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Abstract

Domestic and service robots have the potential to transform industries such as
health care and small-scale manufacturing, as well as the homes in which we
live. However, due to the overwhelming variety of tasks these robots will be
expected to complete, providing generic out-of-the-box solutions that meet the
needs of every possible user is clearly intractable. To address this problem,
robots must therefore not only be capable of learning how to complete novel
tasks at run-time, but the solutions to these tasks must also be informed by
the needs of the user. In this paper we demonstrate how behaviour trees, a
well established control architecture in the fields of gaming and robotics, can
be used in conjunction with natural language instruction to provide a robust
and modular control architecture for instructing autonomous agents to learn and
perform novel complex tasks. We also show how behaviour trees generated using
our approach can be generalised to novel scenarios, and can be re-used in future
learning episodes to create increasingly complex behaviours. We validate this
work against an existing corpus of natural language instructions, demonstrate
the application of our approach on both a simulated robot solving a toy problem,
as well as two distinct real-world robot platforms which, respectively, complete
a block sorting scenario, and a patrol scenario.

Keywords: Behaviour trees; Iterative task learning; Planning; Task execution;
Natural language understanding; Control architectures;

1. Introduction

Robots have the potential to be a transformative technology in industries
such as disability or aged care [1]. The application of robots within these in-
dustries is limited however by the difficult task of creating robots that are not
only sufficiently capable of operating within a broad range of dynamic home
environments, but also meet the individualised needs of their users. Robots
that are capable of learning from their environment are one such solution to
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resolving this problem. Historically however, the vast majority of robots that
have been made commercially available have been specialist devices that are
incapable of learning or being reprogrammed, and are designed to perform a
single highly constrained task such as vacuuming [2]; or have required expen-
sive expert knowledge in robotics to set up and program and must be separated
from people using physical barriers such as cages [3, 4].

In an attempt to address this issue, robotics researchers and manufacturers
have in recent years begun to look at collaborative robots, which are not only
capable of working with and around people, but can also be interacted with
and programmed by non-expert users [5, 6]. In order to make collaborative
robots accessible to the general public however, mechanisms for programming
these robots must be simple to use and understand. Indeed, researchers such
as Azaria et al. [7] have shown that the ability for novice users to easily teach
robots novel skills not only contributes to improved performance and quicker
completion times, but also improves overall user engagement.

One common approach to enabling end-users to program robots has relied
on graphical user interfaces such as drag-drop interfaces. These interfaces allow
user builds increasingly complex behaviours by connecting graphical blocks rep-
resenting either primitive behaviours such as motor or audio controls, or com-
plex behaviours that embed groups of primitive and complex behaviours [3].
However, while these approaches are generally more accessible than traditional
scripting languages, they still rely on users having some knowledge in algorithms
and data-flow, and can rapidly grow in complexity. Another common approach
to teaching robots, that moves away from traditional programming techniques is
teach-and-repeat. Using this approach a human operator uses a devices such as
teaching pendants, training cuff, and other type of remote control to drive the
robot along a desired trajectory, which the robot can record and later replay to
perform a given task. Using this method allows a low-barrier to entry approach
to performing simple tasks such as pick-and-place.

Less technical and potentially more accessible approaches to enabling end-
users to program robots include Interactive Task Learning (ITL), in which a
human instructor instructs the robot in how to perform novel tasks much in the
same way a human would teach another human [2]. ITL can exploit teaching
methods including visual demonstration [8], as well as natural language dialogue
[9], to enable novice users to teach robots and other types of artificial agents
to complete novel tasks. Of these communication modalities natural language
in particular has interested researchers as it is both a comfortable and natural
means by which humans typically communicate information [10], and its use as
a mechanism for controlling artificial agents can be traced back to early pioneers
such as Winograd [11].

The utility of natural language as a means for interacting with technology
such as robots has been further demonstrated in recent years by the surge in
popularity of interactive personal assistants (IPAs), such as Siri, Google Assis-
tant, and Amazon Alexa [12]. IPAs are capable of providing a wide variety of
functions that can be initiated via spoken dialogue, including question answer-
ing, navigation, purchasing goods from online stores, and interfacing with and
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controlling smart technology. According to Barzilai and Rampino [13], the use
of “natural” interactions with IPAs is one of the leading factors in their tran-
sitioning from novelty devices into “disappearing technologies”, in which the
device blends seamlessly in with the surrounding environment. This concept
of “disappearing technology” provides a firm basis for justifying the need for
natural interactions between human users and robots.

However, while natural language is a desirable means for teaching robots
novel tasks, its use in robotics has remained limited due to a number of chal-
lenges. These challenges include ambiguities imposed by natural language such
as syntactic and semantic ambiguities, as well as ambiguities arising from under-
specified instructions [14]; expectations around the use of context and back-
ground knowledge [15]; in addition to limitations imposed by the various for-
malisms used to represent learnt behaviours [10]. Collectively, these challenges
not only make converting natural language into formal representations that a
robot can then act upon extremely difficult, but also affect the choice of control
architecture available to the agent. This latter point is of particular interest, as
the choice of control architecture is of fundamental importance when designing
autonomous agents [16].

In this paper we demonstrate how behaviour trees [17], a control architecture
that has gained popularity in the last two decades as tool for modelling agent
behaviour, provides a rich formalism for representing tasks described through
natural language. Additionally, we present a system, which we call Lingua,
that allows generalisation and re-use of learnt tasks that provide large degree
of expressiveness, while also taking advantage of the modularity of Behaviour
Trees to facilitate hierarchical learning and automatic synthesis. To summarise,
the key contributions of this paper are:

1. a method for mapping from natural language instructions to behaviour
tree structures that can then be executed in real-time,

2. a method for learning novel mappings between verbs and complex non-
linear behaviour trees structures at run-time through situated dialogue,

3. a method for resolving ambiguities when grounding symbols to referents
in the world through iterative refinement using situated dialogue,

4. a method for autonomously adjusting behaviour trees at run-time in order
to resolve unsatisfied preconditions during task execution,

5. and a validation of our approach using both quantitative and qualitative
assessments.

Importantly, all resources and source code related to this paper have been made
open source1.

The remainder of this paper is structured as follows: in Section 2, we provide
a review of the state of the art in instructing robots from natural language; in
Section 3, we introduce the behaviour tree formalism; in Section 4, we introduce

1url will be provided after acceptance
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Lingua, and detail our approach to generating behaviour trees from natural lan-
guage; in Section 6, we provide experimental results demonstrating the validity
of our approach; and lastly, in Sections 7 and 8 we provide a brief discussion
and conclusion.

2. Instructing Robots and Natural Language

Processing and analysing natural language falls under the domain of Nat-
ural Language Processing, one of the oldest fields of artificial intelligence, and
covers fields of study including natural language understanding, generation, and
speech recognition. The earliest work in the area of natural language processing
focused on the problem of machine translation, such as translating Russian to
English, which only served to highlight the difficulty in handling the syntactic
and semantic complexities of language [18]. In the field of robotics some of
the earliest work exploring the use of natural language was demonstrated by
Winograd [11], who presented an agent that was not only capable of answering
questions regarding the state of the simulated block world the agent existed
within, but also executing actions based on user commands.

A fundamental problem in exploiting natural language as a learning modality
is the problem of how to ground the symbols, or words, within natural language
to sets of objects, actions or outcomes within the world. In their work, Steels and
Kaplan [19] show how an agent can be taught new symbol to object groundings
using situated dialogue, in which the human would show the agent an object, and
provide a symbol that describes that word. Conversely, exploring how natural
language can be used to program mobile robots to explore miniature model
towns, Lauria et al. [14] present an agent that given an initial set of symbol to
action groundings, could hierarchically learn new groundings as compositions
of previously learnt groundings. In contrast, Kollar et al. [20] extract spatial
description clauses, a hierarchical structure describing components of a natural
language input, which allows an agent to infer paths based on knowledge of the
environment. More recently, researchers have explored how symbols, extracted
from natural language can be leveraged to assist mobile robots in navigating
previously unseen human-centric environments such as office spaces [21].

Looking more specifically at the domain of learning from instruction, the
problem of best formalising learnt behaviours or tasks within a control archi-
tecture remains unsolved. Approaches to representing this knowledge include
graph-based approaches [22], Petri Nets [23], as well as deep learning models
[24]. The importance of selecting an appropriate control structure cannot be
understated.

According to Colledanchise [16], a control structure should minimally provide
for the following design principles:

1. hierarchical organisation of behaviours,

2. continual closed-loop execution,

3. code re-usability,

4. modular design,
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5. human readability,

6. expressiveness,

7. suitability for analysis, and

8. suitability for automatic synthesis

One of the most trivial graph-based approaches involves representing learnt
tasks as sequences of discrete actions that the agent can then step through in
order to achieve the desired goal. An example of this approach was demonstrated
by Tenorth et al. [25], who propose a system in which the agent learns how to
perform cooking tasks by leveraging step-by-step instructions extracted from
WikiHow. Similarly, Scheutz et al. [26] show how natural language can be used
to generate action sequences directly natural language inputs provided by the
user. In contrast to these approaches, which are limited to fixed sequences of
actions, Meriçli et al. [27] present a system that is capable of generating what
they term Instructions Graphs, that are capable of leveraging branching and
looping control structures. These Instruction Graphs are generated by searching
for specific keywords/phrases within each user utterance, rather than evaluating
the syntax of the utterance, and does not facilitate natural interactions, instead
relying on the user to utter phrases such as “end if” to indicate block scope.

In contrast to these approaches, Misra et al. [28] argue that learnt tasks are
best represented in the agent’s memory as sets of goal conditions, rather than
execution graphs, as they provide a more flexible mechanism for generalising
learnt tasks to novel situations. To achieve this, they propose a grammar that
maps directly from natural language inputs to sets of state predicates repre-
senting the desired outcome of the received utterance. Another approach that
exploits goal conditions is presented by She et al. [9], who describe an agent
that learns tasks as sets of goal conditions through situated dialogue. This is
achieved by evaluating the difference in world state between the start and end
of the interaction. Importantly, as these approaches avoid encoding policy in-
formation during the learning phase, each instantiation of a learnt task must
be solved as a planning problem, in which the action space is limited to a set
of low-level actions. While this allows the agent to generalise learnt tasks to
different initial conditions, these approaches assume that all tasks can be rep-
resented as a set of goal conditions, an assumption which excludes tasks where
the steps fundamental to completing the task cannot be easily captured as an
outcome - such as in the case of hosting a dinner party. Additionally, as learnt
tasks do not encode any policy information, the agent is prevented from reusing
previous learning experiences to simplify its planning space, such that as tasks
scale up in complexity the search problem can quickly become intractable.

Approaches that fuse learning execution graphs with goal conditions, such
as the work presented by Mohan and Laird [29], demonstrate how agents can
be taught novel tasks that not only allow the agent to generalise to novel situa-
tions, but also exploit policy information provided by the user to more efficiently
execute the indicated task and solve planning problems during plan repair. An-
other example of this fused learning approach can be seen in the work presented
by Suddrey et al. [30], which leveraged hierarchical task networks, along with
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traditional planning for plan repair, to learn complex tasks such as table clean-
ing. However, while these approaches allow for modular design and re-use they
provide limited expressiveness, excluding concepts such as branching or itera-
tion.

Differing from more classical graph-based approaches, Gemignani et al. [23]
show how Petri Nets can be used to learn parameterised task descriptions from
natural language. However, their approach is limited to learning tasks as com-
binations of primitive actions, and does not allow for the re-use of learnt be-
haviours in speeding up task learning.

Translating deep learning approaches using instruction based learning to
physical robots is difficult due to large number of training episodes required to
converge to a solution [10]. In addition, exploiting the symbolic nature of graph
representations provides a trivial mechanism for users to interrogate and revise
plans [23] when compared to deep learning methods.

In this paper, we demonstrate how behaviour trees, a graph-based control
architecture, not only address the design principles outlined by Colledanchise
[16], but also how they can be generated from natural language instructions.

3. Behaviour Trees

Behaviour trees were first introduced by the gaming industry as an alter-
native to finite-state machines (FSM) to define the behaviour of non-player
characters (NPC) in first-person shooters [31]. Since their inception, they have
found increasing popularity within the gaming industry and are now available
within every major game making tool, including Unreal Engine, CryEngine and
Unity3D [32]. Behaviour trees are a reactive AI formalism, and provide a num-
ber of advantages over FSMs, such as readability and scalability, while also
providing an equal or greater degree of expressiveness when compared to FSMs
and other control architectures such as Subsumption architectures [17].

As the name implies, behaviour trees provide a mechanism for defining agent
behaviour within a rooted tree structure. Formally, a behaviour tree is a directed
acyclic graph G(V, E) containing |V| nodes and |E| arcs [32]. Given a pair of
nodes connected by an arc, the tail node is called the parent, and the head
node the child. Each behaviour tree contains a single Root node, which can
be identified as a node with no parent, as well as one or more nodes with
no children, called Leaves. Additionally, every node within a behaviour tree
falls into into one of three categories: 1) leaf nodes that represent sensing and
action primitives available to the agent, 2) composite nodes that control branch
selection, and 3) decorator nodes that modify branch outputs. Figure 1 shows
an example of a behaviour tree that would drive an NPC to attack enemies
when they fall into the visual range of the NPC, or to patrol if no enemies are
in sight.

During execution time the agent will send a tick to the root node of the
behaviour tree at a given frequency. This tick represents an activation signal and
will cause the root node to then pass the tick to one of its children, depending
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→

Enemy
Located?

Attack
Enemy

Patrol

Figure 1: A behaviour tree that causes an agent to attack if an enemy has been located, or
patrol if no enemy is in sight. Refer to Section 3.1 for a detailed description of the node types
used in this tree.

on the type and policy of the root node. The tick is passed down the tree in
this manner until it arrives at a leaf node, which immediately returns a status
to its parent which will be one of three values: Success which indicates that
the leaf has completed its objective successfully; Failure, which indicates that
that the leaf has completed unsuccessfully; or Running, which indicates that
the leaf has initiated an action that will conclude during a future timestep. The
return status received by the parent will then either cause the parent to tick
another child, or return the received status up to its parent, depending on its
type and policy. This process continues until the root node receives and returns
a return status to the agent. Critically, to maintain a fixed frequency, leaf nodes
in a behaviour tree should be non-blocking to allow the behaviour tree to be
sufficiently reactive.

Despite their advantages, behaviour trees have only made their way into the
field of robotics in recent years, with some of the earliest work by Marzinotto et
al. [33], who provide the first mathematical definition of behaviour trees, and
address gaps in behaviour tree theory that limited its applicability to real world
systems. Further work mathematically proving the robustness and safeness
of behaviour trees was presented by Colledanchise and Petter [17], who also
demonstrated how behaviour trees can be used in a practical context to control
robots that are capable of not only solving mobile pick and place challenges,
but also recovering from problems encountered during task execution, such as
blocked paths.

3.1. Node Types

Nodes used to construct behaviour trees can be categorised into three dis-
tinct categories: 1) leaf nodes, which represent executable actions and condition
checks, 2) composite nodes, that can have one or more children, and utilise spe-
cific policies on which children are to be ticked, and 3) decorator nodes which
contain a single child, whose output they modify based on a node-specific policy
(e.g., inverting the status outputted by the child, such that a Success becomes
a Failure and vice versa).
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3.1.1. Leaf Nodes

are the most fundamental nodes within a behaviour tree and represent the
action or sensing primitives available to the agent. Leaf nodes are typically bro-
ken into two subcategories, Action nodes which return either Success, Failure
or Running and are fully preemptible, allowing them to be cancelled if another
branch becomes active; and Condition nodes that return either Success or Fail-
ure.

One possible example of an Action leaf that would be used with a mobile
robot is a Navigation Action leaf which when ticked would prompt the agent
to navigate to some location in its world. While the robot is planning and/or
moving, the Action leaf will return a Running status to its parent node. If
the agent arrives at the target location, the Action leaf will return a Success
status, while if the agent is unable to reach the target, because there is no viable
path, or the agent has fallen over, the Action leaf will return a Failure Status.
In addition, the Action leaf can be preempted if another branch of the tree
becomes active, such as in the case of a branch that defines a recharge policy
that only becomes active when the battery of the robot reaches a critically low
level.

3.1.2. Composite Nodes

are nodes with one or more children where children can be of any node type.
The composite node’s type defines a policy which determines the child to tick,
and how it handles the ticked child’s return status. The two most commonly
used composite nodes are Sequences and Selectors.

The Sequence composite node uses an ordered list to hold their children.
When a Sequence node is ticked, it will tick each of its children in order, return-
ing Success to its parent if all of its children return Success. However, in the
event a ticked child returns Running or Failure, the sequence node will immedi-
ately stop executing, and return the received status to its parent. In this way,
Sequence nodes are logically equivalent to ordered AND operators in Boolean
logic.

→

Child 1 . . . Child N

Figure 2: Each child of a Sequence node must return Success for the Sequence to return
Success.

One characteristic of Sequences is that they are stateless. They do not hold
memory regarding the return type of their children. This means that when a
Sequence node is ticked, it must tick each child again, regardless of whether
the child node previously returned Success or Failure - placing the onus on its
children to remember their previous execution state. A variation of the Sequence
node is the Memory Sequence, typically denoted as Sequence*. The Sequence*
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node differs in that it is stateful, remembering which of its children have already
been executed successfully.

The Selector composite node, like the Sequence node, stores its children
using an ordered list which it ticks in order. What distinguishes a Selector node
from a Sequence node is that a Selector node does not return Failure upon a
child returning Failure. Instead, the Selector node will iterate through each of
its children sequentially until it either finds a child that returns Success or Run-
ning, immediately returning the received value to its parent, or return Failure
if it exhausts its list of children. Selector nodes can therefore be considered
equivalent to an ordered logical OR operator.

?

Child 1 . . . Child N

Figure 3: A Selector will return Success if any child returns Success or Failure if every child
returns Failure

Variants of the Selector node may use different policies for choosing which
child to tick in place of stepping through an ordered list. These include randomly
selecting a child to tick, or using a priority queue. In addition to these, we also
define a special case Selector, called a One-Shot Selector that returns Success if
its set of children is empty, and in the event a child returns Success, pops the
child before returning Success itself..

3.1.3. Decorators

are another type of internal node. However, unlike composites, they are
restricted to having a single child node. Decorators are primarily used to trans-
form the result of their children, such as Inverter nodes, which flip Success to
Failure and Failure to Success, as well as other nodes that can be used to convert
from some arbitrary status to another arbitrary status. Decorators can also be
used to implement behaviours such as counters and timers.

δ

Child

Figure 4: A Decorator, represented as a node containing a δ symbol, has only a single child
whose result it transforms based on a user-defined policy.

3.2. The Node Lifecyle

Common implementations of behaviour trees, such as py trees also define a
node life-cycle, in which each node within a behaviour tree can exist within one
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Table 1: Additional composite and decorator node notation used within this paper

Node Type Description

→∗
Memory Sequence node - all children must return
Success for the sequence to return Success, does not
re-tick previously succeeded children.

!
Inverter decorator - returns Success if its child re-
turns Failure and vice versa

S = R
Success is Running decorator - returns either the
Running status if its child returns Success, or the
unmodified status received from its child.

→P
Precondition node - Please see Section 4.2.4 for a
detailed description.

?τ
Resolution node - Please see Section 4.2.4 for a de-
tailed description.

Γ
Policy node - Please see Section 4.2.4 for a detailed
description.

of four distinct states. These states are Inactive, Activating, Active and Deac-
tivating. A node transitions from an Inactive state to an Activating state upon
being ticked, and transitions into an Active state when it has both completed
any necessary initialisation and has either ticked a child node in the case of a
composite or decorator, or has initiated some action or lookup in the case of
an action or condition leaf. Nodes transition from an Active state to an Inac-
tive state if they are not ticked in the current timestep, and transitions into an
Inactive state once they have completed any necessary cleanup of itself and its
children.

4. From Instructions to Behaviour Trees

Behaviour trees provide a flexible set of tools for representing complex agent
behaviours, including modular design and reactive closed-loop execution. How-
ever, to date, the problem of mapping from natural language instructions to
behaviour trees has remained unaddressed.

In this section we address this gap by describing the Lingua System (see
Figure 5), which is capable of transforming natural language utterances into
actionable behaviour trees that can then be executed on a robot platform. Note
that the behaviour tree portions of this system (the BTree block) have been
implemented using the py trees ros and py trees Python libraries.

4.1. OpenCCG - Extracting Logical Forms from Natural Language

Natural language input to the system is processed using the OpenCCG natu-
ral language processing library, based on the Combinatory Categorial Grammar
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Figure 5: System Architecture of the Lingua System.

(CCG) formalism as described by Baldridge [34]. CCGs provide a powerful
mechanism for extracting semantic information from natural language by en-
coding both syntactic and semantic information within the lexicon of the gram-
mar. Words in a CCG lexicon can be grouped into two distinct classes: atomic
categories, which typically include nouns and proper nouns; and functional cat-
egories, such as verbs, that consume surrounding categories as arguments. Fig-
ure 6 provides an example of an entry in a CCG lexicon, highlighting the three
distinct elements of the entry: the lexical item, or word, that can appear in
sentences defined by the grammar; the syntax type, which can be either atomic
or function; and the semantic type, which is typically expressed using lambda
calculus notation.

loves︸ ︷︷ ︸
Lexical Item

` S\NP/NP︸ ︷︷ ︸
Syntax Type

: λy.x.loves(x, y)︸ ︷︷ ︸
Semantic Type︸ ︷︷ ︸

Category

Figure 6: The lexical entry for the verb loves showing the key components of the entry. The
syntax type indicates that the verb “love” generates a sentence (S) by absorbing a noun phrase
(/NP) to its right, then to its left (\NP)

Unlike context-free grammars, which rely on large numbers of production
rules to generate a parse for some given text, the CCG formalism relies on only
a small number of operators in deciding how to combine categories to create valid
parses. These include: the application operator (see Figure 7); the composition
operator; and the type-raise operator. Using this small set of rules, along with
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the syntax types of the words in a given sentence, a CCG parser can generate
logical forms that capture the semantic meaning of the sentence.

Jack loves Jill

NP : jack S\NP/NP : λy .x .loves(x , y) NP : jill
>

S\NP : λx .loves(x , jill)
<

S : loves(jack, jill)

Figure 7: The direction of application operator can be determined by the arrow located at
the right-hand side of the operator line.

The set of verbs in our lexicon are extracted from the VerbNet corpus de-
scribed by Kipper et al. [35]. Using the associated syntax frames provided
with the corpus for each verb class, the extracted verbs were assigned to one or
more of the three syntactic categories, intransitive verbs (2374 verbs), transitive
verbs (4399 verbs), and ditransitive verbs (3452 verbs), with a combined total
of 4576 verbs across all three categories. In addition to the set of verbs in our
lexicon, we also provide 8 prepositions (at, on, off, up, down, in, to, into) that
can be combined with these verbs in order to construct phrasal verbs, “look at”
or “pick up” that require both a verb and particle in order to obtain meaning.
The set of nouns and adjectives in our lexicon is not fixed, but is contingent
on both the domain in which the robot is operating, as well as the perceptual
capabilities available to the robot.

The output of the OpenCCG parser is a logical form, expressed as an XML
tree (see Figure 8). This logical form encodes symbolic information on elements
such as tasks that the agent should execute, and objects that the agent should
act on. Additionally, control flow operators such as iterators, branches and
timers, which enable the agent to learn complex non-linear behaviours, can also
be described.

4.2. BTree - Learning and Executing Re-Usable Behaviour Trees

The BTree block of our architecture (see Figure 5) is the process which is
primarily responsible for building, executing, and learning behaviour trees. At
its core, the BTree block is implemented as a behaviour tree built using the
the py trees ros library, which contains a custom Lingua composite node. The
Lingua composite node is a variant of the One-Shot Selector, and plays a number
of roles, including receiving parsed XML output from the OpenCCG process and
transforming it into executable behaviour trees; pushing generated behaviour
trees into its list of children for future execution; popping children once they
have concluded successfully; as well as providing an interface that descendant
nodes can use to retrieve user inputs. It should be noted the Lingua node does
not need to be placed at the root of the tree, but can be used within larger
trees that incorporate safety behaviours, such as recharging when the battery
is running low, or recovering from collisions; as well as fallback behaviours for
when the agent would otherwise be idle.

12



<xml>
< l f>

<satop nom=”w0 : ac t i on”>
<prop name=”drop” />
<diamond mode=”tense”>

<prop name=”pres ” />
</diamond>
<diamond mode=”agent”>

<nom name=”x1 : animate−being ” />
</diamond>
<diamond mode=”arg0”>

<nom name=”w2 : ob j e c t ” />
<prop name=”ba l l ” />
<diamond mode=”det”>

<prop name=”the ” />
</diamond>
<diamond mode=”num”>

<prop name=”sg ” />
</diamond>

</diamond>
</satop>

</ l f>
<target>drop the ba l l </target>

</xml>

Figure 8: A logical form, expressed as an XML tree, outputted by the OpenCCG parser for
the instruction “drop the ball”

4.2.1. From Logical Forms to Behaviour Trees

For any given utterance the OpenCCG process will typically provide the
Lingua node with a number of logical forms, expressed as XML trees, detailing
potential interpretations for the utterance. For each logical form, the Lingua
node attempts to extract a semantic frame (see Figure 9). This semantic frame
can be one of a number of types, such as a Task, Object, Conditional, Conjunc-
tion or Disjunction, as well as a Loop or Duration type. Each type will typically
have an expected set of arguments, which are themselves semantic frames, al-
lowing for the complex nesting of types such as conjunctions of tasks. During
the process of extracting semantic frames, invalid semantic frames are discarded
by identifying when expected arguments are missing, such as a missing argu-
ments to a verb. If no valid semantic frames are identified, the agent will inform
the user it was unable to understand the supplied utterance.

In the event a valid semantic frame is identified, it is then selected and is
checked for the presence of anaphora (anaphora are words that derive their
meaning from other expressions with a dialogue, such as the words “he” or
“it”). If no anaphora is located within the frame, the last task description
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task :
name : drop ( ob j e c t arg0 )
arg0 :

ob j e c t :
name : b a l l
l im i t :

only : 1

Figure 9: The semantic frame generated from the logical form in Figure 8, for the instruction
“drop the ball”. The attribute “limit: only: 1” indicates that the phrase “the ball” should
only be groundable to 1 object in the knowledge base of the robot.

within the semantic frame is extracted and its first argument is stored as the
topic of interest. If anaphora are located, they are replaced with the previously
selected topic of interest. If no topic of interest is available, the system responds
by raising an error.

The semantic frame is then converted into an executable behaviour tree
structure (see Table 2), and the relevant constructors are called for the generated
tree and its children. This behaviour tree is then inserted as a child of the Lingua
node for future execution.

4.2.2. Methods and Subtrees

In order to generate executable behaviour trees for tasks, the system must
have a mechanism for mapping from semantic frames describing tasks to the
structures that describe how to complete them. To achieve this, the system
generates a Subtree node, which accepts the semantic frame as an argument,
which it then inserts into the tree to be executed. This Subtree node uses
information from the semantic frame during setup to retrieve a method from
Task Memory that describes how to complete the task (see Section 5 for details
on how methods are added to Task Memory). Each method in Task Memory
is described as a 5-tuple m = (L,P,E,Π,Σ), where L is the method label used
to match the method to the task (e.g. “pick up(object arg0)”), P is the set of
preconditions for the method, E is the set of effects, Π describes the behaviour
tree that will be generated for the method, and Σ is the argument mappings
from m to Π. Currently all non-primitive methods have the constraint that
P = E = ∅. If a preexisting method is found for the given Subtree the Subtree
stores the method which it will expand when it is activated. In the event that
no method can be located, a LearnMethod node is generated and inserted as
the sole child of the Subtree (see Figure 5).

4.2.3. Subtree Expansion

While the Subtree node is a variant of the Sequence composite, it differs
from the Sequence node by not maintaining a constant set of children. Instead
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Table 2: Mappings between Semantic Types generated by the OpenCCG Parser and Behaviour
Trees
Semantic Type Behaviour Tree
Conditional Selector(Inverter(condition), body)
Conjunction:and Sequence(l argument, r argument)
Conjunction:or Selector(l argument, r argument)
Task Subtree(name, arguments)
Object GroundObject(descriptors)

the Subtree node is expanded during its Activating state to generate a set of
children which are then popped during the Deactivating state of its lifecycle.

The set of children for a Subtree is generated from the elements P , E and Π
of the method description m attached to the Subtree (see Figure 10). Assuming
that E 6= ∅ then the first child generated will be a Selector, with the set of
effects on the left branch, and a subtree on the right branch. In the event the
effects are already satisfied then the tree will immediately return Success to the
Subtree, otherwise the right branch of the Subtree will be ticked. If P 6= ∅, then
the branch to the right of the effects will consist of a Sequence, with the set of
Preconditions on the left branch, and the policy describing how to complete the
task on the right.

?

E →∗

P Π

Figure 10: The children generated by a Subtree node with the attached method m ∈M where
E 6= ∅ and P 6= ∅.

During expansion, the set of arguments provided to the Subtree are also
grounded to objects and locations within the World Model held by the agent.
For each object or location, the World Model contains a mixture of continu-
ous and discrete information captured by the perceptual pipeline of the agent.
Grounding arguments to the Subtree is achieved by querying the World Model
for entries based on discrete descriptors such as colour, shape type, or labels.
Querying for items that satisfy these descriptors is done using a set of predi-
cates, such as (color red ?), which queries for all red objects in knowledge base.
In addition to visual descriptors, custom descriptors can also be implemented
using custom callbacks, which can be mapped to predicates using simple pat-
tern matching. These callbacks enable the agent to reason symbolically over
continuous state information, using descriptors such as spatial relations.
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BTreeHuman KB

Pick up the ball

ball(x)

{o1,o2}Which ball?

The red ball ball(x) ∩ red(x)

{o2}Okay

Figure 11: The instruction “pick up the ball” indicates that we are interested in a single ball.
In the event that the knowledge base (KB) contains information on two balls, one green (o1)
and one red (o2), then the instruction is semantically ambiguous. Resolving this ambiguity
can be done through iterative refinements provided by the user.

Given an utterance from the user, we derive a set of candidate referents X for
each argument within the utterance, as well as an expected cardinality n for X.
If |X| = n then we can ground the argument to set X. However, in the event
that |X| 6= n a Disambiguation node is inserted at the front of the Subtree
node. The Disambiguation node indicates to the user that more information
is needed to ground the argument, and will return Running until the user to
provide a new utterance. This new utterance is then grounded to generate a set
of candidate objects Q, and X is updated such that X = X ∩Q. The condition
|X| = n is then re-tested, with the Disambiguation node returning Success if the
condition is true, or repeating the process of requesting additional information
if the condition is not satisfied. This iterative refinement process can be seen in
Figure 11.

4.2.4. Precondition Resolution

The set of preconditions P = (p1, ..., pn) for a primitive method m are rep-
resented within the expanded Subtree as a set of Condition nodes underneath
a Precondition node (represented in Figure 12 as a node containing →P ). The
Precondition node is a variant of the Sequence and extends the functionality
of the Sequence node by allowing dynamic re-planning in the event that one or
more Condition nodes are not satisfied.

While the Precondition node is being ticked, it will iteratively tick each
Condition node, returning Success if each and every Condition node returns
Success. However, in the event that a Condition node returns Failure, the
Precondition node responds by generating a special Resolution node, which
is implemented as a One-Shot Selector (represented in Figure 13 as a node
containing ?τ ) containing a single Planner action leaf. This Resolution node is
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→P

p1 pn

Figure 12: The Precondition node (a subclass of the Sequence composite) with two condition
nodes p1 and p2.

then prepended to the set of children of the Precondition node, after which the
Precondition node returns a Running status.

→P

?τ

Planner

p1 pn

Figure 13: When the Precondition composite node receives a Failure status from one of the
attached condition nodes (e.g., if an object to be manipulated is not reachable), a Resolution
node containing a Planner action leaf is generated and prepended to the Precondition node.

The Planner action leaf when activated will use the set of preconditions P
and the set of known methods M = {m1, ...,mn} to find a policy Γ such that
executing Γ will satisfy P . If Γ is found, a behaviour tree is generated from Γ
which is then inserted into the Resolution node, and the Planner leaf is popped,
as seen in Figure 14. In the event that Γ is not found, or executing Γ does not
lead to a valid resolution of P , then the Precondition node will respond with
Failure.

→P

?τ

Γ

p1 pn

Figure 14: The node Γ is generated from the policy discovered by the Planner action leaf, and
represents an sequence of behaviours that when completed will satisfy the conditions of the
Precondition node (e.g., putting the agent in range of an object that is to be manipulated).
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5. Learning Behaviour Trees

When a Subtree is setup, the Task memory of the agent is queried for a
method definition that matches the task label for the Task frame assigned to
the Subtree, which is then expanded when the Subtree is ticked. However, in
the event that no method definition exists that corresponds to the task label, a
LearnMethod node (see Figure 15) is generated and inserted as the sole child of
the Subtree.

The LearnMethod node is a variant of the Memory Sequence, and provides
the agent with the ability to engage a human user in iterative situated natural
language dialogue. When the LearnMethod node is first ticked, it prompts
the user for an explanation of the unknown task. The middle branch of the
LearnMethod node is ticked next, and continue to return a Running status until
the user indicates that the session is concluded. Within this branch, the first

→∗

Prompt !

S = R

→∗

Poll ?

→∗

!

Terminal?

Push

→∗

Execute !

Done?

Learn

Figure 15: The LearnMethod composite node prompts the user that it does not know how to
complete the task, before entering into an interactive dialogue mode, indicated by the second
branch in the tree. When the interactive dialogue is terminated by the user, the composite
learns a method definition based on the dialogue.
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node to be ticked polls for a semantic frame representing either a behaviour tree
to be executed, or Terminal frame, meaning that the user has indicated that the
agent should stop polling for instructions. If the frame is not a Terminal, then
it is inserted into a list representing the steps that the agent should execute
to complete the task, and the user is polled again. If the frame is a Terminal,
then the semantic frames in previously added to the list of steps are converted
into behaviour trees, inserted as children into a Sequence, then ticked by the
Execute node. Each item in the list is then copied into an explored list, and the
user is polled to see if the task is completed. If the task is not completed, the
middle branch is again ticked, and the user is prompted for the next semantic
frame. If the task is completed, then the explored list is passed to the Learning
node, which is then used to generate a method definition. An example dialogue
between a robot and a user can be seen in Table 3.

Table 3: An example exchange illustrating how a user would teach a robot to put away blocks.

H: Put the block on the table away
R: How do I put the block on the table away?
H: Pick it up
R: Okay
H: If it is red put it in the bin
R: Okay
H: if it is blue put it in the box
R: Okay
H: Try
R: Let me try once
R: Did I finish the task?
H: Yes

6. Experiments

To demonstrate the viability of our approach we undertook one quantitative
assessment using a publicly available dataset, and three qualitative assessments
using two physical robots and one simulated robot, with each robot needing to
complete a robot-specific scenario. These robots are: a Franka-Emika Panda
robot arm that must sort blocks when they are provided to it; an Adept Guiabot
mobile platform, that must patrol between two previously unknown locations
for a number of minutes; and a simulated turtlebot, that must resolve a set of
unsatisfied preconditions that prevent it from completing its task. Importantly,
for the sake of simplicy, text input is used in place of automatic speech recogni-
tion for all qualitative assessments undertaken in this paper. Results from our
qualitative assessments can also be seen in the sumpplementary video2.

2video url goes here
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6.1. Language to Behaviour Trees

To quantitatively measure the ability of our system to generate behaviour
trees from natural language, we use the VEIL-500 (Verb-Environment-Instruction-
Library) version of the “Tell-Me-Dave” corpus [36]. The VEIL-500 corpus was
collected by having trial participants interact with a simulated robot in a vir-
tual world, with participants providing sequences of instructions that the robot
needed to complete. A sample of these instructions can be seen in Table 4. In
total the VEIL-500 corpus contains 2199 separate instructions, divided across
649 sets of interactions.

Table 4: A subset of instructions found in the VEIL-500 corpus

U: put the pot in the sink, fill it up and boil the water on the stove
U: grab the vanilla syrup bottle and chocolate syrup bottle, and open the
fridge door
U: dump the bowl into the trash and take the bowl to the kitchen and put
it in the sink
U: take out food from the refrigerator, place it on a plate and then heat it
in the microwave
U: place the plate near the glass
U: pour the kettle into the ramen
U: move the cd to the television

From the set of 2198 instructions we processed 2079 instructions, exclud-
ing 119 instructions that were considered invalid for reasons including non-
grammatical English, spelling errors, and the use of non-imperatives. A sample
of these invalid instructions can be seen in Table 5. From these instructions a
set of noun words were extracted using POS tagging, and added to the grammar
used by the CCG parser.

Table 5: A subset of invalid instructions identified within the VEIL-500 corpus

U: put cs to game box
U: -drink-food-books-paper
U: tell me dave website has been visited 5000 times
U: can not find drink in this scenario

Each valid instruction in the corpus is initially passed through a number of
preprocessing steps. These include:

1. Converting the instruction to lower case
2. Replacing simulator-specific object names with generic class names (e.g.

cup1 → cup)
3. Inserting spaces between commas and words (e.g. “the ball, the cup” →

“the ball , the cup”)

The processed instructions are then fed through the OpenCCG parser to
obtain a number of XML trees representing possible parses for the instruction.
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Each parse is then converted into a semantic frame, from which a behaviour
tree is generated.

Table 6: Examples of behaviour trees generated from instructions in the VEIL-500 corpus

Instruction: throw out the bottle, can and chips
Sequence(

Subtree(“throw out”, “bottle”),
Subtree(“throw out”, “can”),
Subtree(“throw out”, “chips”)

)
Instruction: get food and put it on the coffee table
Sequence(

Subtree(“get”, “food”),
Subtree(“put on”, “food”,“coffee table”)

)

To quantify the success of the system we categorise valid instructions based
on one of three possible outcomes: 1) success, in which the instruction could
be parsed by the OpenCCG grammar, and could then be converted into a be-
haviour tree; 2) parse, in which the instruction could be parsed by the OpenCCG
grammar, but no behaviour tree could be generated, and 3) failure, in which
neither a parse nor a tree could be generated. The results from this trial are
shown in Figure 16 and a sample of the generated behaviour trees can be seen
in Table 6.
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Figure 16: Summary of results from attempting to generate behaviour trees from 2079 valid
natural language instructions found in the VEIL-500 corpus.

Reasons for sentences failing to be parsed included missing conjunctions be-
tween commands, such as “get the water pour into bowl”; the use of grammatical
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constructs not currently covered by our grammar, such as units of measure (e.g.
1 cup of water), and sentences containing words that were missing from our
grammar. The set of parses that could not be converted into behaviour trees
will be missing one or more arguments while converting the parse to a semantic
frame.

6.2. Block Sorting

In this real-robot scenario we demonstrate the ability for our system to
incrementally construct generalisable behaviour trees from simple primitive be-
haviours, by teaching a Franka-Emika Panda robot arm to sort blocks into bins
based on their respective colour.

Figure 17: The workspace for the Franka-Emika Panda robot arm was comprised of three
distinct locations: the table(the black mat); the bin (the left container); and the box (the
right container). For simplicity, the label home was mapped to the region specified by the
table.

The workspace of the robot, which can be seen in Figure 17 is divided into
three distinct sections, with a corresponding label and position stored in the
knowledge base for each location. Initially, the robot was provided with only
a simple set of primitives, a subset of which can be seen in Table 7. These
primitives provide simple functionality, such as moving the end-effector to the
location of objects in the workspace, and opening and closing the end-effector.
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Table 7: The primitive methods used to complete the sort blocks scenario

open(tool arg0) Opens the end-effector of the Panda
robot arm

close(tool arg0) Closes the end-effector of the Panda
robot arm

move to(tool arg0, object arg1) Moves the end-effector to the position
of the specified object

see(object arg0) Tests whether an object is visible that
meets the constraints defining arg0
(e.g. a red block on the table)

stop() Removes and destroys all descendant
nodes of the Lingua node

Additional primitives to move the end-effector up and down were also defined
but not used in this scenario.

To provide sensing capabilities of its environment, the robot was equipped
with a wrist-mounted D435 Realsense RGBD camera. Simple color segmenta-
tion using chromaticity was utilised to identify and classify blocks in the field
of view of the robot, and visible blocks would be assigned temporary ids for the
duration that they were visible to the camera.

In addition to colour, objects could also be referenced using the spatial
relations “in” and “on”, which were implemented using a callback that tested
whether the position of objects within the knowledge base existed within an
bounded region of the object used in the relation. Additional callbacks were
defined for testing whether the end-effector was closed or open.

The first non-primitive taught to the Panda arm was a pick-up behaviour,
with the training session being initiated with the instruction “pick up the block”.
The pick-up behaviour was described to the robot as a sequence which involved
opening the robots gripper, moving to the block, closing its gripper, then moving
back to its home position. Once the robot had completed a test run of this
sequence, it was confirmed that it had completed the task, ending the training
session and causing the agent to generate a generalised method encapsulating
the process it had been guided through.

The agent was then taught a put-away behaviour, with the instruction “put
the block away”. The first step described to the robot for this behaviour was to
pick up the block, re-using the behaviour learnt in the previous training session.
Next, the robot was instructed to move to a location based on the colour of the
block, with the robot moving to the bin if the picked block was red and green,
and to the box if the picked box was blue. Lastly, the agent was instructed
to open its end-effector to drop the block into the bin located below. The
agent then completed a test run, the training session was ended, and a method
generated.

With knowledge of how to put away blocks, the agent could then be in-
structed to sort blocks indefinitely with the instruction “whenever you see a
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block on the table sort it”. The behaviour tree generated from this instruction
can be seen in Figure 18.

Figure 18: The behaviour tree generated from the instruction “whenever you see a block on
the table put it away” visualised using the rqt py trees package. Rectangular non-terminals
represent sequences; hexagonal non-terminals represent selectors; and oval non-terminals rep-
resent decorators. The blue path through the tree highlights the path to the currently running
leaf node

6.3. Patrolling

To further demonstrate the broad applicability of our approach, we will now
describe the patrolling scenario that was completed by our Adept guiabot mobile
robot. The patrolling scenario requires that we teach the mobile robot to be
able to navigate between two previously unknown locations. Initially, the robot
is equipped with a map of the environment, which it can localise and navigate
within using the ROS navigation stack3. The robot is also equipped with three
initial primitive behaviours, described in Table 8. In addition, the verb “patrol”
was added to the set of intransitive verbs previously pulled from VerbNet, as
VerbNet only contained transitive and ditransitive forms.

Initially, the robot was not equipped with knowledge of any named locations
within the environment. To fill in these knowledge gaps, the robot was manu-
ally driven to two separate locations, then provided with the natural language
statement “this is the kitchen/lounge”. In each case a location was stored in the
knowledge base of the agent, which included a randomly generated object id, a

3https://github.com/ros-planning/navigation
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class label (e.g. kitchen), as well as a 6-DOF pose relative to the map frame of
the robot.

Figure 19: The Adept guiabot mobile platform was equipped with a touchscreen interface,
wireless keyboard, and onboard computing.

Using these labeled place names allowed the user to instruct the robot to
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either location with statements such as “drive to the kitchen”. It is worth
noting that synonymous statements such as “go to the kitchen” can be learnt as
high-level methods that have as their child the drive to(room arg0) primitive,
allowing multiple verbs to map to the same underlying behaviour.

The robot was then instructed to patrol, a task it did not know how to
complete. The robot was instructed that to patrol, it should repeatedly drive
between the kitchen and the lounge. The robot then performed a single lap of
this trip, before asking to confirm if it had completed the patrol task success-
fully, and upon receiving an affirmative confirmation, ended the training session.
Lastly, the agent was instructed to “patrol for 30 minutes”, demonstrating the
ability to time-bound a behaviour that would otherwise run indefinitely. The
behaviour tree generated from this instruction can be seen in Figure 21.

Table 8: The primitive methods provided for the Patrol scenario

is(object arg0, room arg1) Enables the agent to store its current
pose with a user-provided label (e.g.
kitchen)

drive to(room arg0) Drives to a previously stored location
based on a user-provided label (e.g.
kitchen)

stop() Removes and destroys all descendant
nodes of the Lingua node

6.4. Resolving Preconditions

The final scenario uses a simulated case to highlight the ability of our ap-
proach to resolve unsatisfied preconditions of behaviours given incomplete in-
structions from a user. In this scenario, we use a turtlebot simulated using the
stage robot simulator4. The overall objective of this scenario is for the turtle-
bot to ring a bell located within its environment. The robot was equipped with
the same set of primitives as the robot in Section 6.3, in addition to three ex-
tra primitives needed for the scenario. The first primitive was the ring(object
arg0) primitive that completed the scenario, which had as a precondition a re-
quirement that the robot be located near to the bell (determined by a distance
threshold). The other two primitives were the lock(tool arg0) and unlock(tool
arg0) primitives that would lock and unlock the brakes of the robot, respec-
tively. In addition to these primitives, the driving primitives were amended to
include the precondition that the brakes on the robot must had to be unlocked
before the robot could move.

Initially, the robot is located some distance from the bell, with its brakes
locked. The robot was then prompted to ring the bell with the instruction “ring
the bell”. Importantly, the complete set of instructions needed to complete

4http://wiki.ros.org/turtlebot stage
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Figure 20: The map used by the mobile platform. The transform for the base link of the
robot, and the two saved locations are visible.

this scenario would have been “unlock your brakes, drive to the bell, then ring
the bell”. However, as the first two steps of the instruction were not provided
to the agent, the agent needed to satisfy the precondition of the ring(object
arg0) method selected from the provided instruction, that the robot be near the
bell. Once the agent recognised that the precondition of the ring(object arg0)
primitive was unsatisfied, it responded by generating the appropriate resolver
node and inserting it into the tree. This resolver node performed an iterative
deepening search over the methods available to the robot, generating a plan
that unlocked the brakes of the robot, before driving the robot to the bell.
After completing the generated plan, the robot was then able to ring the bell
and complete the scenario. A behaviour tree containing the generated solution
can be seen in Figure 22.
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Figure 21: The behaviour tree generated from the statement “patrol for 30 minutes” visualised
using the rqt py trees.

Figure 22: The Behaviour tree generated for the instruction “ring the bell” showing the
resolution generated to resolve the precondition of the ring(object arg0) method.

7. Discussion

While in this paper we propose a method for learning generalisable behaviour
trees from natural language, not all behaviours are best suited to being learnt
from natural language. Rather, a complete solution to teaching and instructing
everyday robots will require a combination of learning from natural language,
teach and repeat, and learning from demonstration. In addition, through the use
of teach-and-repeat and learning from demonstration, we can address the issue
that primitive behaviours must currently be hand-coded by an expert. Robots
that are able to learn how to physically execute primitives from observation, then
connect these to symbols in natural language, would be powerful and flexible
tools.

While we demonstrate the ability to generate behaviour trees from natural
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language, there are still a number of gaps in our current approach. The first
of which is the absence of a mechanism for generating sets of preconditions
and effects when learning novel methods. While previous approaches describe
methods for generating these sets, these approaches have typically operated
over linear sequences of actions [30]. Unlike these approaches, behaviour trees
introduce a number of complications in inferring preconditions and effects due
largely to their non-linear nature. Future work will look at addressing this
limitation.

Further, our current approach to selecting the appropriate verb type (e.g.
transitive vs ditransitive) is to choose the first verb that grounds to the domain of
the robot. However, this approach is not well suited to dealing with ambiguities
arising from prepositional attachment. For instance, the statement “put the
ball on the table” could be interpreted as either putting the ball onto the table
(ditransitive), or putting the ball currently located on the table (transitive).
While it is obvious to a native English speaker that the second sentence is
nonsensical, the agent has no background knowledge from which to discard
this interpretation. Approaches to deciding the most likely groundings have
previously been proposed by Kollar et al. [20], and future work will look at how
these approaches can be incorporated to increase the robustness of our system
to grounding ambiguities.

Additionally, we do not currently make any attempts to generalise relations
between the arguments supplied to behaviours being learnt, and the arguments
used by their children. As such, teaching a robot to put away an object by
instructing it to place the object in a specific location, will see all future objects
placed in the same location. One such method to address this issue by lever-
aging domain knowledge available to the robot have previously been explored
by Suddrey et al. [15], and future work will explore how this approach can be
integrated into our system to resolve this limitation.

Lastly, while our approach makes use of symbolic word stems to match se-
mantic frames to methods in our knowledge base, other representations could be
used. For instance, by leveraging Word2Vec, introduced by Mikolov et al. [37],
different verbs with similar semantic meaning, such as “put” or “place” could
be matched to a single task representation by evaluating euclidean distance
between their respective vectors.

8. Conclusion

In this paper we have outlined our approach to generated generalisable be-
haviour trees from natural language instruction. We have shown that natural
language can be easily mapped to behaviour tree constructs, which we illus-
trated using the VEIL-500 dataset. Additionally, we demonstrated two real-
world robot scenarios and one simulated robot scenario that illustrated the the
ability of our system to generate generalisable behaviour trees that allow robots
to complete such tasks as: sorting blocks based on color; patrolling between
locations for fixed durations of time; and ringing bells after resolving precon-
ditions arising from incomplete instructions provided by the user. Lastly, we
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have shown that the ability to generate behaviour trees from natural language
instruction enables robots, and other autonomous agents, to learn novel skills
from natural language instruction provided in real-time within their environ-
ment.
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