
From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation

Yuzhe Qin, Hao Su†, Xiaolong Wang†

UC San Diego

Relocate

Flip Mug

Schunk Robot

Open
Door

Reconstructed
Human Hand

Customized
Robot Hand

Camera
Stream

Allegro Robot Adroit Robot
Retargeted Demonstration

Relocate
Trained
Policy

Flip
Trained
Policy

Translate

Manipulation
Task

1

2

Translate

Translate

Fig. 1: Overview: We introduce a teleoperation system which utilizes a single camera on an iPad to stream a human hand, estimates the
hand pose and shape, and converts it to a customized robot hand in a physical simulator for dexterous manipulation. Once the manipulation
trajectories are collected, we translate them to different specified robot hands to generate demonstrations, and use them to perform imitation
learning on the same manipulation tasks. Once the policy is trained, we deploy it to the real robot hand and show robust transfer results.

Abstract— We propose to perform imitation learning for
dexterous manipulation with multi-finger robot hand from
human demonstrations, and transfer the policy to the real robot
hand. We introduce a novel single-camera teleoperation system
to collect the 3D demonstrations efficiently with only an iPad
and a computer. One key contribution of our system is that
we construct a customized robot hand for each user in the
simulator, which is a manipulator resembling the same structure
of the operator’s hand. It provides an intuitive interface
and avoid unstable human-robot hand retargeting for data
collection, leading to large-scale and high quality data. Once
the data is collected, the customized robot hand trajectories
can be converted to different specified robot hands (models
that are manufactured) to generate training demonstrations.
With imitation learning using our data, we show large im-
provement over baselines with multiple complex manipulation
tasks. Importantly, we show our learned policy is significantly
more robust when transferring to the real robot. More videos

can be found in the project page.

I. INTRODUCTION

Dexterous manipulation with multi-finger hand is one of
the most challenging and important problems in robotics.
The complex contact pattern between the dexterous hand
and manipulated objects is difficult to model. It is very
challenging to design a controller manually that can solve
contact-rich tasks in unstructured environment. Recent re-
search shows possibilities to learn dexterous manipulation
skills with Reinforcement Learning (RL) [1]–[3]. However,
the high Degree-of-Freedom (DoF) joints and discontinuous
contact increase the sample complexity to train an RL policy.

†Equal advising. Correspondence to: y1qin@ucsd.edu.

ar
X

iv
:2

20
4.

12
49

0v
2

 [
cs

.R
O

]
 1

8
Ja

n
20

23

https://yzqin.github.io/dex-teleop-imitation

Besides, black-box optimization with RL rewards can also
lead to unexpected and unsafe behaviors.

Learning from human demonstration collected by tele-
operation is a natural solution for dexterous manipulation.
Most current teleoperation systems require Virtual Reality
(VR) [3]–[7] devices or wired gloves to capture human
hands. While providing accurate data collection, it also limits
the flexibility and scalability of the process. On the other
hand, vision-based teleoperation frees the human operator
from wearing special devices which reduces the cost and is
more scalable.

However, vision-based teleoperation introduces new chal-
lenges. It needs to convert the human hand motion into
robot hand motion to command the robot, which is called
motion retargeting [8]–[10]. A human operator needs to
choose the next-step movement based on the imagination
of the future robot hand gesture and configuration. The
human operator may find it hard to control the robot if the
retargeting mapping is not intuitive (e.g., controlling a robot
hand with less than five fingers), and extra time will be taken
to calibrate their own hands with the robot hands. Moreover,
the demonstrations collected with a specific robot hand can
only be used for imitation learning with the same robot.

In this paper, we introduce a single-camera teleoperation
system with a scalable setup and an intuitive control interface
that can collect demonstrations for multiple robot hands. Our
system only requires an iPad or another mobile device as the
capturing device and DOES NOT need to perform motion
retargeting online during teleoperation. At the beginning,
our system will first estimate an operator’s hand geometry
(Figure 1, 3nd column in top 3 rows). The key of our system
is to generate a customized robot hand on the fly in the
physical simulator (Figure 1, 4th column in top 3 rows). The
customized robot hand will resemble the same kinematics
structure of the operator’s hand in both geometry (e.g., shape
and size) and morphology. The system will generate different
robot hands for different human operators, providing a more
intuitive way for performing dexterous manipulation tasks
efficiently.

After the demonstrations are collected with the customized
robot hand, we perform motion retargeting via optimization
offline. We convert the trajectory of a customized robot
hand to actual specified robot hands (i.e., the corresponding
models are manufactured and commercialized in the real
world). We experiment with 3 types of robot hands including
the Schunk Robot Hand [11], the Adroit Robot Hand [12],
and the Allegro Robot Hand [13] (Figure 1, last 3 columns
in top 3 rows). We only need to collect the trajectories
once to generate imitation data for all these specified robots.
Note these robot hands can even have different morphology
compared to the human hand (e.g., Allegro Hand only has
four fingers). We can then use the demonstrations for imi-
tation learning on the corresponding manipulation task. We
apply the imitation learning algorithm by augmenting the RL
objective with the collected demonstrations in simulation [3].

We experiment with three types of challenging dexterous
manipulation tasks: Relocate, Flip, and Open Door as shown

in Figure 1. By collecting data with our system using
the customized robot hand, our user studies show a large
advantage over previous methods on efficiency. For example,
we can efficiently collect around 60 successful demon-
strations per hour for the Relocate task, while directly
operating the Allegro Hand in simulation can only collect
around 10 successful demonstrations per hour. By imitation
learning with the demonstrations collected by our system,
we significantly improve dexterous hand manipulation on all
specified robot hands over baselines in simulation.

Once the policy is learned in simulation, we can transfer it
to the real robot hand. We evaluate with an an Allegro Hand
attached on the XArm-6 robot in the real world (Figure 1, 2
bottom rows). By incorporating human demonstrations into
training, our policy learns more human-like natural behavior.
Interestingly, this leads to much more robust policy when
generalizing to the real world and unseen objects, while
pure RL policy fails most of the time.

II. RELATED WORK

Dexterous Manipulation. Manipulation with dexterous
robot hands has been long studied in robotics and it remains
to be one of the most challenging control task [14]–[17].
Recently, we have witnessed Reinforcement Learning (RL)
approaches [1], [2] delivering promising results on complex
in-hand manipulation tasks. While these results are encour-
aging, RL suffers from poor sample efficiency in training.
Under a high degree of freedom (more than 20 in most
hands), the RL policy can easily explore unexpected behav-
iors without well-designed rewards and external constraints.

Imitation Learning from Demonstrations. Learning
from human demonstrations can not only provide external
constraint for the robot to explore the expected human-like
behaviors but also largely reduces sample efficiency. Beyond
behavior cloning [18], [19], imitation learning has been
widely studied in the form of Inverse Reinforcement Learn-
ing [20]–[25] and incorporating expert demonstrations into
the RL objectives [3], [26]–[29]. Our work is highly inspired
by Rajeswaran et al. [3], where a VR setup is proposed
to collect demonstrations for dexterous manipulation and an
algorithm named Demo Augmented Policy Gradient (DAPG)
is introduced for imitation learning. However, data collection
with VR requires a lot of human effort and is not scalable.
We propose to collect data via a single-camera teleoperation
system, which makes the process scalable and accessible
for different users. Our work is also related to imitation
learning from human videos [19], [30]–[32]. However, most
of these works focus on a 2-jaw parallel gripper and relatively
simple tasks, where 3D information is not necessary. Our
teleoperation system provides critical 3D hand-object pose
information for guiding dexterous manipulation.

We emphasize our work is to train a policy that gener-
alizes across different environment configuration, instead of
training a policy to follow one expert demonstration, which
is proposed in previous motion imitation literature [33]–[39].

Vision-based Teleoperation. Vision-based teleoperation
frees the operator from wearing data capture devices com-

Human Hand RGB-D Stream + Customized Hand

Hand Pose Detection

Estimate Human
Hand Shape

Construct
Customized
Robot Hand

Schunk Hand Pose Trajectory Allegro Hand Pose Trajectory Adroit Hand Pose Trajectory

Hand Pose Retargeting

Schunk Hand Policy
π1

Demo Augmented RL

Allegro Hand Policy
π2

Demo Augmented RL

Adroit Hand Policy
π3

Demo Augmented RL

Fig. 2: Overall Pipeline: We stream the hand of human operator with an RGB-D camera. First we construct a customized robot hand
in a physical simulator from estimated hand shape parameters result and teleoperate this robot to perform dexterous manipulation task.
After teleoperation, we translate the collected trajectory on the customized hand to three different robot hands using retargeting. Finally,
we train individual policy on each hand using the translated demonstrations. The red and green curve in 2nd and 3rd rows represent the
finger tip trajectory of thumb and pinkie. Different box color means different hand.

monly used in game industry [40] and robot teleopera-
tion [41], [41]–[44] on manipulation tasks, e.g. pick and
place with a parallel gripper. DexPilot [8] is a pioneering
work to extend the vision-based teleoperation to manipula-
tion with an Allegro Hand [13]. To capture the hand pose, a
black-clothed table with four calibrated RealSense cameras
is used in their system. Our work only requires a single
iPad camera for teleoperation. Our novel customized robot
hand provides a more intuitive way for data collection and
allows generalization for learning with multiple specified
robot hands, which has not been shown before.

Concurrent Work. One concurrent work from Sivakumar
et al. [45] performs vision-based teleoperation to control an
Allegro Hand. Their work focus on mapping human hand
video to robot control command, and proposed a teleopera-
tion pipeline without using it for imitation learning. In our
paper, we provides an end-to-end framework with a more
intuitive teleoperation system and a paired imitation learning
pipeline for policy training. Another concurrent work from
Arunachalam et al. [46] proposes a teleoperation and visual
imitating learning pipeline. They use a 2D hand pose detector
during teleoperation, and propose a nearest-neighbor policy
to query action from demonstration images. The pipeline
proposed in our paper allows human to operate and perform
more complex tasks in 3D space, and it can generalize to
demonstrations for multiple robot hands.

III. OVERVIEW

We propose a novel framework in Figure 2 to learn dex-
terous robot hand manipulation from human teleoperation,
which is composed by 3 steps as illustrated below.

(i) Customized hand teleoperation is proposed to collect
demonstrations for dexterous manipulation tasks. It only
requires video streaming from an iPad. A key innovation of

the system is constructing a customized robot hand on the fly
based on the estimated shape of the operator’s own hand. The
human operators can then control the customized robot hand
in a physical simulation environment to perform dexterous
manipulation tasks. The demonstrations can be efficiently
collected with around 60 demonstrations per hour.

(ii) Multi-robots demonstration translation, which can
translated the original demonstration on the customized hand
to any dexterous hand that is readily available in the real-
world, e.g., Allegro Robot Hand. It computes the state-action
trajectory, i.e. joint position and motor command, for the new
specified hand that can be consumed by imitation learning
algorithm. In our experiments, we try on three dexterous
robot hand with different geometry, DoF, and even different
number of fingers.

(iii) Demonstration-augmented policy learning is used
to train dexterous manipulation policy on the same task
as demonstrations. It augments the Reinforcement Learn-
ing objective with behavior cloning using the translated
demonstration from (ii). Our framework can efficiently learn
dexterous human-like skills on complex tasks which are not
well solved by RL alone.

We perform Sim2Real transfer on the learned policies with
a real Allegro Hand attached on the XArm-6 robot as shown
in Figure 1. In our experiments, we show learning with our
demonstrations can significantly increase the robustness of
our policy against the Sim2Real gap.

IV. CUSTOMIZED HAND TELEOPERATION

The hardware of our teleoperation system consists of an
iPad and a laptop as shown in Figure 3. We use the front
camera of an iPad to stream the RGB-D video of the human
operator at 25 fps. The teleoperation system consists of three
components, a physical simulator, a hand detector to capture

Fig. 3: Hardware setup with
an iPad and a computer.

Robot Finger DoF
Schunk (4,4,3,4,5)
Allegro (4,4,4,4)
Adroit (5,4,4,4,5)
Customized (9,9,9,9,9)

TABLE I: DoF comparison
for different robot models.
Customized stands for the cus-
tomized robot hand in sec-
tion IV

Reconstructed
Human Hand #1

Customized
Robot Hand #1

Customized
Robot Hand #2

Reconstructed
Human Hand #2

Fig. 4: Illustration of different customized robot hands generated
from different human hands. The hand on left and right comes from
different human. The red lines visualize the kinematics tree.

human motion, and a GUI to visualize the current simulation
environment for the human operator. We use a laptop with
an RTX 2070 GPU. The processing time for each RGB-D
frame is less than 30ms, and the whole teleoperation system
can run at 25 fps, the same as camera frequency.

A. Task Description

We construct our simulation environment on SAPIEN [47],
and design multiple dexterous manipulation tasks there. The
environments are used for both demonstration collection and
policy learning. We develop 3 types of manipulation tasks
with different objects.

Relocate. The robot picks up an object and moves it to a
target position. It requires the robot to manipulate the object
to match the given goal pose. The first row of Figure 1
illustrates the relocate task. We experiment with three objects
including Tomato Soup Can, Potted Meat Can and Mustard
Bottle from YCB dataset [48]. It is a goal-conditioned task
where we randomize both the initial pose and the goal pose
for each trial.

Flip. As shown in the second row of Figure 1, it requires
the robot to flip a mug on the table. The robot needs to rotate
the object 90 degrees carefully to avoid pushing the object
away. This task evaluates the robot’s ability to exert force
towards a certain direction. We randomize the position and
the horizontal rotation along gravity direction of the mug
for each trial.

Open Door. As shown in the third row of Figure 1. The
robot needs to first rotate the handle to unlock the door, and
then pull the handle to open the door. The robot needs to
grasp the handle with appropriate configuration so that it
can achieve both the rotate and pull action. We randomize
the position of the door for each trial.
B. Hand Detector

Our hand detector takes as input the RGB-D frames and
outputs the wrist pose, hand pose parameters, and hand shape
parameters. It is implemented based upon MediaPipe [49]

and FrankMocap [50]. First, we use MediaPipe hand tracker
to detect the axis-aligned bounding-box and crop the image
around the hand region. The cropped images are then fed
into the pre-trained FrankMocap model to estimate the pose
and shape parameters. Frankmocap takes the image as input
and regresses the shape and pose parameters of the human
hand. It can provide stable results when the hand is not
in self-occlusion. We use SMPL-X [51] model to represent
pose and shape parameters. It parameters the hand by shape
parameters for the hand geometry and pose parameters for
the deformation. Given the shape and pose parameters, we
can reconstruct a hand in the canonical frame where the wrist
is placed at the origin. Then we adopt the Perspective-n-Point
(PnP) algorithm to match the key points in the canonical
and the detected key points in the camera frame to solve the
transformation of the wrist to the camera. The outputs of
the hand detector to the downstream modules are wrist pose,
hand pose parameters, and hand shape parameters.

C. Customized Robot Hand

Our system builds a customized robot hand based on the
hand geometry of each user. Given the shape parameters
from initialization, we can reconstruct a human hand at rest
pose. We then build an articulated hand model in the physical
simulator based on the reconstructed human hand. We extract
the joint skeleton of the human hand (the red lines in
Figure 4) and create a robot model with the same kinematics
structure. We choose primitive shapes, e.g. box for the palm
and capsules for fingers, for efficient collision detection [52]
and stable simulation [53]. The customized hand has 45
(15*3) DoF, which matches the SMPL-X model. We can
rotate the joints of a customized robot hand using detected
pose parameters without motion retargeting. Figure 4 shows
different human hands and the corresponding customized
hands. In this figure, the right human hand has a shorter
thumb. This characteristic reflects in the customized robot
hand.

We use a PD controller to control the joint angles of
the customized robot hand. With each hand detection, we
set the estimated pose passed by a low-pass filter as the
position target. One challenge of visual teleoperation is the
perception error. To tackle this issue, we utilize the hand
shape estimation results as a confidence score and use it
in PD control. Since the shape parameters are estimated
from the best view during initialization, we can use them
as the ground-truth hand shape. When the camera view is
not reliable, both shape and pose estimation results will
suffer from errors. Thus we can compute the error of shape
parameters by comparing with the ground-truth and use
it as a confidence score for pose accuracy. This problem
can be formulated using normal distribution: st ∼N (s0,Σ),
where st and so are the shape parameters from t frame and
initialization, respectively. The covariance Σ is a diagonal
matrix. We compute the normalized probability density p(t)
as the confidence score. The confidence-based PD position

Fig. 5: Demonstration Collection and Translation: The top three rows shows camera stream, hand pose detection results, and the
teleoperated customized robot hand in simulation. The bottom three rows shows the translated demonstration on three different robot
hands by retargeting from the teleoperation trajectory.

control is,

u(t) = p(t)Kpe(t)+ kd
de(t)

dt
, (1)

where u(t) is the joint torque and kp and kd are PD
parameters. When the perception error is large, we reduce the
stiffness of controller. This design eliminates the undesired
abrupt motion caused by perception error.

V. MULTI-ROBOTS DEMONSTRATION TRANSLATION

A. Hand Pose Retargeting

Table I shows the DoF of each finger for different robot
models. The finger DoF is given in the order from Thumb
to Pinky. We need to convert the demonstration from the
customized hand to a specified robot, namely hand pose
retargeting. With our customized hand, we can skip the
computationally-heavy motion retargeting during teleporta-
tion and then do it offline. We formulate the motion retar-
geting as an optimization problem, which is defined based
on the keypoints, e.g. tip position, on the both hand as

min
qR

t

N

∑
i=0
|| f C

i (q
C
t)− f R

i (q
R
t)||2 +α||qR

t −qR
t−1||2

s.t. qR
lower ≤ qR

t ≤ qR
upper,

(2)

where qC
t is joint position at step t for customized robot

and qR
t is the counterpart for the specified robot, e.g. Schunk

Robot Hand. We use f C
i and f R

i to represent the forward
kinematics function of i− th keypoints on the two robots. To
improve the temporal consistency, we add a normalization

term to penalize the joint position change and initialize
qC

t using the value from qC
t−1. After solving the objective

above, we can compute the joint position trajectory qR
t for

any specified robot. We apply the hand pose retargeting
individually for each specified robot in Figure 2.

B. Action Computation

Hand motion retargeting convert the joint pose trajectory
from customized hand to another dexterous hand. To support
demo-augmented policy learning, we also need the action for
each finger joint. We follow the action estimation procedure
in DexMV [54] to compute the action, i.e. joint torque or
motor control command, from joint pose trajectory of the
specified robot. We first pass the joint pose trajectory into a
first-order low-pass filter. Then we compute the joint torque
via manipulator equation [55] of robot inverse dynamics τ =
finv(q,q′,q′′). For more details, please refer to [54].

Visualization on Teleoperation and Translation. We use
Figure 5 to summarize the previous two sections. The first
three rows show the human hand controlling a customized
robot hand in simulator to relocate a can object to a target
position (a transparent green shape). Once the demonstration
is collected, we can convert it to demonstrations for different
robot hands (Schunk, Allegro, Adroit hands) executing the
same task in the bottom three rows.

VI. DEMONSTRATION-AUGMENTED POLICY LEARNING

Given the retargeted demonstration, we perform imitation
learning to solve the dexterous tasks defined in subsection IV-

Robot S.1 success S.1 Time S.2 success S.2 Time
Schunk 61.2% 14.2s 30.6% 30.3s
Adroit 58.8% 11.5s 28.2% 37.6s
Allegro 44.7% 18.7s 16.9% 42.5s
Customized 78.9% 9.1s 55.3% 23.0s

TABLE II: Success rate and completion time for Relocate task.
S.1 and S.2 denotes stage 1 and stage 2.

Robot S.1 success S.1 Time S.2 success S.2 Time
Schunk 83.5% 9.2s 60.0% 20.4s
Adroit 81.2% 8.5s 61.2% 18.9s
Allegro 71.8% 12.7s 41.1% 23.6s
Customized 95.3% 6.2s 82.4% 15.3s

TABLE III: Success rate and completion time for Open Door task.
S.1 and S.2 denotes stage 1 and stage 2.

A. Naive behavior cloning may be hard to work with ran-
domized initial and target pose. Instead, we adopt imitation
learning algorithms that incorporate the demonstration into
RL. Specifically, we use Demo Augmented Policy Gradient
(DAPG) [3] formulated below as our imitation algorithm.

gaug = ∑
(s,a)∈ρπθ

∇ lnπ(a|s)Aπ(s,a)+

∑
(s,a)∈ρπdemo

∇ lnπθ (a|s)λ0λ
k
1 max
(s′,a′)∈ρπ

Aπ(s′,a′),

where the first line is the vanilla policy gradient objective in
RL and the second line is imitation objective using demon-
stration. It can be regarded as a combination of behavior
cloning and online RL. ρπ is the occupancy measure under
policy π , λ0 and λ1 are hyper-parameters, and k is the
training iterations. Aπ(s′,a′) is the advantage function.

VII. EXPERIMENT

We first demonstrate the benefits of using the proposed
customized robot hand in teleoperation for data collection
by a user study with 17 different human operators. Then we
show that by leveraging the demonstrations collected by our
system, we can improve the policy learning performance by
a large margin on various tasks in simulated environment.
Finally, we perform real-world experiments on the Allegro
hand attached on the X-Arm 6, which shows that the demon-
stration can improve the policy robustness when transferring
to the real-world with higher success rate.

A. Teleoperation User Study

We compare the proposed customized robot hand with the
standard robot hand during teleoperation. We ask 17 different
human operators to perform Relocate and open door tasks
using 4 different robot hand models: (1) Customized robot
hand; (2) Schunk SVH hand; (3) Adroit hand; (4) Allegro
hand. For the last three robots, online motion retargeting is
required to convert human hand motion onto robot motion
while for the customized robot hand we directly use the
human pose parameters as the PD target for each joint.

Task Setup. Each human operator is asked to perform
Relocate and open door with all four robot hands. Each
task-robot pair is tested five consecutive times. For Relocate
task, the randomly-sampled target position is visualized by

a transparent-green shape, as shown on the top-right of
Figure 2. For each task, the operator will have three-minute
trials to get familiar with the task. A common issue is that
operators will become more proficient during the testing.
They tend to get better results for the task-robot pairs tested
later than the former one. For fairness, the order of robot
hands to be tested is randomized for each operator.

Evaluation Protocols. We divide both Relocate and open
door tasks into two stages. For Relocate, the first stage is
succeeded when the object is lifted up while the second
stage is succeeded when the distance between object and
target is smaller than a given threshold. For open door,
the first stage is successful when the door is unlocked by
rotating the handle while the second stage is succeed when
the door is opened. We will report the average success rate
and completion time for each stage of each task. Note that the
completion time does not include the time for initialization,
which is required for all these four robots to construct the
frame alignment between simulated robot hand and real
human hand.

Results. The average success rate and task completion
time over all operators are shown in Table II for Relocate
and Table III for Open Door. The customized robot hand
achieves the highest success rate on all tasks with a large
margin compared with the online retargeting method on the
other three hands. Considering the initialization process and
other overhead, operator can collect around 60 demos per
hour for Relocate while using allegro hand can only get
10 demos with success. Human operators report that the
customized hand is more controllable than other robot hands.
One cause is the uncontrollable time consumption required
by online motion retargeting. On the laptop with specified
in section IV, the motion retargeting steps will takes 76±
65 milliseconds. The large variance is caused by iterative
optimization in online retargeting. It increases the difficulty
of predicting next-step hand motion. By removing the online
retargeting using our customized hand, the teleoperation
system can provide smoother and more immediate feedback
to human operators. We also find the allegro hands perform
the worst in most metrics. One possible cause is that allegro
hand only has 4 fingers, and it is much larger than other
robot hands with 253 mm length, while the average length
is 193mm for adult males and is 172mm for adult females.

B. Task Learning Comparison

We evaluate on the tasks of Relocate three different
objects, Flip a mug, and Open Door. We use the pro-
cessed demonstration to train policy to perform these tasks
and compare them with the RL baseline. We ablate how
friction, PD Controller Parameters, Object Density, and the
number of demonstrations can affect the learning process.
For the RL baseline, we use Trust Region Policy Optimiza-
tion(TRPO) [56] as the on-policy algorithm. Both policy and
value function are 32× 32 2-layer Multi-Layer Perceptrons
(MLPs). The TRPO will use 200 trajectories for each step.
The imitation learning algorithm is DAPG described in
section V with the same hyper-parameters as TRPO. We

DAPG RL

Fig. 6: Learning curves of RL and DAPG on all tasks with four different robot hands in four rows. The first three columns are Relocate
task with three objects. Following two columns are Flip Mug and Open Door tasks. The x-axis is training iterations and y-axis is the
normalized return. The shaded area indicates the standard deviation for three random seeds.

Task RL DAPG
Relocate-Toma. 45.3±4.0 85.0±12.3
Relocate-Pott. 6.7±6.3 41.0± 20.3
Relocate-Must. 44.0±20.0 75.3±24.7
Flip-Mug 48.0±4.3 77.3±5.0
Open-Door 55.0±14.3 69.0±7.7

Schunk Robot

Task RL DAPG
Relocate-Toma. 41.7±30.3 95.0±3.0
Relocate-Pott. 0±0 53.3±37.7
Relocate-Must. 0±0 0±0
Flip-Mug 28.7±17.7 54.7±15.3
Open-Door 58.3±21.7 78.0±19.7

Adroit Robot

Task RL DAPG
Relocate-Toma. 0±0 59.7±21.3
Relocate-Pott. 4.3±3.7 38.3±21.7
Relocate-Must. 36.3±15.3 49.7±18.3
Flip-Mug 33.7±15.0 51.3±34.7
Open-Door 69.3±38.0 64.7±14.7

Allegro Robot
TABLE IV: Success rate of the evaluated methods. We use ± to represent mean and standard deviation over three random seeds. Relocate
task has three different objects: tomato soup can, potted meat can, and mustard bottle. The success of Relocate is defined based on the
distance between object and target. The success of Flip is defined based on the orientation of the object. The success rate of Open Door
is defined based on the joint angle of door hinge.

collect 50 trajectories of demonstration for each task and
retarget the motion from customized hand to the specified
robot. We train policies with three different random seeds.

The robot state space contains robot joint angles, velocity
of hand palm, object position, and orientation at each time
step. We include target position for Relocate and joint angle
of door for Open Door. The action space is composed of two
parts: hand palm and finger joints. The motion of the palm is
controlled by 6 velocity controllers (3 for translation, 3 for
rotation). And the finger joints are actuated by PD position
controllers.

We evaluate both RL and DAPG on Relocate, Flip, and
Open Door tasks. The training curves are shown in Figure 6.
The success rate of three specified robot hand is summarized
in Table IV. For Relocate, the task is considered successful
when the object position is within 0.1 unit length to the target
at the end of the episode. For Flip, the robot will get success
when the orientation of mug is flipped back, where the angle
between the negative z-axis and the direction of gravity is
less than 5 degree. For Open Door, the task is successful
when the joint angle of door hinge is larger than 60 degrees.

As shown in Figure 6 and Table IV, imitation learning
method outperforms the RL baseline for most tasks and
robots. For most robots on all tasks, DAPG can outper-
form pure RL, which shows the demonstration generated
by motion retargeting can improve policy training. The only
exception is Open Door with allegro hand. We visualize the
policy trained by DAPG and RL in Figure 8: DAPG tries to
open the door by grasping the handle in a natural behavior
while RL policy press on the handle with a large force and
open the door purely by friction. These results highlight the
value of demonstration to regulate the behavior of policy to
be expected (human-like) and safe. We find that for both
RL and DAPG, Relocate with a mustard bottle using Adroit
and Allegro robot is very challenging. The reason is that the
thumb and other fingers can not form a tight shape closure.
While for the Schunk robot, the freedom of the thumb is
large enough to grasp the object. On the other hand, Adroit
achieves the best on Relocate with a tomato soup can. This
indicates the existence of robot-specific skills. Different robot
hands are designed to fit objects with different geometry and
a single robot hand can hardly do best for all tasks.

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0

friction x0.5
friction x1.0
friction x2.0

(a) Object Friction

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0

density x0.5
density x1.0
density x2.0

(b) Object Density

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0

PD x0.5
PD x1.0
PD x2.0

(c) PD Controller Params

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0
dapg (20)
dapg (30)
dapg (50)
rl

(d) Num of Demonstrations

Fig. 7: Ablation Study: Learning curves of DAPG on the Relocate task with tomato soup can using Schunk Robot Hand. We ablate:
(a) friction parameter of the relocated object; (b) density of object; (c) PD controller parameters: stiffness and damping; (d) number of
demonstrations used to train DAPG . The demonstrations are kept the same for all conditions.

RL
DA

PG

Fig. 8: Comparison of the naturalness on Open Door using Allegro
Robot Hand. Top Row: policy learned by DAPG with demonstra-
tions; Bottom Row: policy learned by RL without demonstrations.

C. Ablation Study

To investigate the influence of different dynamics condi-
tions and the number of demonstrations, we ablate the object
friction, controller parameters, object density, and the number
of demonstrations. We choose the Relocate task with tomato
soup can using Schunk robot for ablation study. Figure 7 (a)
shows that the learning curve is robust to friction change.
To hold the object firmly, a two-finger parallel-jaw gripper
usually needs to form an antipodal grasp [57], which is
sensitive to friction change. Different from parallel-gripper,
the dexterous hand can form force closure with multiple
contact points, thus can withstand smaller friction. Similar
results can also be found in Figure 7 (b). Figure 7 (c)
illustrates the influence of controller parameters. With larger
stiffness, the robot can move the object to the target sooner
and get a larger reward while controllers with smaller PD can
still solve the task. Figure 7 (d) shows more demonstrations
can achieve better performance. We also observe that when
using only 20 or 30 demos, the variance is larger.

D. Real-World Robot Experiments

In the real-world robot experiments, we attached an Al-
legro hand onto a XArm-6 robot arm [58] instead of using
a flying hand. The experiment setup is shown in Figure 9.
We evaluate on the Relocate and Flip tasks. In simulation,
we also build the same XArm6+Allegro model as real-
world robot. Similarly as the experiments for flying hand
in subsection VII-B, we use the motion retargeting method
in subsection V-A to generate demonstrations and train RL
and imitation learning policies in simulation. To facilitate

Fig. 9: Left side: real robot setup. The cyan poster on the table
is a reference coordinate to determine whether the object is moved
to the target position. Right side: simulated robot arm setup.

the sim2real transfer, we apply additive Gaussian noise
onto the object pose to the observation and randomize the
dynamics parameters, such as friction, density, and controller
PD parameters during policy training.

Task Setup. The observation space are composed of robot
proprioceptive state, object pose. The target object position
is additionally included for Relocate. The object pose in
the observation is fixed during the episode and only the
initial pose is given, which is estimated by Iterative Closet
Point (ICP) algorithm using the point cloud captured by a
RealSense D435 camera.

For Relocate, we randomize the initial and target object
position for each evaluation trail. The initial object position
is randomized within a 20cm square and the target object
position is randomized within a 40cm square with fixed
height. The task is success if the robot can lift the object up
to the target position. To determine the final object position,
we use the reference coordinate on the table as shown in
Figure 9 to record the xy position of object. If the difference
of of xy position between object and target is within 5cm,
the trail is considered as a success. In the experiments, we
divide the objects into two groups: known object and novel
objects. As visualized in Figure 10, the known object group
is composed of three objects that the policies are trained on
while the novel object group is composed of five objects
that are not seen during training. We evaluate the policy
separately on both groups. The task execution sequence is
visualized on the top two rows of Figure 11.

Relocate with Known Objects Relocate with Novel Objects

Fig. 10: Relocate Task: Visualization of known objects and novel objects used in our experiments. The first row shows the grasping
process and the second row show the object. We test on three known objects and five novel objects that not presented during training.

Demo Augmented RLRL without Demonstration

Relocate

Flip Mug

Fig. 11: Policy comparison between pure RL and the demo augmented RL trained with our demonstrations. The RL policy can get
success in simulation, but due to its unstable behavior, it can hardly transfer to the real world.

For Flip, we randomize the initial object position within
a 20cm square. The task is success if the distance between
the table top and the highest point on the bottom of mug is
smaller than 1cm, which means that the orientation of mug
is nearly vertical. The task execution sequence is visualized
on the bottom two rows of Figure 11.

Quantitative Results. During evaluation, we randomly
sample 9 object initial and target position pairs and use the
same pairs for each policy. For both known object and novel
object settings in the Relocate task, we also sampled the
object randomly and use the same set of sampled objects for
each policy. We evaluate both RL and DAPG policies trained
with three different random seeds. The success rate for both
tasks is shown in Table V. We find when transferred to the
real robot, the gap between imitation learning and pure RL
is much larger than it is in simulation. We conjecture that a
more human-like manipulation policy with imitation learning
is more robust to the Sim2Real gap. More interestingly, for
the Relocate task, the learned policies can even generalize
to novel objects that are not seen in training. Note in our
experiments, the geometric shape is not captured by the

Task RL DAPG
Relocate-Known. 22.2±22.2 77.7±11.1
Relocate-Novel. 18.5±23.1 66.6±11.1
Flip Mug 3.6±6.4 44.4±19.2

TABLE V: Success rate of the evaluated methods on Relocate and
Flip tasks. We use ± to represent mean and standard deviation over
three random seeds.

policy, but only the 6D object pose is. This shows the
advantage of multi-finger hand: When operating like human,
it offers a certain robustness against the change of shape.

Policy Visualization in Simulation and Real. To illus-
trate why the imitation learning policy is more robust to the
physics gap in Sim2Real, we provide visualizations for both
tasks in Figure 11. On the top two rows for the Relocate
task, we observe that both RL and imitation learning can
successfully achieve the task in simulation. However, the
RL policy tends to grasp the object using only two fingers
with unstable contact (highlighted by red circle). In contrast,
policy trained with demonstrations use all four fingers. This
leads to a big difference for the real robot: The object slip
down from the hand for RL policy while imitation learning

policy can stably grasp the object.
The bottom two rows of Figure 11 are the Flip task. Pure

RL policy solve the task by pushing on the mug swiftly
in simulator while imitation learning policy first place one
finger inside the mug and then rotate the wrist. The pushing
action from RL policy can hardly success with the real robot
hand. While the behavior close to human demonstrations
achieve much better results in the real world.

From both examples, we observe that learning with pure
RL for multi-finger hands will try to hack the physics in
the simulator and achieve unnatural behaviors, which is
hard to transfer to the real world. One the other hand,
learning human-like behavior using imitation learning with
our demonstrations allows much more robust and stable
policy for real world application.

VIII. CONCLUSION

We propose a novel single-camera teleoperation system to
collect human hand manipulation data for imitation learning.
We introduce a novel customized robot hand, providing a
more intuitive way for different human operators to collect
data. We show the collected demonstrations can improve
the learning of dexterous manipulation on multiple robots
and robustness when deployed in real world, when the data
collection only needs to be conducted once.

REFERENCES

[1] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” arXiv, 2018.

[2] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv, 2019.

[3] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in RSS, 2018.

[4] V. Kumar and E. Todorov, “Mujoco haptix: A virtual reality system for
hand manipulation,” in International Conference on Humanoid Robots
(Humanoids), 2015.

[5] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot
teleoperation with augmented reality,” in International Conference on
Human-Robot Interaction, 2018.

[6] Y. Pan, C. Chen, D. Li, Z. Zhao, and J. Hong, “Augmented reality-
based robot teleoperation system using rgb-d imaging and attitude
teaching device,” Robotics and Computer-Integrated Manufacturing,
vol. 71, p. 102167, 2021.

[7] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks
from virtual reality teleoperation,” in ICRA, 2018.

[8] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan,
S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot: Vision-based teleop-
eration of dexterous robotic hand-arm system,” in ICRA, 2020.

[9] S. Li, X. Ma, H. Liang, M. Görner, P. Ruppel, B. Fang, F. Sun, and
J. Zhang, “Vision-based teleoperation of shadow dexterous hand using
end-to-end deep neural network,” in ICRA, 2019.

[10] D. Antotsiou, G. Garcia-Hernando, and T.-K. Kim, “Task-oriented
hand motion retargeting for dexterous manipulation imitation,” in
ECCV Workshops, 2018.

[11] Schunk, “Schunk svh robot hand,” https://schunk.com/us en/
gripping-systems/highlights/svh.

[12] V. Kumar, Z. Xu, and E. Todorov, “Fast, strong and compliant
pneumatic actuation for dexterous tendon-driven hands,” in ICRA,
2013.

[13] W. Robotics, “Allegro robot hand,” https://www.wonikrobotics.com/
research-robot-hand.

[14] D. Rus, “In-hand dexterous manipulation of piecewise-smooth 3-d
objects,” The International Journal of Robotics Research, 1999.

[15] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of
dexterous manipulation,” in ICRA, 2000.

[16] S. Andrews and P. G. Kry, “Goal directed multi-finger manipulation:
Control policies and analysis,” Computers & Graphics, 2013.

[17] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” 2014.

[18] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in NeurIPS, 1989.

[19] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto,
“Visual imitation made easy,” arXiv, 2020.

[20] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” 2000.

[21] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” 2004.

[22] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
NeurIPS, 2016.

[23] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv, 2017.

[24] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation
from observation,” arXiv, 2018.

[25] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas,
“Playing hard exploration games by watching youtube,” in NeurIPS,
2018.

[26] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, 2008.

[27] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
2016.

[28] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv, 2017.

[29] I. Radosavovic, X. Wang, L. Pinto, and J. Malik, “State-only imitation
learning for dexterous manipulation,” IROS, 2021.

[30] K. Schmeckpeper, O. Rybkin, K. Daniilidis, S. Levine, and C. Finn,
“Reinforcement learning with videos: Combining offline observations
with interaction,” arXiv, 2020.

[31] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Con-
cept2robot: Learning manipulation concepts from instructions and
human demonstrations,” in RSS, 2020.

[32] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the wild:
Learning 6dof closed-loop grasping from low-cost demonstrations,”
Robotics and Automation Letters, 2020.

[33] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “Sfv:
Reinforcement learning of physical skills from videos,” TOG, 2018.

[34] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” in ICRA, 2018.

[35] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in ICLR, 2018.

[36] P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions
made easy (mime): Large scale demonstrations data for imitation,”
arXiv, 2018.

[37] G. Garcia-Hernando, E. Johns, and T.-K. Kim, “Physics-based dexter-
ous manipulations with estimated hand poses and residual reinforce-
ment learning,” arXiv, 2020.

[38] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki, “Graph-
structured visual imitation,” in CoRL, 2020.

[39] H. Xiong, Q. Li, Y.-C. Chen, H. Bharadhwaj, S. Sinha, and A. Garg,
“Learning by watching: Physical imitation of manipulation skills from
human videos,” arXiv, 2021.

[40] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia,
vol. 19, no. 2, pp. 4–10, 2012.

[41] J. Kofman, S. Verma, and X. Wu, “Robot-manipulator teleoperation
by markerless vision-based hand-arm tracking,” International Journal
of Optomechatronics, 2007.

[42] G. Du, P. Zhang, J. Mai, and Z. Li, “Markerless kinect-based hand
tracking for robot teleoperation,” International Journal of Advanced
Robotic Systems, vol. 9, no. 2, p. 36, 2012.

[43] G.-L. Du, P. Zhang, L.-Y. Yang, and Y.-B. Su, “Robot teleoperation us-
ing a vision-based manipulation method,” in nternational Conference
on Audio, Language and Image Processing, 2010.

https://schunk.com/us_en/gripping-systems/highlights/svh
https://schunk.com/us_en/gripping-systems/highlights/svh
https://www.wonikrobotics.com/research-robot-hand
https://www.wonikrobotics.com/research-robot-hand

[44] I. Almetwally and M. Mallem, “Real-time tele-operation and tele-
walking of humanoid robot nao using kinect depth camera,” in ICNSC,
2013.

[45] A. Sivakumar, K. Shaw, and D. Pathak, “Robotic telekinesis: Learning
a robotic hand imitator by watching humans on youtube,” arXiv
preprint arXiv:2202.10448, 2022.

[46] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous im-
itation made easy: A learning-based framework for efficient dexterous
manipulation,” arXiv preprint arXiv:2203.13251, 2022.

[47] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, et al., “Sapien: A simulated part-based interactive
environment,” in CVPR, 2020.

[48] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: The ycb object and
model set and benchmarking protocols,” arXiv, 2015.

[49] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann, “Mediapipe hands: On-device real-time
hand tracking,” arXiv preprint arXiv:2006.10214, 2020.

[50] Y. Rong, T. Shiratori, and H. Joo, “Frankmocap: Fast monocular 3d
hand and body motion capture by regression and integration,” arXiv
preprint arXiv:2008.08324, 2020.

[51] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman,
D. Tzionas, and M. J. Black, “Expressive body capture: 3d hands,
face, and body from a single image,” in CVPR, 2019.

[52] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe, “Collision
detection: A survey,” in International Conference on Systems, Man
and Cybernetics, 2007.

[53] Nvidia, “PhysX physics engine,” https://www.geforce.com/hardware/
technology/physx.

[54] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang,
“Dexmv: Imitation learning for dexterous manipulation from human
videos,” arXiv preprint arXiv:2108.05877, 2021.

[55] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 2017.

[56] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in ICML, 2015.

[57] I.-M. Chen and J. W. Burdick, “Finding antipodal point grasps
on irregularly shaped objects,” IEEE transactions on Robotics and
Automation, vol. 9, no. 4, pp. 507–512, 1993.

[58] UFactory, “Ufactory xarm6 robot,” https://www.ufactory.cc/pages/
xarm.

https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx
https://www.ufactory.cc/pages/xarm
https://www.ufactory.cc/pages/xarm

	I Introduction
	II Related Work
	III Overview
	IV Customized Hand Teleoperation
	IV-A Task Description
	IV-B Hand Detector
	IV-C Customized Robot Hand

	V Multi-Robots Demonstration Translation
	V-A Hand Pose Retargeting
	V-B Action Computation

	VI Demonstration-Augmented Policy Learning
	VII Experiment
	VII-A Teleoperation User Study
	VII-B Task Learning Comparison
	VII-C Ablation Study
	VII-D Real-World Robot Experiments

	VIII Conclusion
	References

