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Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing
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Abstract— The recent development of novel aerial vehicles
capable of physically interacting with the environment leads
to new applications such as contact-based inspection. These
tasks require the robotic system to exchange forces with
partially-known environments, which may contain uncertainties
including unknown spatially-varying friction properties and
discontinuous variations of the surface geometry. Finding a
control strategy that is robust against these environmental
uncertainties remains an open challenge. This paper presents a
learning-based adaptive control strategy for aerial sliding tasks.
In particular, the gains of a standard impedance controller are
adjusted in real-time by a policy based on the current con-
trol signals, proprioceptive measurements, and tactile sensing.
This policy is trained in simulation with simplified actuator
dynamics in a student-teacher learning setup. The real-world
performance of the proposed approach is verified using a tilt-
arm omnidirectional flying vehicle. The proposed controller
structure combines data-driven and model-based control meth-
ods, enabling our approach to successfully transfer directly
and without adaptation from simulation to the real platform.
Compared to fine-tuned state of the art interaction control
methods we achieve reduced tracking error and improved
disturbance rejection.

I. INTRODUCTION

Aerial interaction tasks such as contact-based inspec-
tions [1]-[3] require the flying vehicle to slide a sensor along
the surface to be inspected and maintain contact. The state
of the art proposes several solutions for the related general
push-and-slide problem [4]. Most existing approaches show
interactions with simple continuous surfaces (e.g., planes,
cylinders, etc), where the geometry is assumed known and
friction properties are assumed to be identical everywhere
(i.e., homogeneous) [5]-[7].

However, in real applications, interaction surfaces are
often discontinuous and inhomogeneous, and their model
knowledge is only partial due to perception inaccuracy.
Firstly, the surface friction property cannot be directly mea-
sured and may change discontinuously if the surface consists
of different materials (i.e., heterogeneous surface). The sur-
face geometry estimated with visual sensors contains inaccu-
racies on the order of 1 cm and a few degrees in orientation.
Secondly, from the control perspective, the presence of these
unexpected environment features introduces discontinuities
in contact forces. The induced discontinuous interaction
wrench causes large abrupt changes in the robot dynamics
which easily destabilizes the system. Thus, a control strategy
capable of adapting to the unknown environment and ensure
a stable flight is needed. This work investigates methods to
overcome these challenges.
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Fig. 1: A tilt-arm omnidirectional flying vehicle, the Omav, is sliding along
surfaces with different friction properties and geometries. The images shows
the end effector is in contact with a double-sided tape while sliding on a
rock like papier-maché.

Literature on adaptive sliding on partially-known and un-
even surfaces exists mainly in the manipulation community,
using passivity [8] or adaptive force control [9], [10], but they
do not directly transfer to aerial robots. Adaptive force con-
trol is often used to modify the interaction force along the di-
rection normal to the surface according to geometry changes,
while keeping the force constant along the sliding direction.
As a result, an adaptation to heterogeneous surface is not
possible. One could also employ disturbance observer-based
robust control [11]. Such an approach has the disadvantage
of being slow to react, especially in the presence of noisy
measurements and inaccurate process models. Consequently,
the flying vehicle will struggle to handle abrupt changes in
the environment. Finally, another option is to use mechan-
ical compliance at the flying machine’s end effector [12].
However, this increases the mechanical complexity and cost
while further decreasing the system’s payload. Furthermore,
it remains limited in terms of adaptability to environmental
conditions.

An alternative approach to address the aforementioned
sensing challenge is to use proprioceptive measurements
and tactile sensing to react to changes in the geometry and
friction properties of the environment. This type of approach
can be found in quadrupedal robots like the MIT Cheetah
[13] and Anymal [14]. These robots use either control signals
to infer a leg touchdown event or use IMU signals, robot
states, and control commands to implicitly infer the surface
properties. Compared to 3D visual sensors, these two sensing
modalities are more direct in measuring the contact and are
more suitable in sensing the discontinuous features of the
environment. However, they were never exploited in the field
to aerial manipulation to face unknown environments.

From a control perspective, impedance control [15] is a



suitable control strategy for physical interaction tasks, as
it introduces algorithmic compliance, making the controlled
system less susceptible to disturbances. This has been suc-
cessfully demonstrated for sliding tasks on homogeneous
surfaces with aerial vehicles [5], [7] or human-robot inter-
action [16]. Selection of the impedance gains is a trade-
off between controller tracking performance and system
compliance. Depending on the task, different impedance
parameters may perform optimally [17]. For this reason, a
variable impedance controller [18] is an attractive solution.
The works in [19] and [7] employed variable impedance
control for aerial manipulation, recently formulated in terms
of passivity-based control [20], [21].

A straightforward application of variable impedance con-
trol in sliding applications, is to change the stiffness gain
according to the estimate of the friction coefficient obtained
from a force-torque sensor. However, a low-pass filter for
the noisy force-torque sensor measurements may introduce
delay and the time-varying sensor bias may lead to incorrect
estimates during flight. Another way would be to infer an
adapting gain policy directly from the sensors reading, with-
out passing though an explicit estimation of the environment
parameters.

With recent advances in machine learning, deep reinforce-
ment learning (RL) techniques [22] have become a popular
tool to generate highly nonlinear and effective control poli-
cies using neural networks. Learning from simulation instead
of from real-world is the preferred approach, especially
concerning flying vehicles where a failure typically leads to a
crash. In particular, student teacher setups [23] are exploited
for improved learning efficiency, since a teacher policy can
use privileged information from simulation to guide the
student policy. On one hand, there exists a large quantity
of works on end-to-end (i.e, from perception to actuator
commands directly) reinforcement learning from simulation
(see [24] and references therein). While being powerful,
they are generally not efficient and require a high-fidelity
simulation of the environment. On the other hand, methods
combining reinforcement learning with variable impedance
control have been proposed. Examples include manipulator
control for light switch turning [25], peg-in-hole tasks [26],
[27], human-robot collaboration [28], and hopper jumping
[29]. They keep the impedance controller structure in the
learning framework improving data-efficiency and requiring
less fidelity in the simulation.

Considering the problem of aerial physical interaction with
unknown surfaces, taking inspiration from different robotic
domains, this paper presents a novel control method that
combines the benefits of proprioceptive and tactile sensing,
variable impedance control and reinforcement learning. Con-
trary to the previously mentioned works, instead of estimat-
ing the friction coefficients or surface geometry, we directly
learn a mapping from the proprioceptive and tactile signals
to the impedance control gains. When the environmental
property changes, this neural network policy rejects these
disturbances, preserving contact and keeping the orientation
of the flying vehicle’s end effector constant. In particular, the
policy changes the impedance control parameters according
to tracking errors, IMU sensor measurements, and wrench
sensing. A key hypothesis here is that there exists an under-

lying mapping between these signals and the control gains.
The training of this policy is conducted entirely in simulation
exploiting the simplified closed-loop dynamics, in a student-
teacher setup. This solution allows a direct transfer of the
learned policy from simulation to an omnidirectional aerial
vehicle (Omav), significantly improving its robustness during
interaction (Omav as shown in Fig. E] and described in [30]).
Our contributions can be summarized as follows:

o An aerial sliding control strategy that adapts its gain
to reject disturbances present in the interacting envi-
ronment, including discontinuous changes in surface
friction and geometry;

o Insights on how to address sim-to-real transfer by
including a closed-loop controller to suppress model
uncertainty and learning from simplified actuator dy-
namics for aerial interaction tasks.

The above contributions have been validated in the experi-
ments using an Omav with a rigid single-body end effector
for the task of sliding across challenging surfaces including
a step and discontinuous surface friction changes.

II. PRELIMINARIES

In this section we provide a brief overview of the models
used to represent robot dynamics and environment interac-
tions before describing the basics of impedance control.

A. Robot dynamics

It is assumed that the flying vehicle has a single-body end
effector rigidly attached to its body (see Fig. [2)). The robot is
modeled as a single rigid body and its dynamics is expressed
using Newton-Euler method in free flight and interaction are
given by the following equation

M’i} + Cv + g = Wact + Wdist, (1)

where M € R5%6 is the symmetric positive definite inertia
matrix and C € R%%6 contains the centrifugal and Coriolis
terms, and g € R® is the gravity. The generalized velocity
© € RS represents the center of mass velocity and body
rates of the system. The generalized acceleration vector
are denoted as ¥. The terms w.. and wgisr € R® are
both stacked force and torque vectors acting on the system
generated by rotor actuation and disturbance sources (e.g.,
contact or wind disturbances), respectively.

B. Interaction with the environment

When the robot is sliding along the surface with its
end effector, the force disturbance fgis; has three sources:
1) environmental aerodynamic effects, e.g. ground effects,
wall effects, and wind gusts, 2) actuation modeling errors
[31], and 3) the contact force f..,. Wall effects and wind
gusts are assumed to be negligible for indoor flights as
they account for less than one percent of prediction error
according to [32]. The disturbance caused by modeling errors
is an order of magnitude smaller than that of the contact force
and thus also assumed to be negligible.

During interaction flights, the robot is assumed to have a
single contact point with the uneven surface at C' (Fig. [2).
A local contact frame Fr is attached to the contact point
such that its z-axis is normal to the tangent plane at C'. The
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Fig. 2: Omav in interaction, showing some of the symbols and quantities
required to model the system

contact force acting on the end effector expressed in the body
frame Fp is modeled as follows:

fis = foon = RPT(Fin® + Fynj), 2)

where F| is the scalar normal force and F) is the scalar
friction force. The coordinate transformation matrix RET
transforms a vector from Fr to Fg. The unit normal vector
n” is perpendicular to the tangent plane at C' and nf is the
sliding force direction parallel to the tangent plane at C. The
relative orientation RP7 is assumed to be partially known
due to imperfect map. In addition, the end effector and the
contact force creates a torque around the vehicle’s center of
mass with the lever arm length denoted as .

When the end effector is sliding with nonzero velocity on
the surface, a Coulomb friction model is assumed, i.e.:

Fy = wpc)FL, 3)

where p(pc) is the friction coefficient that can vary spatially
across the surface, depending the position of contact pc.

C. Impedance controller with constant gains

An impedance controller with constant control gains is a
common approach used for aerial sliding tasks [30] and used
in this paper as the baseline approach.

Given a desired sliding path on the surface, a reference
pose trajectory is designed based on the given surface map .
This reference trajectory consists of a desired center of mass
position which results in a end effector position that is always
behind the sliding surface by a constant distance § € R
(Fig.[2), also denoted as the penetration level. For the attitude
part of the trajectory, the vector along the tool arm should
align with the contact frame x-axis.

Given this desired reference trajectory, an impedance
controller with constant control gains has the following form:

Wact = Cv + g + (MM(;Cl - ]16)wdist

- . _ 4)
- MMc;al,<_Mvref + Ddesev + Kdeses),

with €, € RS, containing the position and attitude tracking

error as shown in [30]. Myes, Ddes, Kdes € R6*6 are the

desired inertia, damping, and stiffness matrices, respectively.
Plugging @) into (I results in

Mdesév + Ddesév + Kdesés = Wdist - (5)

This implies that an impedance controller shapes the closed-
loop system as a second-order system. Note that there will
be inevitable pose error due to the contact wrench acting
on the flying vehicle. The wrench command w, is then
allocated through a chosen mapping and a saturation function
to individual actuator commands (for more details see [30]).

III. METHODOLOGY
A. Problem statement

The goal is to enable a flying vehicle to accurately follow a
trajectory planned based on an imperfect map while remain-
ing stable and staying in contact with a surface which has
unknown discontinuities in geometry and unknown friction
properties (pc). Given a task-space reference trajectory, we
assume the robot has access to contact wrench measurements
Wneas Via a force torque sensor, and it is controlled by an
impedance controller with a gain-adjusting policy 79, which
is parametrized by 6. To achieve the above goal, we propose
a strategy to find a deterministic policy 7y that adjusts the
controller’s gains to fulfill the following criteria: 1) minimize
the tracking error ||€,]|> + [|é,]|> where ||| denotes the
Euclidean norm,; 2) ensure f.>, > 0; 3) ensure the platform
stability.

B. Simulation using simplified dynamics

To allow for efficient evaluation and training of the policy
my, a simplified dynamics simulation is used. The flying
vehicle is simulated as a single rigid body and the simu-
lation of the individual actuator dynamics are approximated
collectively as a single process. A saturation function on the
wrench command is implemented, the output of which is
delayed and set as external force and torque directly acting
on the robot. Both the saturation threshold and the system
delay are a conservative estimate of the empirically obtained
actuation limits. This ensures that the actuator limits are well
respected and the closed-loop system behaves like a delayed
second-order system as designed. The inertia and mass are
obtained from CAD. Although the actuator dynamics are
simplified, special attention is paid to identify the correct
center of mass position and the relative position of the end
effector in the body frame (rcom and Tenq in Fig. [2). They
together determine the induced torque disturbance from a
given contact force, which is essential for the simulation to
learn the correct disturbance rejection strategy.

To simulate the interaction environment, surfaces that have
different friction coefﬁcient are generated and concatenated
together. Therefore, when the robot’s end effector slides
across the border between two surfaces with different friction
properties, it experiences discontinuous changes in interac-
tion forces. Furthermore, each surface can have a different
height that leads to an uneven surface as a whole.

C. Variable impedance learning controller

The proposed approach adds a control gain adaptation
policy to the standard impedance controller (). The policy

The same material was used for the end effector throughout this paper.
Thus, for the sake of brevity, we only talk about surface friction coefficients
when it would be more accurate to talk about friction pairs between the end
effector and the surface.
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Fig. 3: Variable impedance learning controller. It augments the control
strategy depicted in [30] by adding a control gain adaptation policy, which
takes as input the state, control error and the wrench measurements from
the wrench sensor and map them to impedance gain.

adapts the impedance controller gains based on the pro-
prioceptive measurements and the tactile feedback via the
adaptive unit described in Fig. 3] In particular, the desired
stiffness K ges(z) € R is a function of the m-dimensional
measurements z € R™:

Kdes(z) = Kmin + (Kmax - Kmin) dlag{ﬂ-('z)} (6)

where m is the dimension of the measurements, K,,;, and
K.« are diagonal positive semidefinite matrices, and 7 :
R™ — RS where 0 < m(-) < 1 with vector 0 and 1 of
dimension 6. These constraints on the mapped value make
sure the adaptive gains have lower and upper bounds. The
lower bound K ,;,, ensures a minimum tracking performance
while the upper bound K, prevents the system from insta-
bilities caused by actuator saturation and system delay. These
limits are both derived empirically through experiments. For
brevity, in the following we use 7 instead of 7y.

To obtain a damped second-order system, we impose a
fixed relationship between Dges and Kges(2). The desired
damping D is varied with the square root of the diagonal
components of Kges(2):

Ddcs = 2( V chs(z)a (7)

where ( is a damping ratio. While we assume that the desired
stiffness and damping can be well tracked, the desired inertia
is in practice challenging to track as it requires an accurate
actuation control [5]. We therefore set M 45 equal to M and
the adaptation of M, is deferred to future works.

With M = M., and inserted into (@), the following
adaptive controller command can be obtained,

Wact = M'éref - 2C V Kdes(z)év - Kdes(z)és + Cv + g.

®)
With @B) plugged into (I), the closed-loop error dynamics
are shaped as a second-order system,

Maes€y + 20/ Kaes(2)€y + Kaes(2)€s = waist- (9)

Note that changing the stiffness Ko5(2) affects the in-
teraction wrench wqjst. To see this, consider @) at steady
state €, = €, = 0 and projected along the surface normal
direction. We obtain

k:L(z)é = FJ_,

where k& (z) is the position stiffness gain in the surface
normal direction. Assuming the end effector is in contact

(10)

with the surface, which results in a constant position tracking
error 0, F'| is thus proportional to k, (z). This is the intuition
of why we adapt the stiffness gain to counteract surface
disturbances.

D. Reinforcement learning of gain adaptation policy

We assume that the mapping 7 can be modeled as a
discrete-time continuous Markov decision process (MDP).
An MDRP is defined by a state space S, an action space A,
a scalar reward function R, and the transition probability
P that dictates the stochastic system dynamics. A learning
agent selects an action a from its policy m and receives
a reward r. The objective of the RL framework is to find
an optimal policy 7* that maximizes the discounted sum of
rewards over an infinite time horizon:

oo
* t
= arng;rixET(ﬂ) g'y r[t] (11)

where v € (0,1) is the discount factor, and 7(w) is the
trajectory distribution under policy 7, with ¢ denoting the
discretized time indices. The reward r[t] at k is

r[t] = ~len lerldl* =L llep[A)]I* — La [1d[E]]?
alt]  alt—1] |? (12)
lalt]]l  [lalt — 1]

I, with subscripts x denotes the corresponding weight chosen
such that all individual reward terms are at the same order
of magnitude. er[t] and e,[t] denotes the attitude and trans-
lational tracking error. d[t] denotes the scalar distance along
the x-axis of the local contact frame between the end effector
and the surface. The purpose of this term is to make sure that
the policy keeps the end-effector in contact with the surface.
w|t] denotes the angular velocity. We penalize large angular
velocities to avoid instabilities. The action alt] is the output
of the policy 7(z) at time ¢. The associated term is to make
sure that the control inputs are smooth. The loss components
are designed to reduce the tracking error while keeping
contact with the surface without causing discontinuities in
the actions and thus the actuator commands. These terms are
in line with the problem statement in Sec. Note that
since the simulation of each individual actuator dynamics is
omitted. The energy consumption of the flying vehicle can
only be indirectly inferred and is therefore not included in
the reward function.

The policy 7 is a fully connected neural network with
three hidden layers of 32 units, its activation functions being
leaky ReLu, and its last layer being a Sigmoid layer which
guarantees to map to a bounded interval. For training we use
the off-the-shelf RL algorithm proximal policy optimization
(PPO) [33], a policy gradient algorithm that has been demon-
strated to work for variable impedance control in contact
tasks with a manipulator [34].

—lu Jwli)l* ~la

E. Learning from simulaiton

To efficiently learn an optimal policy that determines
the adaptive stiffness Kges(z) (see (6)), a student teacher
learning approach [23] is deployed.

Fig. [] provides an overview of this approach: Firstly, we
design a teacher with access to privileged (ground-truth)
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Fig. 4: This block diagram shows the main steps in the student-teacher
learning of the control gain adaptation policy.

information to dynamically select the desired stiffness in the
variable impedance controller. Then a policy is learned to
emulate the teacher and may be further improved using RL.
The policy can be directly transferred to real-world without
any additional sim-to-real adaptation.. The intuition behind
the student teacher learning is that the teacher has access
to the privileged information is much easier to design or
train in an RL setting. We can also embed empirical tuning
experience or other adaptive variable impedance strategies
into the teacher. This is helpful for challenging tasks, as
we find out empirically a direct reinforcement learning
always lead to instabilities of the flying vehicle and prevents
successful learning.

1) Teacher design: The teacher 7 serves as a guidance
policy for the student policy. It makes use of the ground truth
information z (friction coefficients and local height map)
from the simulation, to which the student policy does not
have access in real deployment.

In this work, we employ either a simple handcrafted
policy 7y or a neural network learned from simulation using
reinforcement learning as the teacher. For handcrafted policy,
the design intuition of the handcrafted policy is mainly based
on the fact that with a larger friction coefficient, the angular
stiffness gain should be increased to counteract the increased
torque disturbance. At the same time, the translational stiff-
ness gain should be decreased to reduce normal force F'|
(see (I0)) and the torque disturbance. For reinforcement
learning of the teacher, friction coefficient at contact point
and the surface normal vector in the neighbourhood are used
in addition to z. They directly provide information about the
interacting environment: the surface unevenness and friction
property.

2) Student learning: The control gain adaptation policy
7*(z) is bootstrapped via supervised learning with the fol-
lowing loss function

" = argmin | (zg) — m(2)|?. (13)

where the feature z contains control signal, state estimate,
interaction wrench measurements and the IMU signals. Here,
the control signal, the IMU measurements and the state
estimate are the propprioceptive sensing and interaction
wrench measurements are tactile sensing. They indirectly
provide the information about the interaction between the
environment and the robot.

Training data is collected by rolling out the simulation
using the teacher. For each rollout, the robot first approaches
the surface, gets into contact and starts sliding following the
desired trajectory. The policy 7*(z) can be further refined
using RL.

3) Data processing: Noisy observations (especially the
interaction wrench measurements) are first-order low-pass
filtered before they are input to the student policy. To have
a smooth change in the stiffness gain Kges(2), the output
of the student policy is also low-pass filtered before they are
used to compute Kges(2).

FE. Remark

a) Stability: We remark that the stability using RL
may be ensured using the concept of passivity [35], or
Lyapunov methods [36]. This is left as future work. Instead
we discuss here practical measures to face possible causes of
the instability. Those are mainly twofold: actuator saturation
due to the rapid changes in the control gains or high gains
and low gains which is incapable of stabilizing this open-
loop unstable system. Thus we implemented the following
strategies: 1) Lower and upper bounds on the stiffness gain as
shown in (6)); 2) Slew rate limit on the gains are empirically
determined; 3) The output of the policy 7} (z) is filtered for
a smooth control signal.

b) Sim-to-real transfer: The sim-to-real gap, i.e., the
mismatch between simulation and reality, is a challenging
problem when learning from simulation, and can limit the
transferability of the learned policy. Frequent causes of sim-
to-real gaps are inaccurate modeling of the actuator dynamics
and delays in the system [37]. This is especially a prob-
lem for end-to-end learning approaches. Without feedback
controller in the loop the learning procedure relies on the
accuracy of the open-loop dynamics simulation and the sim-
to-real gap can diverge exponentially. However, given a well-
designed feedback controller (e.g., the one one presented
in Fig. ??), which shapes the system to a desired second-
order system (9) and suppresses model uncertainty, the gap
between the reality and the simulation is kept small. This
is particularly advantageous for a complicated system like
the Omav, where a large amount of training data is required
for an accurate model learning of the whole body dynamics
(18 actuators and 6 degrees of freedom). As a comparison, a
million samples are required for the modeling of a single
one degree of freedom actuator of quadrapedal walking
robot [37]. What is worse, if the Omav crashes or if its
configuration changes, training data needs to be recollected
again for an accurate model learning. Our approach does not
require such a meticulous effort.

IV. EXPERIMENTS
A. Experimental setup

The experimental set-up and the platform are shown in
Fig. [T} The experiments are carried out at the indoor aerial
robotic testbed of the Autonomous System Lab, ETH Zurich.
The Omav weighs 4.5kg and is equipped with an NUC
i7 computer and a PixHawk flight controller. For a more
complete description of this platform see [30]. A pole end
effector is rigidly attached to the vehicle and points outwards
for a sufficient margin between the propellers and the surface.
A ping pong ball is attached at the pole tip to ensure a single
contact during sliding movements. A force torque sensor
from Rokubi, mounted to the end effector, measures the
interaction wrench. There are three interaction environments
for real experiments: sand paper on a flat white board to



investigate interaction with heterogeneous surface, a step of
2cm on a white board (Fig. [) to investigate interaction
with discontinuous surface geometry, and finally, a rock-
like structure (Fig. [[) which combines both traits to form a
challenging environment typically seen in real applications.
A motion capture system provides pose estimates for both
the robot and the whiteboard/rock at 100 Hz. The robot is
unaware of their surface properties and the local unevenness
on the surface. The task trajectory is to follow a straight line
trajectory parallel to the gravity vector with zero pitch and
roll while sliding on the vertical surface. The penetration
level § is set to 0.07m, which leaves sufficient margin to
ensure contact under the state estimate uncertainty.

For the simulation we use RaiSim [38], a cross-platform
multi-body physics engine for robotics. During training in the
simulation, for each rollout, the robot approaches the surface
and starts sliding along the surface for 15 seconds, which
emulates a task trajectory from the real-world experiments.
During each rollout, the Omav reaches a speed of 0.2ms™!
and slides across surfaces with different friction coefficients.
For each interaction environment, we set up a different in-
teraction environment in the simulation and learn a different
policy to treat each problem separately. Find a single policy
that tackles different environments can be studied in the
context of continual learning and is planned for future work.

To train the teacher or student policy using RL, a hundred
simulation instances are spawned with slightly perturbed
vehicle and environment properties. In each epoch, these
instances are simultaneously simulated to obtain a batch
of rewards for stochastic gradient policy optimization. The
policy was trained on a single NVIDIA 3060Ti GPU. which
takes from 2 to 8 hours depending on the interacting envi-
ronment.

Since there is only a straight line to follow, the dimension
of the measurement vector z is reduced to six: filtered pitch
velocity, pitch error, position control error in the sliding
direction, linear velocity, friction force filtered, normal force
filtered. The output to the action space are the linear gain
in the surface normal direction and the angular gain in the
pitch direction, i.e. the axis of torque disturbance. The rest
of the controller gains is kept constant.

B. Sim-to-real transfer

Fig. ] demonstrates the policy transfer from simulation to
reality. It compares four experiments completing the same
sliding task with different controllers (baseline or our ap-
proach) and different set-ups (simulation or real experiment).
The plots are aligned using the measured force impact when
the Omav enters from free flight into contact with the
whiteboard.

For evaluation, the Omav must slide across three con-
catenated surfaces: the first is the whiteboard with low
friction, then a sand paper with high friction, and finally the
whiteboard again. The friction coefficients are empirically
estimated through force torque sensor measurements, with
which three surfaces are generated in the simulation that
replicate the experimental evaluation set-up. The approach
in evaluation is a policy 7* defined in the (I3) (without
further refinement using RL) and a baseline impedance
controller with constant control gains. The policy is trained
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Fig. 5: Comparison between baseline and our approach while the robot
approaches and slides across two surfaces with different friction coefficients,
both in simulation (dashed line) and real-world (solid line). k4 and k; denote
the angular stiffness gain and translation stiffness gain, respectively.

in a simulation environment with six different surface friction
coefficients (0.05, 0.15, 0.25, 0.45, 0.55, 0.62) that covers a
range of friction coefficients. During collection of data using
the teacher, each surface is randomly assigned one of the six
friction coefficients to robustify the learned policy.

Fig. [5] demonstrates that the learned adaptive control
strategy can be successfully transferred from simulation to
the real-world. Given the same controller (either baseline or
our approach), the simulation and the real-world experiments
result in a close similarity of the respective robot state (the
pitch angle) and controller gains (the angular stiffness gain
ko and translational stiffness gain k;). The pitch angle is
shown since it has the most obvious correlation with the
surface friction coefficient given the baseline controller.

C. Sliding across a heterogeneous flat surface

Fig. [3] also showcases the performance of the regressed
student policy on heterogenous surfaces. In this subsection,
we only evaluate the real experimental data. While sliding
on the surface, the contact force unavoidably leads to a tilted
angle of the Omav. With the baseline controller, the vehicle
tilts on average 4.9° after encountering a high friction surface
(from 199 s to 202s), whereas with our approach, the tilt of
the vehicle only increases to about 1.3° on average. This
shows that the Omav is able to keep a almost constant tilt
angle when sliding across different surfaces, thus improve
the attitude tracking performance and reducing the chance
of a crash at the transition of difference surfaces.

D. Sliding over a surface with discontinuous geometry

The experiment (Fig. [6) presented in this section aims to
investigate the ability to reject the disturbance caused by
surface discontinuity and remain stable (criteria 3 in Sec. [[II-
). For the real experiment, a piece of foam is taped to
the whiteboard (Fig. [f)) and creates a step of about 2cm
along the sliding trajectory. During sliding, the step blocks
the end-effector, which leads to an increase of the pitch
angle. The end-effector then detachs from the surface and
the sudden disappearance of the contact force presents as a
large disturbance to the robot (see video attachment).
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Fig. 6: The end effector is blocked by a step of 2 cm made out of foam
while sliding on a slippery whiteboard.

Our approach is trained as follows: Initially an even
surface with randomly generated friction coefficients as
described in Sec.[[V-C]is used to bootstrap the policy. Then a
piece of uneven surface with 1 cm steps is created by setting
each neighbouring surface to have a height difference of
1 cm. The policy is refined and trained for 900 epochs. The
height difference is then changed to 2 cm with another 700
epochs of training. Training was terminated early when the
reward stopped increasing for 300 epochs.

The behaviour exhibited by our approach when a step
is encountered is to adapt the control gain to be more
compliant. This leads to less oscillations in pitch velocity
when the Omav’s end effector slips and is out of contact (the
yellow region in Fig. [6) compared to the baseline approach.

E. Sliding across a challenging surface

A challenging rock-like papier-maché surface (Fig. [T) is
set up to compare our approach with baseline controllers. The
surface of this rock is uneven and heterogeneous. Double-
sided tapes and plastic surface with lubricant are added to the
surface to emulate heterogeneous surface. Two trajectories
were tested for more variety. For the training environment,
we use procedurally generated terrain maps that have similar
surface variations to the rock. During rollout, the fricition co-
efficients are randomly selected from six friction coefficients
(0.1, 0.15, 045, 0.6, 0.75, 0.9) every four seconds. Note
that the evaluation and training environments are distinct and
demonstrated the generalizability of our approach.

As shown in Fig. [7} our approach consistently outper-
forms baseline controller with nine combinations of low,
middle and high angular and translation gain. These different
combinations are tested to see whether a tuning process
that is often practiced in real-world can outperform our
approach. Each data point represents the average over the
sliding of the same trajectory for the three times with
the same controller. Several interesting observations can be
made: firstly, among the baseline approaches, a good tracking
performance is generally achieved by high stiffness controller
but the converse is not true. It is observed in the experiment
that a high gain controller (both high in k; and k,) can
lead to instability. However, we never experienced instability
issues with our policy throughout the experiments. This
indicates that our approach adapts the controller to be more
compliant when necessary. Secondly, for each trajectory, the
optimal set of constant gains are different. For example, to
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Fig. 7: Comparison of tracking performance of the learned policy with
different combinations of constant gains. The learned policy outperforms all
the constant gain performance. Note that it is plotted in logarithm scale for a
better visualization of data. Two different colors are used to denote different
trajectories. k, and k; denote the angular stiffness gain and translation
stiffness gain, respectively.
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Fig. 8: An time history plot of partial inputs and outputs of the policy when
sliding on the rock-like surface

achieve best tracking performance in pitch, trajectory red
and trajectory blue have different optimal gains (upper left
in the plot). This means that in reality, the engineer have to
tune the parameters for each specific trajectory and surface
to gain optimal performance. However, our approach always
performs well for both trajectories. Our approach are both
located in the lower left of the plot, which means good
tracking performance in both position and orientation. This
implies that our policy adapts to the surface unevenness and
varying friction coefficients.

An time history plot of partial inputs and outputs of the
policy in plot Fig. [§] provides an intuition on how our policy
behaves. Note that when the pitch error increases from 194 s
to 195.5 s, the angular gain k, is also increased to maximum
to reduce the tracking error. However, around 195.5, the end-
effector detaches from the surface and causes oscillations
on pitch rate, the angular gain is decreased to be more
compliant.



V. CONCLUSION

This paper presented an approach to reject disturbances
caused by discontinuous surface variations in geometry and
friction during aerial sliding tasks for fully actuated flying ve-
hicles. When the environmental property changes, an adapta-
tion policy adjusts the control gains of a standard impedance
controller to reject these disturbances. Experimental results
demonstrated that the policy learned in simulation can be
directly transferred to the aerial vehicle without adaptation.
The learned policy is able to slide on a challenging rock-like
surface and outperform state-of-art interaction controllers .
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