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Learning From Demonstration Based on
Environmental Constraints

Xing Li , Graduate Student Member, IEEE, and Oliver Brock , Fellow, IEEE

Abstract—We present a novel learning from demonstration ap-
proach which uses environmental constraints as the underlying
representation to interpret and reproduce demonstrations. This
representation based on environmental constraints separates the
information that facilitates generalization from the information
specific to object instances. Combined with adaptive controllers
which fill in the instance-specific details during execution through
explorative interaction, our approach generalizes from a single
demonstration on an articulated object to different instances of the
same object type. We test our approach in real-world experiments
on contact-rich manipulation, using a series of mechanical locks as
well as drawers and doors. The high success rate of 95% across all
of these experiments provides strong evidence that environmental
constraints are a powerful inductive bias for general and robust
learning from demonstration.

Index Terms—Learning from demonstration, perception-action
coupling.

I. INTRODUCTION

W E PRESENT an approach to kinesthetic learning from
demonstration (LfD) in contact-rich manipulation tasks.

The approach generalizes from a single demonstration of a task
using an articulated object to other objects with similar but not
identical kinematic structures, different sizes, and different ob-
ject placements. To achieve such generalization with only a sin-
gle demonstration, we must extract from the demonstration the
information that facilitates generalization, ignoring information
specific to the object instance. The key insight for achieving this
stems from human manipulation. Humans extensively leverage
contact with the environment during manipulation. We refer to
this as the exploitation of environmental constraints [1]. We
show that environmental constraints (ECs) are the appropriate
representation for LfD, enabling generalization and robustness.

The function of many objects is encoded in their kinematic
structure: doors, drawers, scissors etc. This structure constrains
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Fig. 1. Based on a single human demonstration, this robot opens a lock robustly
and repeatedly. This requires passing a small pin through the narrow slot. The
resulting policy robustly transfers to other locks that vary significantly from
the one used in the demonstration. The policy even generalizes to placement
variations of these different locks.

the relative motion of the object’s parts. To the robot inter-
acting with these objects, the kinematic model appears as an
environmental constraint [1] i.e. a feature of the environment
that dictates aspects of the motion the robot can perform while
in contact with that object. It is an important observation that
different objects of the same type can differ in the parameters
of their kinematic model but the type of ECs that result from
the model remain the same. This enables humans to transfer
experience between objects of the same type. By using ECs as
the underlying representation for the information extracted from
human demonstrations, we can impart similar transfer abilities
to robots.

Environmental constraints also play an important role in
the robust execution of policies learned from demonstrations.
When manipulating articulated objects with tight clearances,
small errors during motion execution can cause the robot to
be blocked. The associated contact forces lead to perceptual
aliasing of contact states relevant to the policy. To address these
problems, our approach leverages the ECs extracted from the
demonstration as an inductive bias for motion execution.

We leverage these insights to devise an approach to LfD based
on ECs. We demonstrate the learning and transfer of a policy
from a single demonstration with a lock, such as the one shown
in Fig. 1, to other locks of the same type but greatly differing
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physical properties, achieving success in 49 out of 50 trials. We
show that success remains high, even when we rotate the lock
relative to the lock’s orientation in the demonstration. We also
demonstrate the approach on a cabinet with three compartments,
each having a different opening mechanism. Again, a single
demonstration suffices to open all three. Our key contribution
is to present this LfD system based on ECs and demonstrate
that ECs are a suitable representation to achieve transfer and
robustness in LfD for contact-rich manipulation tasks.

II. RELATED WORK

Learning from demonstration is a promising way to teach a
robot various manipulation skills efficiently [2]. One common
paradigm for LfD is behavior cloning, which learns a policy to
map raw observations into low-level actions from demonstra-
tions. This paradigm usually uses all available information in
demonstrations. We argue that separating general information
from unnecessary details is important for LfD. In this work, we
achieve this separation by using ECs as inductive biases.

Another important paradigm of LfD is to learn movement
primitives from human demonstrations [3]. These methods
assume the motion characteristics in demonstrated movements
encapsulate the essential information to reproduce the demon-
strated behaviors [4], [5]. However, Kalakrishnan et al. [6] found
that simply playback a demonstrated trajectory on a robot is
not able to accomplish contact-rich manipulation tasks. One
reason is that it is difficult to track trajectories in a chaotic
environment. In addition, demonstrations do not contain the
information about friction, which is crucial to be compensated
to reproduce the demonstrated in-contact skills [7]. We thus
hypothesize that demonstrated motion characteristics are not
the right representation for contact-rich manipulation tasks.
Therefore, our work focuses on deriving a policy based on ECs
from the demonstration.

Environmental Constraint Exploitation (ECE) is introduced
by Eppener et al. [1] to describe behaviors which leverage useful
features provided by the environment. This concept has been
successfully applied in various robotic applications, including
grasping [8], [9], motion planning [10] and in-hand manip-
ulation [11]. Our research is inspired by [8], [11], in which
manipulation tasks are decomposed into a sequence of ECEs. In
this study, we leverage this insight for LfD. Two characteristics
distinguish our work from them. First, we propose to extract a
sequence of ECEs from a human demonstration rather than using
manually designed actions or highly engineered controllers.
Second, we consider the problem in which it is difficult to derive
the knowledge of ECs using visual information. The robot has
to reveal additional information by actively interacting with the
environment [12].

Recently, Klingebeil et al. showed the experimental result that
humans tend to explicitly control and explore only a few con-
tact states during manipulation [13]. Several works investigate
extracting contact states using geometric information [14] or
data-driven approaches [15]. In contrast, we tackle the problem
involving extensive contact states due to the complex geometric
model. Moreover, different contact states can produce similar

sensory measurements in a chaotic real-world environment.
Therefore, applying these approaches to solve our problem is
challenging.

One application of ECE for operating unknown mechanisms
is introduced in [16]. The idea is to use an adaptive controller
to find and follow the admissible motion direction restricted by
ECs. This concept exploits helpful guidances provided by ECs
and does not require object-specific information, which ensures
generalization. However, the major problem of this concept is
that the adaptive controller cannot select a specific EC to exploit.
Consequently, using this concept to operate articulated objects
with multi-DOFs is challenging. To overcome this problem, we
propose a method for extracting the necessary parameters from
a human demonstration to instantiate a sequence of adaptive
controllers to exploit different ECs. In addition, we present
the idea of deliberately exerting a force to maintain contact. It
reveals useful information about contact-changing events, which
facilitate the transitions of ECs.

Research on learning geometric constraints of ECs from
demonstrations is related to our work [17], [18]. Our experiments
show that it is hard to explicitly learn the geometric constraints
for ECs. Furthermore, detailed geometric models are specific
to the object instance. Using this information undermines the
generalization ability. By contrast, our approach concentrates on
extracting general information about EC, leaving unnecessary
details to the control. In this way, our approach carefully
balances learning and control, thus delivering substantial
generalization.

III. ENVIRONMENTAL CONSTRAINTS IN LEARNING

FROM DEMONSTRATION

We now present the key arguments for ECs as the appropriate
representation for robust and general LfD. While this letter
demonstrates this only in the context of contact-rich manipu-
lation, we believe that our general arguments transfer to LfD as
a whole.

Environmental constraints encode essential information about
the intended interactions between an agent and its environment.
There are three possible reasons. First, this can be the conse-
quence of human design: The functionality of articulated objects
(scissors, laptops, drawers, can openers...) is encoded and—most
importantly—produced based on their articulation. Each artic-
ulation provides an environmental constraint that is operated
when using the object. Second, environmental constraints are
relevant to the robust execution of many skills, for example,
when we slide a credit card to the edge of the table to pick it up
reliably [1]. And finally, even contact-free actions are naturally
expressed through environmental constraints, if one includes
visual constraints, such as the servoing of an end-effector to
a particular placement (which acts as a constraint). This fun-
damental interwovenness of environmental constraints with the
interactions of embodied agents with their environment justifies
ECs central role in LfD.

Interpreting demonstrations as sequences of ECs allows us
to separate general information (associated with the EC) and
instance-specific information. The properties of the EC (motion
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and force directions and contact-changing events) will be iden-
tical across different object instances of the same type. But the
exact trajectory, how far exactly the motion needs to be or how
large a force needs to be, those are properties that vary across
object instances. The latter is not part of the description of the
EC. The use of ECs as the underlying representation for LfD
thus enables the identification of motion patterns that generalize
within object categories.

The general but incomplete information captured by ECs must
be completed before a demonstration can be transferred suc-
cessfully. Of course, a transferred demonstration must result in
a fully specified trajectory. This does require the specification of
information not captured by ECs, such as motion distances, force
thresholds etc. To achieve this, we rely on adaptive control. We
augment the motion template represented as ECs with informa-
tion obtained directly from the current object instance by these
adaptive controllers. This balances the responsibilities between
the learning component and the execution component of LfD.
Each component address one-half of the problem: The learning
extracts the generalizable motion template and the executive
uses sensing in the object-specific case to fill in missing details.

The key advantage offered by the inclusion of adaptive con-
trollers with explorative behavior into the LfD pipeline. Rather
than executing a given trajectory, they explore interactions with
the world to obtain important information about the object
instance that was not present in the EC-based representation.
This contributes greatly to the robustness of LfD, as can be
illustrated by the following examples. When the execution of
a fixed trajectory would get “stuck” due to modeling or exe-
cution inaccuracies, the explorative movement of the adaptive
controllers will fill in the right details based on sensing, al-
lowing to get “unstuck” again. The explorative movement of
the controllers also alleviates the effects of perceptual aliasing.
Even though different contact states might give very similar
sensor feedback in a particular instance, explorative behavior
can quickly disambiguate these states.

For the reasons laid out above, ECs should be used as a rep-
resentation to achieve robust and general LfD. In the remainder
of the letter, we demonstrate this in detail and successfully for
contact-rich manipulation.

IV. DEMONSTRATION SYSTEM

We explain here how to extract general information (i.e.
motion and force directions) from a human demonstration. To
acquire demonstration data, we use a Franka Emika Panda robot
arm with a 1-DOF gripper as the robot platform, as shown in
Fig. 1. The fingertips of the gripper are covered with silicon to
allow the robot to grasp articulated objects with irregular shapes.
We mount a Force-Torque sensor on the robot’s wrist to record
the interaction force. The black square shape handle mounted on
the wrist is used in the kinesthetic teaching phase, in which the
user will hold the handle and move the robot to finish a task. Nei-
ther vision nor motion capture system is used. The demonstration
is recorded in 100Hz frequency. We record end-effector position
p ∈ R3 and interaction forces f ∈ R3 using the Force-Torque
sensor. Both position and force measurements are in the robot’s

Fig. 2. The five locks used in the experiments.

base frame. Then the demonstrated trajectory Tr is decomposed
into a set of vector pairs i.e. Tr = {(p1, f1), . . ., (pn, fn)} with
n timesteps.

Given a demonstration, we first decompose a it into a se-
quence of segments. The transition between two environmental
constraints is a distinct contact-changing event. For example, the
robot is sliding the knob to the left. The sliding motion terminates
when the pin on the bar hits the constraints, and the robot’s ve-
locity will suddenly decrease. Based on this insight, we use such
events to segment the demonstrations. Concretely, we add a seg-
ment when the velocity suddenly drops or the motion direction
changes rapidly. We use zero-velocity crossings (ZVCs) [19] as
the segmentation algorithm. As ZVCs often over-segmented the
demonstration, we filter out the segmentation points that are very
close to each other or with similar motion directions. Then we
get Tr = {D1, D2, . . ., Dk} with k segments. Given a segment
Dh with T timesteps, we calculate the relative motion direction
m̂h as a 3D unit vector using the initial pstart and end position
pend. We calculate the force direction f̂h as a 3D unit vector
perpendicular to m̂h to maintain contact

f̂h =
(
1− m̂h · m̂T

h

) 1

T

T∑
i=1

fi
|fi| (1)

A human demonstration is interpreted as a sequence of unit
vector pairs of motion direction m̂ and force direction f̂ . We
extract an ECE from each segment i.e. ECE = (m̂, f̂), as shown
in Fig. 3. In the next section, we explain how to use these motion
and force directions to instantiate adaptive controllers.

V. MODELING ENVIRONMENTAL CONSTRAINT EXPLOITATION

In this section, we describe how to model an ECE as an
adaptive controller which incorporates the idea of Interactive
Perception [12]. In addition, we explain why our ECE controller
can take care of the object-specific details. Our idea comes from
the observation of how humans open a door with a handle.
First, they rotate the handle and let the kinematic constraint
guide the motion. Simultaneously, they apply a force in the
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Fig. 3. This figure shows how we extract motion and force direction to
instantiate EC exploitations from a human demonstration.

direction of pulling the door. This force reveals a measurable
contact-changing event by maintaining contact to help people
switch from rotating to pulling.

Therefore, there are two parts for an EC exploitation: 1) a
controller which can follow constraints 2) deliberately exerting
a force to maintain contact to reveal useful information in contact
changes. Note that the force direction f̂ extracted from the
demonstration is used to reproduce this maintaining contact
behavior.

A. Constraint Following

We explain how to reproduce the constraint following be-
haviors. Our approach is inspired by the idea of following a
motion direction with the least resistance [16]. Our adaptive
controller consists of a velocity-based impedance controller and
Particle Filter Optimization (PFO) [20]. The main difference
between PFO and conventional particle filter is that PFO actively
samples and executes an action from the estimated distribution
and uses the outcome of the action as the measurement to update
the distribution. Instead of estimating a particular distribution,
the aim of PFO is to find the optimal p∗ based on sampling.
We parameterize the motion direction m̂ as azimuth θ and
elevation φ in the spherical coordinate system. Each particle
in PFO represents a motion direction, namely p = (θ, φ). The
optimal particlep∗ = (θ∗, φ∗) is the admissible motion direction.
In addition, the optimal particle has the largest weight and vice
versa.

The PFO algorithm works as follow. During one episode,
PFO biases the particles’ motions by adding a white noise
w ∼ N (0, σ2) (prediction step). Following that, PFO samples
a motion direction xsample(θ, φ) and executes it i.e. moving
end-effector into this direction. Then PFO will evaluate the
action’s outcome and assigns a new weight to each particle
(update step). The evaluation criteria is based on the observed
movement. If the movement is larger than a threshold (2 mm),
PFO will increase the weights of the particles surround with
the observed motion direction:wi

k+1 = wi
k · P (wi

k | xk), where

wi
k+1 denotes the weights of the i particle at the k + 1 iteration,

motion direction xk is derived from the observed end-effector
movement Δp. The probability density function P (· | xk) is
defined as a normal distribution with mean xk and predefined
variance σ.

The key idea is this: if PFO finds an admissible motion
direction, the particles will surround this admissible motion
direction. Consequently, the subsequent sampling will be close
to the admissible motion direction. Therefore, PFO will drive
the robot into the admissible motion direction i.e. following
constraints. On the other hand, if the sampled action does not
result in motion, the particle distribution will become broad,
and its range is increased due to the Gaussian noise. As a
result, sampling from a large distribution will be explorative.
Unlike approaches that only use estimated admissible motion
direction to move the robot [16], [21], our approach introduces
the explorative property by sampling action from the particle
distribution. This extension allows the robot to generate probing
actions to actively reveal the information of admissible motion
direction, which is an example of Interactive Perception [12]. It
also avoids the problem of getting stuck in the friction cone.

B. Maintaining Contact

We then introduce how to use the force direction extracted
from the demonstration to maintain contact while following
an EC. As the force direction depends on motion direction, as
(1), we first calculate the observed motion direction m̂obs by
averaging the observed movements

m̂obs = norm

(
1

N

N∑
i=1

Δpi

)
. (2)

N is the number of observed movements during the execution of
the ECEh. The Δpi is the ith observed end-effector movements,
norm is the normalization operator. We resample an action if
m̂T

obs · xsample ≤ 0. We do so to prevent the robot from moving
back and forth while following an EC.

Once the m̂obs is known, we can calculate the corresponding
force direction. Assuming that the robot is executing the ECEh,
we calculate the rotation matrix R ∈ SO(3) which can map
extracted motion direction m̂h to observed m̂obs along the sphere
geodesic (shortest path) under the condition of m̂h �= m̂obs [22]:

R = I + m̂h · m̂T
obs − m̂obs · m̂T

h

+
1

〈m̂obs, m̂h〉
(
m̂h · m̂T

obs − m̂obs · m̂T
h

)2
. (3)

We apply this rotation matrix to align the force direction f̂h
in the current motion direction f̂ = R · f̂h, where f̂ denotes the
corresponded force direction to the observed motion direction
m̂obs, as shown in Fig. 4.

C. Executing an Environmental Constraint Exploitation

When the observed motion direction m̂obs and the correspond-
ing force direction f̂ are available, we can calculate a virtual
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Fig. 4. We use the m̂h × m̂obs as rotation axis and the ψ as rotation angle to
calculate rotation matrix to algin the m̂h to m̂obs as well as f̂h to f̂ .

force Fv ∈ R3 to move the robot’s end-effector

Fv = Km · m̂obs · vd +Kf · f̂ · vd (4)

whereKm ∈ R3×3 andKf ∈ R3×3 are positive symmetric con-
troller gain matrices for motion and force respectively, vd ∈ R3

is the desired velocity magnitude. We do not control the orien-
tation part. Therefore, we set �0 to angular terms of the desired
external force Fext ∈ R6 namely Fext = [FT

v , 0T ]T . We map the
Fext to the motor torques τc ∈ R7 of the robot arm under the
operational space schema [23]

τc = JT · Fext + τdyn (q, q̇, q̈) + (I − JTJT+) · τnull, (5)

where J ∈ R6×7 is the Jacobian, JT+ ∈ R6×7 is the pseudo-
inverse of the Jacobian transpose, τdyn(q, q̇, q̈) represents the to
be compensated dynamical forces such as gravity and corio-
lis force of the arm, and τnull ∈ R7 represents the null-space
torques.

VI. CHAINING A SEQUENCE OF ECES

Given a sequence of ECEs, we construct a hybrid automa-
ton [24] to reproduce the demonstration. Each state in the au-
tomaton represents an ECE. The edges are transition events be-
tween ECEs. These transitions are based on a contact-changing
event that involves two parts: 1) The robot observes movement
(≥ 10mm) in the force direction. 2) The robot hits a constraint
i.e. it fails to move after 30 sampling trials.

Once the ECEk−1 terminates and the subsequent ECEk is to
be instantiated, the observed motion direction m̂obs can be used
to predict the motion direction m̂k for the ECEk i.e. choosing
the next EC to exploit. Similar to the calculation of f̂ as (1), we
calculate the rotation matrix R which maps the motion direction
m̂k−1 of ECEk−1 to the m̂obs. We then get the subsequent
motion direction by m̂k = R · m̂obs, which is used to initailize
the particles for the PFO.

Maintaining contact plays an important role in executing
chains of ECEs. First, having to maintain contact reduces the
set of admissible motion directions. This facilitates a single
ECE. Second, maintaining contact leverages the idea of Interac-
tive Perception [12] to exploit the correlation between forceful
interaction and contact-changing events, which indicates the

TABLE I
COMPARISON OF SUCCESS RATES ON ALL LOCKS

transition between two ECEs with higher certainty. Both factors
contribute to the robustness of executing policies.

VII. EXPERIMENTS AND RESULTS

We evaluate our approach on locks and cabinet opening tasks.
In all experiments, we assume the robot knows how to grasp the
knobs or handles. The quantitative results demonstrate gener-
alization and robustness achieved by exploiting environmental
constraints in LfD in contact-rich manipulation tasks. We also
compare with approaches which uses geometric parameters as
the representation.

A. ECs Enable Generalization in LfD

We examine generalization in the context of a lock-opening
task. Based on a single demonstration with a single lock (see
Fig. 5), we test the transfer of the extracted policy to other locks.
We use five locks that vary in appearance and size but share the
same locking principle (see Fig. 2). To unlock, we must first slide
the knob to the left while pushing down. This motion ends when
the pin on the bar hits the constraint (see inset in Fig. 1). We then
must lift the knob while pushing against the constraint. Finally,
the pin passes the small slot, and the knob is put down to the open
position. The video supplement illustrates this functionality.

After recording a single demonstration on lock 1, our LfD
approach segments the recorded data into three parts as described
in Section IV. Each segment extracts an ECE, consisting of a
motion direction and a force direction. To execute our approach
in transfer experiments, the desired velocity vd is set to 0.13 m/s.
The control gains are Km = diag(150) and Kf = diag(75).
Each transfer experiment starts with a known grasp location.
Everything else is determined by the extracted policy. We define
a transfer trial to be successful if the lock ends up in the opening
position.

We use two versions of Dynamic Movement Primitives
(DMP) as a baseline, one based on position control (DMP
without force) and one based on position/force control (DMP
with force) [25]. All three methods use the same demonstration
data. We run 10 trials per lock for each method, for a total of
50 transfers on all locks, based on a single demonstration. The
results are given in Table I.

Our approach succeeds 49 out of 50 times.1 The single
failure occurs with lock 3 and we will discuss it in detail in
Section VII-C. This demonstrates that our method generalizes
very well, overcoming the three challenges we outlined in III.
We interpret this as confirmation that exploiting environmental
constraints are indeed the proper representation to achieve gen-
eralization in LfD. Fig. 6 illustrates the working of the proposed

1[Online]. Available: https://www.youtube.com/watch?v=LIT5n7sG74o

https://www.youtube.com/watch{?}v$=$LIT5n7sG74o
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Fig. 5. This figure shows a kinesthetic demonstration on lock 1. We first slide to the left while pushing down (left). We then lift the knob while pushing against
the constraint (middle). Finally, we put the pin down while pushing to the left (right). By providing such a demonstration, we can extract useful (force) information
to exploit environmental constraints.

Fig. 6. This figure shows five steps in one opening trial on lock 2. The pin is labeled with a red circle. The second row is the particle distribution. From (a) to (b),
the robot hits constraints after sliding. It then tries to sample actions near the sliding direction but fails to observe movements. Therefore, the distribution gradually
increases.

method for a transfer experiment. The second row of that figure
shows the distribution of particles for sampling actions. We
can see that sampling actions from these distributions involve
exploration property, which allows the robot to actively probe
the environment and regulate the modeling and actuation errors.

The baseline approaches based on DMPs do not transfer well
(see Table I). We attribute this to the specific nature of contact-
rich manipulation tasks, in which retracing a position-based
demonstration is insufficient for generalization. Even worse, the
two baselines do not even successfully open the same lock on
which the demonstration is provided. The failure modes will be
discussed in detail in Section VII-C. This confirms the results
obtained in prior works [6], [26].

B. Execution Based on ECs is Robust

We test the robustness of transfer with respect to variations
in lock placement. As our method relies on relative motion
directions, we only need to test variations in lock orientation;
generalization to positional placements is automatic. Also here,
we claim that robustness is a consequence of exploiting envi-
ronmental constraints. We place each lock at varying orienta-
tions (20◦, 40◦, and 60◦) relative to the orientation during the
demonstration. For each of the five locks, we run 10 trials per
orientation. The setup is identical to the experiments described
in Section VII-A, and we use the same demonstration. Table II
contains the results.

Our LfD method achieves high success rates even in the pres-
ence of orientation errors up to 40◦.2 Specifically, the method

2[Online]. Available: https://www.youtube.com/watch?v=j6sF-RUbrzI

TABLE II
SUCCESS RATES OF OUR APPROACH ON OPENING LOCKS WITH INCREASING

ORIENTATION ERRORS

opens the lock successfully in 43 out of 50 trials. In 5 out of
7 unsuccessful trials, the method opened the lock by passing
the pin through the slot but failed to achieve the final opening
position (see Fig. 1). Even when the locks are rotated by 60◦,
our approach robustly manipulates lock 2 and lock 5. These
results show that the exploitation of ECs enables our approach
to compensate for perception and actuation errors, leading to
robust transfer of a single demonstration.

C. Failure Analysis

All observed failure cases result from a misestimation of
the motion direction associated with the active EC. This false
estimation results in a realignment of the expected contact
changing event associated with the EC. The motion is thus
terminated prematurely and the remainder of the execution is
equally misaligned.

There are two reasons for the false estimation of the motion
direction. First, significant play between the moved part and the
environment can lead to the detection of false motion directions.
This happens in the single failure case of our approach in Table I.
This type of failure can be avoided by adjusting the motion

https://www.youtube.com/watch{?}v$=$j6sF-RUbrzI
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Fig. 7. Extraction of geometric parameters for lock 1 (left) and lock 4 (right),
given a demonstration of a lifting action: end-effector trajectory (black line);
orientation of the end-effector (coordinate frames); estimated lock axis (orange
arrow); ground truth lock axis (red arrow); note the significant modeling inac-
curacies (different between orange and red arrows).

TABLE III
ESTIMATION ERRORS FOR LEARNED GEOMETRIC PARAMETERS OF THE LOCK

AXIS: POSITION ERRORS ARE CALCULATED BASED ON THE ESTIMATED AND

GROUND-TRUTH VALUE OF THE CENTER OF ROTATION

The orientation errors is computed as the relative angle between estimated and ground-
truth orientations. The estimation errors of the axis of the lock are the deviation of the
rotation angles.

threshold for detecting a motion direction (Δp) to the amount
of play measured by the controller. The second reason for the
false estimation of the motion direction is variability in the
environment. When the expected motion direction based on
the demonstration differs significantly from the actual motion
direction, our controller has a difficult time finding the correct
direction. This effect explains the data in Table II. The average
success rate decreases with increasing orientation error of the
lock placement. This type of failure emphasizes the need for
visual information to compensate for the inaccuracy [27].

D. Comparison to Explicit Geometric Constraints

ECs are derived from geometric information but discard
some object-specific geometric details in order to generalize
better. In this section, we present experiments to show that an
attempt to estimate the motion geometry of the lock does not
lead to a successful generalization of the demonstration. We
use least-squares regression [18], [28] to estimate the position
and orientation of the lock and the rotation angle of the knob.
This estimation relies on a single demonstration (so as to be
comparable to our method) with locks 1 and 4. The estimation
error compared to hand-measured ground truth is given in Fig. 7
and Table III.

Given the estimated geometric parameters, We attempt to
open the locks by generating trajectories for sliding and lifting
actions. We track the trajectories using the same impedance con-
trollers and settings as with our method. However, this method
fails to open the lock 1, in which the robot gets stuck while
lifting the knob, as the protrusion of the black pin constrains
the motion of the sliver-colored pin (see middle inset in Fig. 5).
Furthermore, the method also fails to open lock 4. Here, the
estimated rotation angle is not precise enough to be able to pass

Fig. 8. The robot learns to open the compartments of a cabinet from a single
demonstration on a drawer with a door handle.

through the small slot. These experimental results illustrate how
difficult it is to extract geometric parameters of sufficient pre-
cision to enable generalization in learning from demonstration,
even when generalization should happen on the same object.

In addition to this empirical evidence, there are also fun-
damental challenges to the estimation of exact geometric in-
formation from demonstrations. Visual information is subject
to occlusions, in particular when manipulating smaller objects.
And proprioception/tactile information is often obfuscated by
slippage between the robot and the manipulated object. By rely-
ing on EC as a representation for demonstrations, we are able to
represent the geometric information that supports generalization
while relying on controllers to fill in the object-specific details
during execution.

E. Other Manipulation Tasks

We also conducted experiments with opening the compart-
ments of a cabinet, each with a different mechanism.3 We have
a prismatic mechanism (drawer), a revolute mechanism (door
with a handle), and a combined mechanism (drawer that must
be opened with a door handle), as shown in Fig. 8. We only
record a single demonstration for the combined mechanism. Our
approach derives the policy from this demonstration which suc-
cessive exploits two ECs provided by a revolute joint of the door
handle and a prismatic joint. To compute the success rate, we
run 15 trials per component with three different grasp locations.
Our approach succeeds 45/45 times. This superior success rate
stems from that these compartments are fully constrained in
1 DOF, different from locks with multi-DOFs. In such cases,
there is no ambiguity about the admissible motion direction.
Therefore, estimation of the motion direction becomes easier
and our approach circumvents the problem of misalignment, as
introduced in Section VII-C. Overall, these experiments pro-
vide additional evidence that our approach effectively leverages
the information obtained in human demonstrations to produce
policies that transfer robustly to similar mechanisms.

VIII. LIMITATIONS

The application domain of our approach is restricted due
to two crucial assumptions. First, our approach leverages the
guidance provided by the environmental constraints, which as-
sumes the manipulated objects are fully constrained and demon-
strations can be segmented using contact-changing events.

3[Online]. Available: https://www.youtube.com/watch?v=-iju4owhLZ4
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Therefore, our approach is restricted to the task of manipulation
of articulated objects, such as doors, drawers or locks. However,
we could still apply our central idea of using ECs to a wide
range of LfD tasks. For example, learning in-hand manipu-
lation skills from human demonstrations should exploit ECs
provided by the fingers to funnel the action outcome [11], and
learning grasping strategies from humans should not ignore the
insight that humans extensively exploit the constraints present
in the environment [1]. The second crucial assumption is that
we assume the demonstration is informative i.e. has enough
information about ECs. However, if humans are familiar with
the manipulated objects, they might give demonstrations which
contain much less interaction with the environment [29]. For
this reason, it is essential to not only rely on the information
from human demonstration, but also actively interact with the
environment to fill in the missing information [12], or to online
adapt the imperfect information to the environment uncertainty
[7], [30].

IX. CONCLUSION

We demonstrate the efficacy of environmental constraints as
an underlying representation for general and robust learning
from demonstration. Environmental constraints enable the ex-
traction of generalizable information from human demonstra-
tions, separating out instance-specific information that hinders
generalization. Using this approach, a single demonstration suf-
fices to achieve generalization to a variety of different instances
of the same object type. The proposed method then augments
the information by using adaptive controllers. These controllers
acquire information about the novel instance through explorative
interaction. This combination of general, transferable motion
templates and filling in the instance-specific details during exe-
cution based on interactive sensing leads to highly robust gen-
eralization. We demonstrate this in the context of contact-rich
manipulation tasks with articulated objects. Our results validate
environmental constraints as a key ingredient for general and
robust learning from demonstration.
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