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What Matters in Language Conditioned Robotic
Imitation Learning over Unstructured Data

Oier Mees∗1, Lukas Hermann∗1, Wolfram Burgard2

Abstract—A long-standing goal in robotics is to build robots
that can perform a wide range of daily tasks from perceptions
obtained with their onboard sensors and specified only via natural
language. While recently substantial advances have been achieved
in language-driven robotics by leveraging end-to-end learning
from pixels, there is no clear and well-understood process for
making various design choices due to the underlying variation
in setups. In this paper, we conduct an extensive study of
the most critical challenges in learning language conditioned
policies from offline free-form imitation datasets. We further
identify architectural and algorithmic techniques that improve
performance, such as a hierarchical decomposition of the robot
control learning, a multimodal transformer encoder, discrete
latent plans and a self-supervised contrastive loss that aligns video
and language representations. By combining the results of our
investigation with our improved model components, we are able to
present a novel approach that significantly outperforms the state
of the art on the challenging language conditioned long-horizon
robot manipulation CALVIN benchmark. We have open-sourced
our implementation to facilitate future research in learning to
perform many complex manipulation skills in a row specified
with natural language. Codebase and trained models available at
http://hulc.cs.uni-freiburg.de

Index Terms—Learning Categories and Concepts, Machine
Learning for Robot Control, Imitation Learning

I. INTRODUCTION

ONE of the grand challenges in robotics is to create a
generalist robot: a single agent capable of performing a

wide variety of tasks in everyday settings based on arbitrary
user commands. Doing so requires the robot to acquire a di-
verse repertoire of general-purpose skills and non-expert users
to be able to effectively specify tasks for the robot to solve.
This stands in contrast to most current end-to-end models,
which typically learn individual tasks one at a time from
manually-specified rewards and assume tasks being specified
via goal images [1] or one-hot skill selectors [2], which are
not practical for untrained users to instruct robots. Not only is
this inefficient, but also limits the versatility and adaptivity of
the systems that can be built. How can we design learning
systems that can efficiently acquire a diverse repertoire of
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“Lift the red block from 
the sliding cabinet”

“Stack the grasped 
block”

“Push the sliding door 
to the left side”

“Press the button to 
turn off the led light”

“Pull the handle to 
open the drawer”

1 2 3

4 5

Fig. 1. HULC learns a single 7-DoF language conditioned visuomotor policy
from offline, unstructured data that can solve multi-stage, long-horizon robot
manipulation tasks. We divide instruction following into learning global plans
representing high-level behavior and a local policy conditioned on the plan
and the instruction.

useful skills that allows them to solve many different tasks
based on arbitrary user commands?

To address this problem, we must resolve two questions. (1)
How can untrained users direct the robot to perform specific
tasks? Natural language presents a promising alternative form
of specification, providing an intuitive and flexible way for
humans to communicate tasks and refer to abstract concepts.
However, learning to follow language instructions involves
addressing a difficult symbol grounding problem [3], relating
a language instruction to a robot’s onboard perception and
actions. (2) How can the robot efficiently learn general-purpose
skills from offline data, without hand-specified rewards? A
simple and versatile choice is to define skills as being contin-
uous instead of discrete, endowing the agent of task-agnostic
control: the ability to reach any reachable goal state from
any current state [4]. These forms of task specification can in
principle enable a robot to solve multi-stage tasks by following
several language instructions in a row.

Recent advances have been made at learning language
conditioned policies for continuous visuomotor-control in 3D
environments via imitation learning [5]–[8] or reinforcement
learning [9], [10]. These approaches typically require offline
data sources of robotic interaction together with post-hoc
crowd-sourced natural language labels. Although all methods
share the basic idea of leveraging instructions that are grounded
in the agent’s high-dimensional observation space, their details
vary greatly. Moreover, evaluating published methods and their
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components in language conditioned policy learning is difficult
due to incomparable setups or subjective task definitions. In
this work we systematically compare, improve, and integrate
key components by leveraging the recently proposed CALVIN
benchmark [11] to further our understanding and provide a
unified framework for long-horizon language conditioned pol-
icy learning. We build upon relabeled imitation learning [12]
to distill many reusable behaviors into a goal-directed policy,
as seen in Fig. 1. Our approach consists of only standard
supervised learning subroutines, and learns perceptual and
linguistic understanding, together with task-agnostic control
end-to-end as a single neural network. Our contributions are:
• We systematically compare key components of language

conditioned imitation learning over unstructured data,
such as observation and action spaces, losses for aligning
visuo-lingual representations, language models and latent
plan representations, and we analyze the effect of other
choices, such as data augmentation and optimization.

• We propose four improvements to these key components:
a multimodal transformer encoder to learn to recognize
and organize behaviors during robotic interaction into a
global categorical latent plan, a hierarchical division of
the robot control learning that learns local policies in
the gripper camera frame conditioned on the global plan,
balancing terms within the KL loss and a self-supervised
contrastive visual-language alignment loss.

• We integrate the best performing improved components
in a unified framework, Hierarchical Universal Language
Conditioned Policies (HULC). Our model sets a new state
of the art on the challenging CALVIN benchmark [11],
on learning a single 7-DoF policy that can perform long-
horizon manipulation tasks in a 3D environment, directly
from images, and only specified with natural language.

II. RELATED WORK

Natural language processing has recently received much
attention in the field of robotics [13], following the advances
made towards learning groundings between vision and lan-
guage [14], [15] and grounding behaviors in language [16].
Early works have approached instruction following by design-
ing interactive fetching systems to localize objects mentioned
in referring expressions [17], [18] or by grounding not only
objects, but also spatial relations to follow language ex-
pressions characterizing pick-and-place commands [19]–[21].
Unlike these approaches, we directly learn robotic control from
images and natural language instructions, and do not assume
any predefined motion primitives.

More recently, end-to-end deep learning has been used to
condition agents on natural language instructions [5]–[10],
which are then trained under an imitation or reinforcement
learning objective. These works have pushed the state of the
art and generated a range of ideas for language conditioned
policy learning, such as losses for aligning visual observations
and language instructions. However, each work evaluates a
different combination of ideas and uses different setups or task
definitions, making it unclear how individual ideas compare
to each other and which ideas combine well together. For

example, the methods BC-Z and MIA [7], [8] use both
behavior cloning, but different actions spaces and multi-modal
alignment losses, such as regressing the language embedding
from visual observations [7] or cross-modality matching [8].
Moreover, BC-Z leverages expert trajectories and task labels,
and MIA includes mobile navigation, making them difficult to
implement directly in CALVIN, which contains unlabeled play
data on different tabletop environments. Nair et. al. [9] learn a
reward classifier which predicts if a change in state completes
a language instruction and leverage it for offline multi-task
RL given four camera views. Similar to BC-Z they rely on
discrete task labels and do not focus on solving long-horizon
language-specified tasks. Most related to our approach is
multi-context imitiation learning (MCIL) [5], which also uses
relabeled imitation learning to distill reusable behaviors into a
goal-reaching policy. Besides different action and observation
spaces, these works leverage different language models to
encode the raw text instructions into a semantic pre-trained
vector space, making it difficult to analyze which language
models are best suited for language conditioned policy learn-
ing. The ablation studies presented in these papers show that
each novel contribution of each work does indeed improve the
performance of their model, but due to incomparable setups
and evaluation protocols, it is difficult to asses what matters for
language conditioned policy learning. Our work addresses this
problem by systematically comparing and combining different
observation and action spaces, auxiliary losses and latent rep-
resentations and integrating the best performing components
in a unified framework.

III. PROBLEM FORMULATION AND METHOD OVERVIEW

We consider the problem of learning a goal-conditioned
policy πθ (at | st, l) that outputs action at ∈ A, conditioned
on the current state st ∈ S and free-form language instruction
l ∈ L, under environment dynamics T : S × A → S. We
note that the agent does not have access to the true state of
the environment, but to visual observations. In CALVIN [11]
the action space A consists of the 7-DoF control of a Franka
Emika Panda robot arm with a parallel gripper.

We model the interactive agent with a general-purpose
goal-reaching policy based on multi-context imitation learning
(MCIL) from play data [5]. To learn from unstructured “play”
we assume access to an unsegmented teleoperated play dataset
D of semantically meaningful behaviors provided by users,
without a set of predefined tasks in mind. To learn control,
this long temporal state-action stream D = {(st, at)}∞t=0 is
relabeled [12], treating each visited state in the dataset as a
“reached goal state”, with the preceding states and actions
treated as optimal behavior for reaching that goal. Relabeling
yields a dataset of Dplay = {(τ, sg)i}

Dplay
i=0 where each goal state

sg has a trajectory demonstration τ = {(s0, a0), . . .} solving
for the goal. These short horizon goal image conditioned
demonstrations can be fed to a simple maximum likelihood
goal conditioned imitation objective:

LLfP = E(τ,sg)∼Dplay

 |τ |∑
t=0

log πθ(at | st, sg)

 (1)
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to learn a goal-reaching policy πθ (at | st, sg). We address
the inherent multi-modality in free-form imitation datasets
by auto-encoding contextual demonstrations through a latent
“plan” space with an sequence-to-sequence conditional vari-
ational auto-encoder (seq2seq CVAE) [1]. Conditioning the
policy on the latent plan frees up the policy to use the
entirety of its capacity for learning uni-modal behavior. To
generate latent plans z we make use of the variational inference
framework [22]. The objective of the latent plan sampler is to
model the full distribution over all high-level behaviors that
might connect the current and goal state, to provide multi-
modal plans at inference time. This distribution is learned with
a CVAE by maximizing the marginal log likelihood of the
observed behaviors in the dataset log p(x | s), where x are
sampled state-action trajectories from τ . The Evidence Lower
Bound (ELBO) [22] for the CVAE can be written as:

log p(x|s) ≥ −KL
(
q(z|x, s) || p(z|s)

)
+Eq(z|x,s) [log p(x|z, s)]

(2)
The decoder is a policy trained to reconstruct input actions,
conditioned on state st, goal sg , and an inferred plan z for
how to get from st to sg . At test time, it takes a goal as input,
and infers and follows plan z in closed-loop.

However, when learning language conditioned policies
πθ (at | st, l) it is not possible to relabel any visited state s to a
natural language goal as the goal space is no longer equivalent
to the observation space. Lynch et al. [5] showed that pairing
a small number of random windows with language after-the-
fact instructions enables learning a single language conditioned
visuomotor policy that can perform a wide variety of robotic
manipulation tasks. The key insight here is that solving a single
imitation learning policy for either goal image or language
goals, allows for learning control mostly from unlabeled play
data and reduces the burden of language annotation to less than
1% of the total data. Concretely, given multiple contextual
imitation datasets D = {D0, D1, . . . , DK}, with a different
way of describing tasks, MCIL trains a single latent goal con-
ditioned policy πθ (at | st, z) over all datasets simultaneously,
as well as one parameterized encoder per dataset.

IV. KEY COMPONENTS OF LANGUAGE CONDITIONED
IMITATION LEARNING OVER UNSTRUCTURED DATA

This section compares and improves key components of
language conditioned imitation learning over unstructured data.
We base our model on MCIL [5] and improve it by decompos-
ing control into a hierarchical approach of generating global
plans with a static camera and learning local policies with a
gripper camera conditioned on the plan. Then we go through
different components that have a large impact on performance:
architectures to encode sequences in relabeled imitation learn-
ing, the representation of the latent distributions, how to best
align language and visual representations, data augmentation
and optimization. We visualize the full architecture in Fig. 2.

A. Observation and Actions Spaces

How to best represent motion skills is an age-old question
in robotics. From a learning perspective, generating the action

sequences to solve diverse manipulation tasks with a single
network from high-dimensional observations is challenging,
because the distribution is multi-modal, discontinuous and im-
balanced. For these reasons, finding an efficient representation
is crucial to perform this non-trivial reasoning using learning-
based methods. MCIL [5] uses global actions learned from
a single static RGB camera. We observe that predicting 7-
DoF global actions leads to the network primarily solving
static element tasks, such as pushing a button, but failing
to generalize to dynamic tasks, such as manipulating colored
blocks. To alleviate this problem, we propose generating global
plans that correspond to reusable common behavior b seen in
the play data, but learning local policies conditioned on the
plan. This results in a hierarchical approach that frees up the
network from having to memorize all locations in the scene
were the behaviors were performed. Concretely, we encode
RGB images from both the static and a gripper camera to
learn a compact representation of all the different high-level
plans that take an agent from a current state to a goal state,
learning p (b | st, sg). Inspired by a recent line of work that
aims to learn hierarchies of controllers based on static and
gripper cameras [23], we use the encoded gripper camera
representations in the policy network, the global contextualized
latent plan, and perform control in the gripper frame with
relative actions for an efficient robot control learning. The
action space consists of delta XYZ position, delta euler angles
and the gripper action. Our proposed formulation has several
advantages: a) local policies based on the gripper camera
generalize better to different locations of the objects to be
manipulated b) the policy has a prior in the form of a global
contextualized latent plan, but is free to discover the exact
strategy on how to interact with the objects.

B. Latent Plan Encoding

A challenge in self-supervising control on top of free-form
imitation data is that in general, there are many valid high-level
behaviors that might connect the same (st, sg) pairs. By auto-
encoding contextual demonstrations through a latent “plan”
space with an sequence-to-sequence conditional variational
auto-encoder (seq2seq CVAE) [1], we can learn to recognize
which region of the latent plan space an observation-action
sequence belongs to. Critically, conditioning the policy on the
latent plan frees up the policy to use the entirety of its capacity
for learning uni-modal behavior. Thus, learning to generate and
represent high-quality latent plans is a key component in the
seq2seq CVAE framework. MCIL [5] uses bidirectional re-
current neural networks (RNN) to encode a randomly sampled
play sequence and map it into a latent Gaussian distribution. In
contrast, we leverage a multimodal transformer encoder [24]
to build a contextualized representation of abstract behavior
expressed in language instructions and map into a vector of
several latent categorical variables [25]. The foundation of the
Transformer architecture is the scaled dot-product attention
function, which enables elements in a sequence to attend
to other elements. The attention function receives as input
a sequence {x1, ..., xn} and outputs a sequence {y1, ..., yn}.
Each input xi is projected linearly to a query qi, key ki, and
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gripper frame
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Encoder
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grasped block

Visual 
Encoder
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Encoder

Plan Sampler 
Network
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Representation 

Learning 

 

 

Local Policy 
Network

 

Categorical Global 
Latent Plan

Initial state

Sequence

Prior

Posterior

Multimodal 
Transformer

Static Camera

Gripper Camera

Contextual global 
video representation

Latent language 
representation

Encoded gripper 
cam image

Categorical Global 
Latent Plan  

Encoded static 
cam image

Visuo-lingual Semantic 
Alignment Loss

Fig. 2. Overview of our architecture to learn language conditioned policies from unstructured data. First the language instructions and the visual observations
are encoded. During training a multimodal transformer encodes sequences of observations to learn to recognize and organize high-level behaviors through a
posterior. Its temporally contextualized features are provided as input to a contrastive visuo-lingual alignment loss. The plan sampler network receives the
initial state and the latent language goal and predicts the distribution over plans for achieving the goal. Both prior and posterior distributions are predicted as a
vector of multiple categorical variables and are trained by minimizing their KL divergence. The local policy network receives the latent language instruction,
the gripper camera observation and the global latent plan to generate a sequence of relative actions in the gripper camera frame to achieve the goal.

value vi. To compute the output yi the values are summed
with weights that take into account the similarity of the query
with its corresponding key. The attention function is defined
as Attention(Q,K, V ) = softmax(QK

T

√
dk

)V , where dk is the di-
mension of the keys and queries. The queries, keys, and values
are stacked together into matrix Q ∈ Rn×dmodel , K ∈ Rn×dmodel ,
and V ∈ Rn×dmodel . We encode the sequence of visual observa-
tions of both modalities X{static,gripper} ∈ RT×H×W×3 with
separate perceptual encoders, and concatenate them to form
the fused perceptual representation V ∈ RT×d of the sampled
demonstration, where T represents the sequence length and
d the feature dimension. To enable the sequences to carry
temporal information, we add positional embeddings [24] and
feed the result into the Multimodal Transformer to learn tem-
porally contextualized global video representations. Finally,
inspired by the recent line of work that looks into learning
discrete instead of continuous latent codes [25], [26], we
represent the latent plans as a vector of multiple categorical
latent variables and and optimize them using straight-through
gradients [27]. Learning discrete representations in the context
of language conditioned policies is a natural fit, as language is
inherently discrete and images can often be described concisely
by language [19]. Furthermore, discrete representations are
a natural fit for complex reasoning, planning and predictive
learning (e.g., if it is sunny, I will go to the beach).

C. Semantic Alignment of Video and Language
Learning to follow language instructions involves addressing

a difficult symbol grounding problem [3], relating a language
instruction to a robots onboard perception and actions. Al-
though instructions and visual observations are aligned in
CALVIN, learning to manipulate the colored blocks is a
challenging problem. This is due to the fact that the robot needs

to learn a wide variety of diverse behaviors to manipulate the
blocks, but also needs to understand which colored block the
user is referring to. Thus, the block related instructions are very
similar, for the exception of a word that might disambiguate
the instruction by indicating a color. Therefore, most pre-
trained language models struggle to learn such semantics from
text only and the policy needs to learn referring expression
comprehension via the imitation loss. There have been a
number of multi-modal alignment losses proposed, such as
regressing the language embedding from the visual observa-
tion [7] or cross-modality matching [8]. We maximize the
cosine similarity between the visual features of the sequence i
and the corresponding language features while, at the same
time, minimizing the cosine similarity between the current
visual features and other language instructions in the same
batch. We define our Lcontrast loss the same way as the
contrastive loss for pairing images and captions in CLIP [15].
However, ideally our model should use the time-dependent
representation of the sequence visual observations in order
to capture the meaning of a language instruction. This can
be appreciated only after the sequence of actions have been
executed for several timesteps. The usage of in-batch negatives
enables re-use of computation both in the forward and the
backward pass making training highly efficient. The logits
for one batch is a M × M matrix, where each entry is
given by logit(xi, yj) = cos sim(xi, yj) ·exp(τ),∀(i, j), i, j ∈
{1, 2, . . . ,M} where τ is a trainable temperature parameter.
Only entries on the diagonal of the matrix are considered
positive examples. The final loss is the sum of the cross entropy
losses on the row and the column direction.
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D. Action Decoder
A challenge in learning control from free-form imitation

data, in which different ways of executing the same skill
are shown, is that a standard unimodal predictor, such as a
Gaussian distribution, will average out dissimilar motions. To
address this multimodality, we follow the solution proposed
by Lynch et. al. [1] of discretizing the action space and then
parameterizing the policy as a discretized logistic mixture
distribution [28], [29]. Each of the predicted k logistic dis-
tributions have a separate mean and scale, and are weighed
with α to form the mixture distribution. The imitation loss is
the negative log-likelihood for this distribution:

Lact(Dplay, V ) = − ln(Σki=0 αk(Vt) P (at, µi(Vt), σi(Vt))

Where, P (at, µi(Vt), σi(Vt)) = F (at+0.5−µi(Vt)
σi(Vt)

) −
F (at−0.5−µi(Vt)

σi(Vt)
) and F (·) is the logistic CDF. Additionally,

we use a cross-entropy loss to model the binary gripper
open/close action.

E. Optimization and Implementation Details
Our full training objective for the 1% of the total data that

is annotated with after-the-fact language instructions is given
by L = Lact + βLKL + λLcontrast. The windows without
annotations are trained with the same imitation learning ob-
jective, but the language goals are replaced by the last visual
frame of the sampled window to learn control in a fully self-
supervised manner. A common problem in training VAEs is
finding the right balance in the weight of the KL loss. A high
β value can result in an over-regularized model in which the
decoder ignores the latent plans from the prior, also known
as a “posterior collapse” [30]. On the other hand, setting β
too low results in the plan sampler network being unable to
catch up to plan over the latent space created by the posterior,
and as a result at test time the plans generated by the plan
sampler network will be unfamiliar inputs for the decoder.
Orthogonal to this, as the KL loss is bidirectional, we want to
avoid regularizing the plans generated by the posterior toward
a poorly trained prior. To solve this problem, we minimize
the KL loss faster with respect to the prior than the posterior
by using different learning rates, α = 0.8 for the prior and
1 − α for the posterior, similar to Hafner et. al. [25]. We set
β = 0.01 and λ = 3 for all experiments and train with the
Adam optimizer with a learning rate of 2−4. During training,
we randomly sample windows between length 20 and 32 and
pad them until the max length of 32. For the latent plan
representation we use 32 categoricals with 32 classes each.
To better compare the differences between approaches, we
use the same convolutional encoders as the MCIL baseline
available in CALVIN for processing the images of the static
and gripper camera. Our multimodal transformer encoder has
2 blocks, 8 self-attention heads, and a hidden size of 2048.
In order to encode raw text into a semantic pre-trained vector
space, we leverage the paraphrase-MiniLM-L3-v2 model [31],
which distills a large Transformer based language model and is
trained on paraphrase language corpora that is mainly derived
from Wikipedia. It has a vocabulary size of 30,522 words and
maps a sentence of any length into a vector of size 384.

F. Data Augmentation

To aid learning we apply data augmentation to image
observations, both in our method and across all baselines.
During training, we apply stochastic image shifts of 0-4 pixels
to the gripper camera images and of 0-10 pixels to the static
camera images as in Yarats et. al. [32]. Additionally, a bilinear
interpolation is applied on top of the shifted image by replacing
each pixel with the average of the nearest pixels.

V. EXPERIMENTS

We evaluate our model in an extensive comparison and
ablation study, to determine which components matter for
language conditioned imitation learning over unstructured data.
We ablate single components of our full approach to study the
influence of each component. We then compare our resulting
model to the best published methods on the CALVIN bench-
mark, and show that it outperforms all previous methods.

A. Evaluation Protocol

The goal of the agent in CALVIN is to solve sequences
of up to 5 language instructions in a row using only onboard
sensors. This setting is very challenging as it requires agents
to be able to transition between different subgoals. CALVIN
has a total of 34 different subtasks and evaluates 1000 unique
sequence instruction chains. The robot is set to a neutral
position after every sequence to avoid biasing the policies
through the robot’s initial pose. This neutral initialization
breaks correlation between initial state and task, forcing the
agent to rely entirely on language to infer and solve the
task. For each subtask in a row the policy is conditioned
on the current subgoal instruction and transitions to the next
subgoal only if the agent successfully completes the current
task. We perform the ablation studies on the environment D
of CALVIN and additionally report numbers of our approach
for the other two CALVIN splits, the multi environment and
zero-shot multi environment splits. We emphasize that the
CALVIN dataset for each of the four environment consists of
6 hours of teleoperated undirected play data that might contain
suboptimal behavior. To simulate a real-world scenario, only
1% of that data contains crow-sourced language annotations.

B. Results and Ablations of Key Components

Observation and Actions Spaces: We compare our approach
of dividing the robot control learning into generating global
contextualized plans and conditioning a local policy that
receives only the observations of the the gripper camera on
the global plan against a “No Local Policy” baseline. Unlike
our approach, which performs control in the gripper camera
frame, the baseline’s policy receives both cameras images and
performs control in the robot’s base frame, as is usual in most
published approaches. We observe in Fig. 3, that despite the
baseline’s decoder having more perceptual information, the
performance for completing 5 chains of language instructions
sequentially drops from 28.3% to 20.1%. In order to analyze
the big performance difference with respect to the original
MCIL baseline, we train a MCIL baseline with relative actions
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Method LH-MTLC
No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.
MCIL [5] 34.4% 5.8% 1.1% 0.2% 0.08% 0.41

GCBC [1] + delta actions 64.7% (4.0) 28.4% (6.2) 12.2% (4.1) 4.9% (2.0) 1.3% (0.9) 1.11 (0.3)
MCIL [5] + delta actions 76.4% (1.5) 48.8% (4.1) 30.1% (4.5) 18.1% (3.0) 9.3% (3.5) 1.82 (0.2)

Ours 82.7% (0.3) 64.9% (1.7) 50.4% (1.5) 38.5% (1.9) 28.3% (1.8) 2.64 (0.05)
No Transformer Encoder 79.5% (0.6) 61.5% (2.0) 46.7% (1.7) 32.6% (1.2) 24.7% (1.7) 2.45 (0.06)

No Discrete Latents 79.8% (1.6) 60.6% (0.4) 43.3% (0.9) 32.6% (1.1) 23.6% (1.6) 2.39 (0.03)
No Local Policy 78.4% (1.4) 56.2% (2.0) 40.4% (2.4) 29.5% (1.7) 20.1% (1.3) 2.24 (0.06)

No KL Balancing 79.6% (2.3) 59.3% (0.2) 42.3% (0.7) 30.7% (0.8) 21.9% (1.1) 2.33 (0)
No Gripper Log Loss 79.5% (1.3) 61.3% (1.7) 46.5% (2.1) 33.9% (1.9) 24.0% (1.8) 2.45 (0.07)

KL β = 0.1 78.4% (1.5) 55.8% (1.4) 36.3% (1.7) 23.9% (1.1) 16.2% (1.2) 2.10 (0.09)
No Lang Align. Loss 80.1% (0.9) 55.4% (2.0) 42.2% (1.3) 30.2% (1.3) 21.8% (0.9) 2.29 (0.07)

MIA Lang Align. Loss [8] 79.5% (1.9) 57.8% (0.8) 41.7% (1.4) 29.7% (2.1) 20.9% (1.6) 2.29 (0.04)
Lang Align. Regression [7] 82.5% (0.8) 61.0% (1.0) 45.5% (0.4) 32.9% (1.1) 23.5% (0.7) 2.45 (0.03)

No image augmentation 75.6% (1.4) 51.2% (1.7) 34.0% (2.6) 23.6% (1.9) 15.4% (0.6) 1.99 (0.07)
Proprioceptive input 81.2% (0.3) 56.1% (1.4) 39.2% (1.6) 26.2% (1.3) 18.1% (0.8) 2.20 (0.05)
MPNet SBERT [31] 77.4% (2.0) 57.2% (1.9) 40.7% (1.4) 28.5% (1.7) 20.2% (1.0) 2.24 (0.06)

MPNet [33] 71.5% (2.6) 48.5% (1.4) 33.6% (1.6) 23.1% (1.7) 15.5% (0.7) 1.92 (0.08)
Distilroberta SBERT [31] 78.1% (1.2) 60.9% (1.5) 47.7% (1.9) 36.4% (1.9) 27.5% (0.7) 2.50 (0.07)

Distilroberta [34] 77.8% (1.4) 56.3% (1.7) 40.6% (2.4) 28.2% (1.7) 17.8% (1.9) 2.21 (0.07)
BERT [35] 77.5% (1.8) 52.6% (3.2) 34.7% (2.4) 24.1% (1.5) 14.9% (2.4) 2.03 (0.1)

CLIP Encoders [15] 81.4% (0.5) 60.4% (1.1) 44.7% (2.3) 32.3% (1.2) 23.2% (1.6) 2.42 (0.06)

Fig. 3. Performance of our model on the D environment of the CALVIN Challenge and ablation of the key components, across 3 seeded runs. All models
receive RGB images from both a static and a gripper camera as a input.

and observe that its performance improves significantly from
the original MCIL baseline with absolute actions, but performs
worse than our models. We speculate that using relative actions
with a local policy is easier for the agent to learn instead
of memorizing all the locations where interactions have been
performed with global actions and a global observation space.
By decoupling the control into a hierarchical structure, we
show that performance increases significantly. Additionally,
we analyze the influence of using the 7-DoF proprioceptive
information as input for both the plan encodings and condi-
tioning the policy, as many works report improved performance
from it [1], [2], [5]. We observe that the performance drops
significantly and the agent relies too much on the robot’s initial
position, rather than learning to disentangle initial states and
tasks. We hypothesize this might be due to a causal confu-
sion between the proprioceptive information and the target
actions [36]. We also analyze the effect of modeling the full
action space, including the binary gripper action dimension,
with the mixture of logistics distribution instead of using the
log loss for the open/close gripper action and observe that the
average sequence length drops from 2.64 to 2.45. Finally, we
note that applying stochastic image shifts to the input images
increases the performance significantly.

Latent Plan Encoding: In our CVAE framework the latent
plan represents valid ways of connecting the actual state and
the goal state and thus, frees up the policy to use the entirety
of its capacity for learning uni-modal behavior. As language
is inherently discrete and discrete representations are a natural
fit for complex reasoning and planning, we represent latent

plans as a vector of multiple categorical latent variables and
and optimize them using straight-through gradients [27]. We
observe that the performance for 5-chain evaluation drops from
28.3% to 23.6% when we train our model with a diagonal
Gaussian distribution as in MCIL. While it is difficult to judge
why categorical latents work better than continuous latent
variables, we hypothesize that categorical latents could be a
better inductive bias for non-smooth aspects of the CALVIN
benchmark, such as when a block is hidden behind the sliding
door. Besides, the sparsity level enforced by a categorical
distribution could be beneficial for generalization. Addition-
ally, we compare against a goal-conditioned Behavior Cloning
(GCBC) baseline [1] which does not condition the policy on a
latent plan, and observe that it performs worse than MCIL with
relative actions, highlighting the importance of modeling latent
behaviors in free-form imitation datasets. We also observe that
balancing the KL loss is beneficial in the CVAE training. By
scaling up the prior cross entropy relative to the posterior
entropy, the agent is encouraged to minimize the KL loss
by improving its prior toward the more informed posterior,
as opposed to reducing the KL by increasing the posterior
entropy. We visualize a t-SNE plot of our learned discrete
latent space in Figure 5 and that see that even for unseen
language instructions it appears to organize the latent space
functionally. Additionally, we report degraded performance for
an over-regularized model which learns to ignore the latent
plans, in which we weight the KL divergence with β = 0.1.
Finally, we evaluate replacing the transformer encoder in the
posterior with a GRU bidirectional recurrent network of the
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Method Train→Test LH-MTLC
No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.
MCIL [5] A,B,C,D→D 37.3% 2.7% 0.17% 0% 0% 0.40

Ours A,B,C,D→D 88.9% (0.6) 73.3% (1.7) 58.7% (1.8) 47.5% (1.6) 38.3% (1.9) 3.06 (0.07)
MCIL [5] A,B,C→D 30.4% 1.3% 0.17% 0% 0% 0.31

Ours A,B,C→D 41.8% (2.3) 16.5% (2.5) 5.7% (1.3) 1.9% (0.9) 1.1% (0.5) 0.67 (0.1)

Fig. 4. Performance of our model on the multi environment splits of the CALVIN Challenge across 3 seeded runs.

same hidden dimension of 2048, similar to MCIL. The results
suggest that besides an improved performance, the multimodal
transformer encoder is significantly more efficient both mem-
ory and model size wise (5.9 M vs 106 M parameters for the
posterior network) and overall training wall clock time. For
comparison, with the transformer encoder, our full approach
contains 47.1 M trainable parameters.
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rotate_pink_block_left
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Fig. 5. t-SNE visualization of the discrete latent plans generated by embedding
randomly selected unseen language annotations. Surprisingly, we find that
despite not being trained explicitly with task labels, HULC appears to organize
its latent plan space functionally. We visualize with the same color functionally
similar skills, but use different shapes to distinguish sub-skills.

Semantic Alignment of Video and Language: One of
the main challenges for language conditioned continuous
visuomotor-control is solving a difficult symbol grounding
problem [3], relating a language instruction to a robots onboard
perception and actions. An agent in CALVIN needs to learn
a wide variety of diverse behaviors to manipulate blocks
with different shapes, but also needs to understand which
colored block the user is instructing it to manipulate. We
compare commonly used auxiliary losses for aligning visual
and language representations. Concretely, we compare our
contrastive loss against predicting the language embedding
from the sequence’s visual observations with a cosine loss [7],
cross-modality matching [8] and not having an auxiliary visuo-
lingual alignment loss. We observe that using an auxiliary
loss to semantically align the sampled video sequences and
the language instructions helps, but both baselines perform
similarly. We hypothesize that our contrastive loss works best

because it leverages a larger number of in-batch negatives than
the cross-modality matching loss. Concretely, we maximize the
cosine similarity for N real pairs in the batch while minimizing
the cosine similarity of the multimodal embeddings of the
N2 −N incorrect pairings. The cross-modality matching loss
implements a discriminator that produces a binary predictor of
whether the embeddings match or not. The batch is shuffled
only once to produce the negative samples, contrasting only
N negative samples.

Language Models: Despite steady progress in language
conditioned policy learning, a fundamental, but less considered
aspect is the choice of the pre-trained language model to
encode raw text into a semantic pre-trained vector space. We
compare the lightweight paraphrase-MiniLM-L3-v2 language
embeddings from our full model against several popular alter-
natives, such as the larger BERT [35], Distilroberta [34] and
MPNet [33], which double the embedding size from 384 to
768. Besides the architecture of the language model, we ana-
lyze the impact of the loss functions the language models are
trained on, by comparing the original embeddings of MPNet
and Distilroberta against versions that have been finetuned with
contrastive losses at the sentence level to map semantically
similar sentences into the same latent space [31]. We observe
that the SBERT models that have been finetuned on sentence
semantic similarity achieve significantly better results than
the original language models trained on masked language
modeling. Concretely, the original Distilroberta model achieves
an average sequence length of 2.21, while the SBERT Distil-
roberta model achieves an average sequence length of 2.50.
Finally, we also compare against a model conditioned on visual
(ResNet-50) and language-goal features from a pre-trained
CLIP model [15], which has been trained to align visual and
language features from millions of image-caption pairs from
the internet. Surprisingly, we find that performance is slightly
worse than our best performing model. We hypothesize that
this might be due to a domain gap between the natural images
that CLIP has been trained on and the simulated images from
CALVIN. The results suggest that for complex semantics, the
choice of the pre-trained language model has a large impact
and models finetuned on sentence level semantic similarity
should be preferred. While in this paper, we do not finetune
the language models with the action loss, we anticipate this
might lead to better performance, specially in order to ground
instructions referring to the colored blocks.

Multi Environment and Zero-Shot Generalization: Finally,
we investigate the performance of our approach on the larger
multi environment splits of CALVIN on Fig. 4. On the zero-
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shot split, which consists on training on three environments
and testing on an unseen environment with unseen instructions,
we observe that despite modest improvements over the MCIL
baseline, the policy achieves just an average sequence length of
0.67. We hypothesize that in order to achieve better zero-shot
performance, additional techniques from the domain adaptation
literature, such as adversarial skill-transfer losses might be
helpful [37]. On the split that trains on all four environments
and evaluates on one of them, we observe that HULC benefits
from the larger dataset size and sets a new state of the art
with an average sequence length of 3.06, which is higher than
our best performing model trained and tested on environment
D (2.64). The results suggest that increasing the number
of collected language pairs aids addressing the complicated
perceptual grounding problem.

VI. CONCLUSION

We have presented a study into what matters in language
conditioned robotic imitation learning over unstructured data
that systematically analyzes, compares, and improves a set of
key components. This study results in a range of novel ob-
servations about these components and their interactions, from
which we integrate the best components and improvements into
a state-of-the-art approach. Our resulting hierarchical HULC
model learns a single policy from unstructured imitation data
that substantially surpasses the state of the art on the chal-
lenging language conditioned long-horizon robot manipulation
CALVIN benchmark. We hope it will be useful as a starting
point for further research and will bring us closer towards
general-purpose robots that can relate human language to their
perception and actions.
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