t, that the neural network was trained to
predict by a factor of 1

1.15 ≈ .870. I.e. we scale up the
velocities of the prior by a factor of 15%. Because centripetal
acceleration is proportional to the square of velocity, this
would increase the centripetal acceleration of the prior by
a factor of 1.152 ≈ 1.323. With no other changes to the
trajectory, this would push the car beyond its feasibility limits
(we show this empirically in subsection VII-A).Even though
this scaled trajectory is infeasible, we use this as a prior
- meaning that the mean of the distribution is dynamically
infeasible and will cause the racecar to spin out. This unstable
prior is chosen in order to encourage the Bayesian sampling
to produce candidate trajectories which are a mix of both
stable and unstable raceline estimates. Consequentially, this
increases the probability of finding a trajectory that is close
to the vehicle’s limits, but does not exceed them.Differential
Bayesian Filtering improves this initial unstable prior into a
more optimal Bèzier curve that is both dynamically feasible

and faster than the neural networks point estimate. The result-
ing optimal Bézier curve is then passed to a Pure Pursuit [27]
controller to generate steering and throttle commands for the
autonomous racing agent. This Pure Pursuit controller uses an
adaptive lookahead based on a control law of ld = 0.4v with
ld and v representing lookahead distance and the car’s current
speed, respectively. We evaluate the unfiltered approach, where
just the point estimate off the neural network (with no velocity
scaling) is passed straight to Pure Pursuit, as well as a filtered
model with Differential Bayesian Filtering on the unstable
prior to produce a posterior that is within the car’s limits.

In addition, we also compare our approach to two other
models that uses a behavioral cloning approach to mimic
an expert human driver’s behavior instead of following the
optimal racing line. One of these models was trained to predict
a Bèzier Curve that mimics the trajectory taken by the expert
human driver. The other is closer to Waymo’s ChauffeurNet
[20] and predicts a series of waypoints followed by the expert
example. We also include performance results when the Pure
Pursuit controller is given ground-truth knowledge of the SQP-
generated raceline the network was trained on.

Each model is run for 5 laps in our DeepRacing framework,
using Codemaster’s F1 2019 racing video game and the
DeepRacing closed-loop autonomous racing infrastructure [4].
On each run, we measure the following metrics:

1) Overall Lap Time
2) Average Speed
3) How many times the autonomous agent went outside the

track bounds, what we call a “Boundary Failure” - Such
a failure is defined as when ≥ 3 of the vehicle’s tires go
out of bounds.

In these experiments, order 7 curves were chosen (k=7) based
on heuristics. Table I shows the values we use for all of the
hyperparameters for our approach defined in section VI. Table
II summarizes the performances of DBF in the DeepRacing
simulator (means across 5 laps). DBF has the fastest overall lap
time and the fastest average speed. This implies our method
is taking a more efficient racing line and is doing so more
aggressively without exceeding dynamic limits of the car. It is
also worth noting that our method has no boundary failures.
Our approach also improves lap time by ∼ 4.458[s] on average
from the unfiltered neural network’s raceline predictions. In
the world of high-speed racing, where winners/losers can
be decided by millisecond time differences, this is a very
significant improvement. We also achieve lap times superior to
the human driving examples used to train the neural network
by ∼ 2.4[s]. I.e. our technique pushes the vehicle faster
than even the fastest example in the neural networks training
distribution. All of our experiments were conducted on a PC
with 12 CPU cores and an NVIDIA GTX1080Ti GPU. Each
iteration of the filtering loop (250 samples) required an average
of 0.034[s] of computation time, implying a rate of ∼ 29[Hz]
for each iteration of DBF. Our overall algorithm, including
a call to AdmiralNet and the pure pursuit controller, runs at
10[Hz].
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TABLE I
HYPERPARAMETERS USED FOR OUR EXPERIMENTS

Hyperparameter Value
β1 (Eqn 18) 1.75
β2 (Eqn 19) 2.5
β3 (Eqn 20) 3.5
dmin (Eqn 20) -0.875 meters

N (# of samples in VI-C) 250

TABLE II
RESULTS FROM EXPERIMENTS IN THE F1 SIMULATOR

Model
Configuration

Lap
Time

[s]

Overall
Speed
[m/s]

Number of
Boundary
Failures

Waypoint Prediction
(Behavioral Cloning) 106.683 49.245 5.6

Bézier Curve Prediction
(Behavioral Cloning) 101.72 52.193 1.8

Unfiltered Raceline
Prediction 91.219 58.109 0

Fastest Human Lap
(Training Data) 89.177 59.439 1

Ground-Truth Raceline 88.046 60.186 0
Raceline Prediction w/

Differential Bayesian Filtering (Ours) 86.761 61.092 0

Nicholas Latifi
(in real-life 2019 Australian Grand Prix) 86.067 Unknown 0

Lewis Hamilton
(in real-life 2019 Australian Grand Prix) 80.486 Unknown 0

Differential Bayesian Filtering outperforms the other methods and
the best human lap in the training data by a significant margin. Our

method is also very close to competing with real F1 drivers.

A. Dynamics Analysis

We also present evidence that our method is achieving our
stated goal, pushing the vehicle its limits. The Turn 3/Turn
4 chicane of Albert Park Circuit is a particularly challenging
turn. It requires braking from almost max speed and navigate
an S-shaped chicane. Fig 5 shows this chicane and how DBF
(green curve) maintains speed through the turn by utilizing the
available track width. Fig 6 shows the centripetal acceleration
the car experiences in this chicane while controlled by each
of 3 trajectory planners:

Albert Park 
Circuit

Naively scaling the velocity 
results in the car spinning out

DBF carries more speed through the 
corner without exceeding the centripetal

accelera�on limit

Fig. 5. Turn3/Turn4 Chicane of Albert Park Circuit. Note that our methods
results in a faster path (green) that carries more speed through the turn. The
unstable prior (red) is not physically achievable and results in a crash.
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Fig. 6. Our artificially accelerated prior is dynamically infeasible and causes
the car to spin out on the Turn3-Turn4 chicane. Differential Bayesian Filtering
brings that prior back within the car’s physical limits. Our specified dynamic
limit of 26.5[m/s2] is marked on the lower plot. Our approach pushes the car
right up to its dynamic limit, but does not exceed it. For the unstable prior,
both plots end at the point the car spins out.

1) The unfiltered neural network predictions
2) The artificially accelerated (unstable) prior distribution
3) Our Differential Bayesian Filtering method
4) The best human example lap from our training set
The horizontal line shows the dynamic limit we assigned

to the car. Note that when following the neural network’s
unfiltered predictions (dashed blue in Figure 5), the car drives
too passively. There is significant room for the vehicle to
drive faster without exceeding the vehicle’s dynamic limits.
Also note that when pushed faster artificially (as with our
selected prior, dotted red in Figure 5), the car sees far too
much centripetal acceleration (see Figure 6, even human
drivers don’t push the car that hard). The vehicle becomes
unstable and spins out halfway through the chicane under these
conditions. Our method results in the best of both worlds.
The vehicle operates right at its dynamic limits, but does not
exceed them. The vehicle carries more speed through the turns,
but with an acceptable level of centripetal acceleration. This
manifests as overall faster lap times.

In sum, we show that Differential Bayesian Filtering can
produce a higher-performance racing agent that drives more
aggressively (better lap time & speed) and more safely (not
going out-of-bounds) than only following point estimates of
the optimal racing line produced by a convolutional neural net-
work. This technique is also generalizable to more application-
specific likelihood models and prior distributions.

VIII. CONCLUSION

This paper presents Differential Bayesian Filtering, a novel
Bayesian framework for trajectory synthesis in high-speed
autonomous racing situations. Our method can be used to
infer optimal trajectories from known differential properties
of the optimal racing line by framing the problem as recursive
Bayesian estimation on the control points of a Bèzier curve.
We also present a sampling-based Monte Carlo method for
DBF on Bèzier curves. We evaluate the performance of DBF
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using our Formula 1 simulator, and show that it results in the
overall best performance, compared to other approaches and
the expert driving examples, on a variety of racing metrics.
Future work includes extending this approach to a multi-agent
racing setup as well changing the input space of the network
from pixels of images to a canonical view of autonomous
driving (e.g. the current state of the ego and any other agents)
as the input space.

REFERENCES

[1] Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack Harkins,
Chris Kao, Yash Vardhan Pant, Rahul Mangharam, Dipshil Agarwal,
Madhur Behl, Paolo Burgio, et al. F1/10: An open-source autonomous
cyber-physical platform. arXiv preprint arXiv:1901.08567, 2019.

[2] Varundev Suresh Babu and Madhur Behl. f1tenth. dev-an open-
source ros based f1/10 autonomous racing simulator. In 2020 IEEE
16th International Conference on Automation Science and Engineering
(CASE), pages 1614–1620. IEEE, 2020.

[3] Indy autonomous challenge. url=https://www.indyautonomous
challenge.com/, journal=Indy Autonomous Challenge.

[4] Trent Weiss and Madhur Behl. Deepracing: A framework for agile
autonomy. Design, Automation and Test in Europe Conference, 2020.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[6] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun,
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