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Learning Perceptual Concepts by Bootstrapping
from Human Queries

Andreea Bobu!, Chris Paxton?, Wei Yang?, Balakumar Sundaralingam?,
Yu-Wei Chao?, Maya Cakmak?3, and Dieter Fox?3

Abstract—When robots operate in human environments, it’s
critical that humans can quickly teach them new concepts: object-
centric properties of the environment that they care about (e.g.
objects near, upright, etc). However, teaching a new perceptual
concept from high-dimensional robot sensor data (e.g. point
clouds) is demanding, requiring an unrealistic amount of human
labels. To address this, we propose a framework called Perceptual
Concept Bootstrapping (PCB). First, we leverage the inherently
lower-dimensional privileged information, e.g., object poses and
bounding boxes, available from a simulator only at training
time to rapidly learn a low-dimensional, geometric concept from
minimal human input. Second, we treat this low-dimensional
concept as an automatic labeler to synthesize a large-scale high-
dimensional data set with the simulator. With these two key ideas,
PCB alleviates human label burden while still learning perceptual
concepts that work with real sensor input where no privileged
information is available. We evaluate PCB for learning spatial
concepts that describe object state or multi-object relationships,
and show it achieves superior performance compared to baseline
methods. We also demonstrate the utility of the learned concepts
in motion planning tasks on a 7-DoF Franka Panda robot.

Index Terms—Human-Centered Robotics, Human Factors and
Human-in-the-Loop, Visual Learning

I. INTRODUCTION

OBOTS are increasingly expected to perform tasks in hu-

man environments, from helping with household chores
to cleaning up the office. To align robot performance with
the end user’s unique needs, the person should be able to
teach their robot a new concept: an object-centric property
of the environment that they care about. A concept maps the
environment state to a value indicating how much the object-
centric property is expressed, and the robot can optimize it to
perform the person’s desired task. For example, in Fig. 1| the
user wants the robot to tidy the tabletop by moving the mug
near the can. To accomplish this behavior, the robot first learns
the concept of what it means for objects to be near each other,
and then moves the mug closer to the can.

To be usable in the real world, a learned concept must
operate on an input space the robot understands: the high-
dimensional observations from its sensors (e.g. point clouds).
Classical methods simplify the perceptual concept learning
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Fig. 1: (Left) We propose a new approach whereby the robot collects
labels from the human about the concept ¢ (e.g. near) and learns a
low-dimensional concept ¢; on the privileged information space (e.g.
poses and bounding boxes) (top), then uses ¢; to label data necessary
for learning the high-dimensional concept ¢, (bottom). (Right) At
test time, the robot can directly use the learned concept ¢y, to produce
a plan for moving the mug to be near the can. Additional quali-
tative results available at https://sites.google.com/nvidia.com/active-
concept-learning,

problem via a pre-processing step, extracting geometric infor-
mation like object poses and bounding boxes from the high-
dimensional sensor data [[1], [2], [3]. The human can then teach
a concept mapping from this lower dimensional space by la-
beling when objects are near or far. By transforming the sensor
input into a lower dimensional space, the robot can learn the
concept quickly even from limited human input. Unfortunately,
recovering accurate geometries from real-world sensor data is
challenging: even modern pose estimators [4], [S], [6], [7Z]
struggle when confronted with partial occlusions or novel
objects [8]]. Instead, recent deep learning alternatives learn
perceptual concepts directly from the sensor data, without any
pre-processing [9]], [10]. These methods are usually trained
in simulation, where a variety of objects can be manipulated
in diverse configurations, resulting in better generalization
than classical approaches [8], [L1], [L0]. However, because
of the high dimensionality of the input space, the robot needs
unreasonably many human-labeled examples, making a new
concept impractical and cumbersome for a human to teach.
In this paper, we propose getting the best of both worlds:
learn concepts from high-dimensional sensor data with limited
human labeling effort. We observe that, while the robot
only has access to the high-dimensional sensor inputs during
task execution, at training time it has a simulator containing
privileged information akin to the geometries that classical
approaches tried to compute. In Fig. [I] this privileged space
is the object poses and bounding boxes — a much simpler rep-
resentation than their high-dimensional point cloud equivalent.
Our idea is to learn a low-dimensional, geometric variant of
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the concept on the privileged space, then treat it as a labeler
and use it to automatically label high-dimensional data in the
simulator (Fig. [I). This lets us generate a large, diverse, and
automatically labeled dataset for training a high-dimensional,
perceptual concept which can be directly applied to real-world
settings without additional human input.

Since these low-dimensional spaces result in faster training
and are often semantically meaningful, they allow for richer
human interaction. We thus investigate three types of human
input for concept learning (demonstration, label, and feature
queries), and propose an active learning strategy for informa-
tive queries. We then showcase PCB in experiments both in
simulation and on a real Franka Panda robot.

II. RELATED WORK

Concept learning from low-dimensional geometries. Tradi-
tionally, concepts are hand-engineered by the system designer
prior to robot deployment [[12], [13], [14]. Unfortunately, by
relying entirely on prior specification, the robot cannot adapt
its task execution to an end user’s needs. Recent works address
this problem by allowing the robot to either infer concepts
from task demonstrations [15], [16] or learn them directly from
the human [17]], [[18]. While these methods enable the robot to
learn after deployment, they have been primarily demonstrated
on low-dimensional spaces.

Prior work bypasses the high-dimensional learning prob-

lem by extracting low-dimensional geometric information and
learning relational concepts on top of it L], [2]], [3l]. However,
recovering accurate geometries from real-world sensor data
is challenging: even modern pose estimators [4]], [S], [6], [7]
struggle with the partial occlusions or novel objects that appear
in open-world environments [8]. As such, we seek to learn
concepts operating directly on high-dimensional input, without
any intermediary pre-processing.
Learning from high-dimensional sensor data. Deep learning
handles high-dimensional data by using a function approxima-
tor to learn low-dimensional embeddings, hoping to capture
salient aspects of the environment. Deep inverse reinforcement
learning (IRL) and imitation learning approaches, in particular,
use demonstrations to automatically extract behavior-relevant
representations [[19], [20], [21]. Unfortunately, to work reliably
on high-dimensional inputs, these methods require a large
amount of data from the human to generalize outside of the
training distribution [22], [23].

Recent work in the auto-encoder community suggests that
we can improve data efficiency by learning a disentangled
latent space from weakly labeled examples of many con-
cepts [24]]. Unfortunately, this approach still requires the user
to label tens of thousands of examples for training. Moreover,
while these methods are aligned with our goals of capturing
important aspects of robotic tasks, they are complementary
in that they focus on learning latent embeddings of the high-
dimensional data, not individual perceptual concepts.
Concept learning from high-dimensional sensor data. In-
stead of learning a universal representation, other work learns
specific relational concepts directly from high-dimensional
data [9], [10]. In particular, these methods learn from seg-
mented object point clouds, which are easy to obtain and

have successfully been used in other perception pipelines [25].
The disadvantage of this approach is that it still requires large
amounts of data (thousands of labeled examples), making it
unsuitable for learning the concept from a human. We look
at how we can teach similar perceptual concepts from high-
dimensional point cloud data, but do so quickly and efficiently
with the help of the privileged space.

III. METHOD

Our goal is to enable humans to teach robots perceptual
concepts operating in high-dimensional input spaces, like
segmented object point clouds. We assume that the robot may
query the human for labeled examples of the desired concept,
but we wish to learn the concept with as few human labels
as possible. As training high-dimensional concepts is data
intensive [9], [10], we propose to learn the concept first in
a simpler, lower dimensional input space, then use it to label
as much high-dimensional data as needed to train the concept
in the target high-dimensional sensor space.

A. Preliminaries

Formally, a concept is a function mapping from input state
to a scalar value, ¢(s) : R? — [0, 1], indicating how much
concept ¢ is expressed at d-dimensional state s € RZ. In
our setting, we assume the human teacher already knows the
ground truth concept ¢* and can answer queries about it.

At training, the robot has a simulator that gives it access to
the entire state s, but at test time it receives high-dimensional
observations o, € R" given by a transformation of the state
F(s) : R — R" In the example in Fig. s captures
the objects’ pose, mesh, color, etc, whereas oy, is only the
segmented point cloud of the scene from a fixed camera view.
The robot seeks to learn a high-dimensional concept mapping
from these observations, ¢p,(05) : R" — [0,1], so that it can
use it in desired manipulation tasks later on.

To do so, we assume the robot can ask the person for state-
label examples (s, ¢*(s)), forming a data set {s, o5, d*(s)} €
Dy. Since the high-dimensional observation oy, directly cor-
responds to state s, this data set has the crucial property that
the same label ¢*(s) applies to both s and op:

@ (s) = dnlon),Vs, o = F(s) . (1

From here, one natural idea to learn ¢; is to treat it as
a classification or regression problem and directly perform
supervised learning on (op, $*(s)) pairs. Unfortunately, to
learn a meaningful decision boundary, this approach would
require very large amounts of data from the person, making it
impractical to have a user teach a new concept.

Instead, we assume the robot can use privileged information
from the simulator as a low-dimensional observation o; € R
given by a transformation G(s) : R? — R!. We think of
this information as privileged because the robot has access
to it during training but not at task execution time. In Fig.
[1l o; only needs the object poses and bounding boxes to
determine whether the objects are near. The set of collected
human examples then includes the low-dimensional observa-
tion: {s, 0, o, 9*(s)} € Dy, which allows the robot to learn
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a low-dimensional variant of the concept, ¢;(0;) : R! — [0, 1],
by extending the property in Eq. (I):

¢*(s) = ¢nlon) = di(01),Vs,on = F(s),00=G(s) . (2)

We hypothesize that learning the low-dimensional concept
¢; from privileged information should require less human
input than learning ¢, directly from high-dimensional data.
Moreover, Eq. [2| allows the learned ¢; to act as a labeler,
bypassing the need for additional human input. We, thus, break
down the concept learning problem into two steps: leverage
the human queries to learn a low-dimensional concept ¢;, then
use it to ultimately learn the original high-dimensional ¢y, .

B. Learning a low-dimensional concept

To learn ¢; the robot first needs to ask the human for Dy. To
ensure the robot can learn the concept with little data, we want
a query collection strategy that balances being informative
and not placing too much burden on the human. We consider
two types of input that are easy to provide and commonly
used in the human-robot interaction (HRI) literature [26]:
demonstration queries and label queries. Since users may
struggle to label continuous values, we simplify the labeling to
consist of 0 (negative) or 1 (positive) for low and high concept
values. Note that despite the labels being discrete, they can still
be used to learn a model that predicts continuous values.

Demonstration queries, or demo queries, involve creating
a new scenario and asking the human to choose states s that
demonstrate the concept and label them according to ¢*. This
method requires an interface that allows the person to directly
manipulate the state of the environment and label it, like a
simulator with keyboard or click control. For example, for
the near concept in Fig. [T} the person could move the red
object near the green one and label the state 1.0, symbolizing
a high concept value. Here, the robot can only manipulate the
constraints of the scenario (e.g. which objects are involved)
and the human has complete control over the selection of the
rest of the state (e.g. the objects’ poses).

If the human is pedagogic, demonstration queries provide
the robot with an informative data set of examples that
should allow it to learn the low-dimensional concept quickly.
Unfortunately, this data collection method can be quite slow
due to the fact that the person has to spend time both deciding
on an informative state and manipulating the environment to
reach it. This makes it challenging to use in data intensive
regimes (like when training ¢;, from the get-go) but ideal in
the low-data ones we are interested in.

Label queries are a less time-consuming alternative where
the robot synthesizes the full query state s, and the person
simply labels it as O or 1. For instance, in Fig. [I] the robot
picks both the objects and their poses. This type of query is
much easier and faster for the person to answer, but places the
burden of informative state generation entirely on the robot.
Simply randomly sampling the state space might not be very
informative for the desired concept. For example, for a concept
like above, placing two objects at random locations will rarely
result in examples where one object is above the other. As
such, we need a way to select more useful queries.

We use active learning [27], [28], whereby the robot can
proactively select query states that it deems more informative.
Concretely, we interleave asking for a batch of query states
with learning the concept ¢} from the ¢ examples received
so far. This way, the robot can use the partially-learned ¢! to
inform the synthesis of a more useful next batch of queries. For
every query, the robot chooses among three query synthesis
strategies: 1. random: randomly generate a state s € R?; 2.
confusion: pick the state that maximizes confusion by being at
¢} (s)’s decision boundary, i.e. s = arg ming(||¢}(s) — 0.5));
3. augment: select a state that was previously labeled as a
positive (or negative, whichever is rarer) and add noise to it.
A random query serves as a proxy for exploring novel areas of
the state space. In a simulator, this query can be generated by
randomizing the parameters of the state (e.g. object meshes,
poses, etc). The confusion query is a proxy for disambiguating
areas of the state space where the current concept ¢! cannot
determine whether the state has a positive or a negative concept
value. The query state in this case is selected by optimizing the
concept value to be 0.5 using the cross-entropy method [29],
[30]. The augment query is useful for concepts where positives
(or negatives) are rarer, like in the above example.

Active learning is possible when learning low-dimensional
concepts because they have much shorter training cycles than
their high-dimensional variants. Another advantage of low-
dimensional spaces is that, while the transformation F cannot
be modified because the robot is constrained to operate on
op, at test time, we have more flexibility over what G and
o; can be. We exploit this with a third type of human input
called feature queries [26]. Feature queries typically involve
asking the person whether an input space feature is important
or relevant for the target concept. However, this query is
only useful if the feature itself is meaningful to the human.
We adapt feature queries and ask the person a few intuitive
questions about the concept such that the answer informs
the choice of the transformation G. For example, a negative
answer to the question “Does the size of the objects matter?”
lets the robot know that o; does not benefit from containing
object bounding box information. These queries lead to an
appropriate G, which can further speed up the learning of ¢;.

Given a (possibly partial) dataset of labeled human exam-
ples Dy, the robot can now train a low-dimensional concept
¢;. We treat concept learning as a classification problem,
approximate ¢; by a neural network, and train it on the
(01, ¢*(s)) examples in D, using a binary cross-entropy loss.

C. Learning a high-dimensional concept

Learning a high-dimensional concept requires a large
amount of labeled high-dimensional data. Generating this data
set is a two-step process: the robot needs to synthesize a large
and diverse set of states s, which it then has to acquire labels
for. However, as opposed to the low-dimensional case, this
data set need not be directly labeled by the human: the learned
low-dimensional concept itself can act as a labeler.

Since at training time the robot has access to the simulator,
for the data synthesis step we randomly explore the state space.
With the property in Eq. (@), we can use the low-dimensional
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concept ¢; to automatically label the states, generating the
data set {s,o;,0n,¢1(0;)} € Dgy,. To now learn the high-
dimensional concept ¢, we approximate it by a neural net-
work and train it via classification on the (o, ¢;(0;)) examples
in Dy, using a cross-entropy loss.

D. Implementation details

We used a multilayer perceptron (3 layers, 256 units)
and a standard PointNet [31], [32] to represent the low-
and high-dimensional concepts, respectively. Our concepts
involved relationships between objects, so we represented the
high-dimensional observation o; with the relevant objects’
segmented point clouds from the camera view, and the low-
dimensional one o; with object poses and bounding boxes.

For data generation, we modified the objects in the
ShapeNet data set [33] such that they are consistently aligned
and scaled. When synthesizing states s € R?, we spawned
pairs of two objects in the Isaac Gym simulator [34] and
manipulated their poses, as well as the camera pose along the
table plane. This process resulted in a variety of states with
possibly occluded objects, from many camera views. Since
our method allows us to generate as much simulated data as
desired, our hope is to generalize to real-world conditions like
other simulation-based methods do [9], [35]], [36].

IV. EXPERIMENT: LEARNING PERCEPTUAL CONCEPTS BY
BOOTSTRAPPING FROM HUMAN QUERIES

In this section, we compare our label-efficient perceptual
concept learning method PCB to a baseline that learns directly
from high-dimensional input. PCB relies on a human-trained
low-dimensional concept ¢;, for which we perform an exten-
sive investigation in Sec. [V]

A. Experimental Design

Throughout our experiments, we synthesize queries by
manipulating pairs of objects in the simulator: a stationary
anchor and a moving object, which is related to the anchor by
our concept. We investigate 9 spatial concepts:

1) above: angle between the objects’ relative position and
the world z-axis;
2) aboveyy: intersection area of the two objects’ bounding
box projections on the world xy-plane;
3) near: inverse distance between the objects;
4) upright: angle between the moving object’s z-axis and
the world’s;
5) aligned,,;;: angle between the objects’ x-axes;
6) aligned,.,: angle between the objects’ z-axes;
7) forward: angle between the anchor’s z-axis and the
objects’ relative position;
8) front: angle between the anchor’s x-axis and the objects’
relative position;
9) top: angle between the anchor’s z-axis and the objects’
relative position.
For evaluation purposes, our ground truth concept imple-
mentations cut off the angles in above, upright, alignedy,;,
aligned,,.,;, front, and top after 45° and the distance in near
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Fig. 2: Visual representation of the 9 perceptual concepts learned with
our method (icon in the top left of each box). The anchor (green) is
joined by examples of the moving object represented as either partial
object point clouds (middle: upright, alignedpori., aligned,.,) or object
point cloud centers (top: above, abovey,;,, near; bottom: forward, front,
top). We color predicted positive examples in red, and negative ones
in black. For concepts defined with respect to the world coordinate
frame, we additionally plot the frame.

after 0.3m, then normalize all concept values between 0 and
1. Fig. 2] showcases qualitative visualizations of the concepts.

Notably, some of the concepts involve object affordances
(upright, alignedyyi;, aligned,.., forward, front, top). For
those, only a subset of the objects are applicable (e.g. a mug
has a front, but a box doesn’t), so we selected object subsets
for each concept accordingly (see App. [VII-A). By default,
the privileged space consists of the object poses, relative pose,
positional difference, and bounding boxes.

We compare PCB to a baseline that learns ¢, directly from
the human queries, without an intermediate low-dimensional
concept. For PCB, we used the low-dimensional concepts
¢; trained using feature and label queries collected with the
confrand and augment active learning strategies together. We
show in Sec. |V| that this was the best performing ¢; with the
overall cheapest type of human input, and results with other
variants of ¢; follow similar trends (see App. [VII-B). We use
the concepts ¢; to label a set of 80,000 randomly generated
training states, resulting in Dy, , then train ¢, using Dy, . Since
the baseline is a PointNet that takes a long time to train, it
is not suitable for active learning, so we train it with label
queries generated with the random strategy. For additional
comparison, we also train the baseline with the label queries
collected by PCB with the confrand and augment strategies.

We train ¢; with each method and a varying number of
queries, and report two metrics: 1) Classification Accuracy:
how well the concepts can predict labels for a test set of states,
and 2) Optimization Accuracy: how well the states induced by
optimizing these concepts fare under the true ¢*.

For Classification Accuracy, we use ¢* to generate a test
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Fig. 3: Classification accuracy on a held-out test data set, for models
trained on a varying number of queries. PCB concepts (orange)
correctly classify at least 80% of the data after the first 500 queries
in most cases. The baseline with random queries (gray) struggles
to perform better than random; when trained with PCB’s actively
collected data (blue), the baseline performs better for the simple
concepts but fails on the last six concepts that involve affordances.

set Dyesy of 20,000 state-label pairs such that they have an
equal number of positives and negatives. This way, we probe
whether the learned concepts perform well on both labels and
don’t bias to one. We measure ¢y,’s accuracy as the percentage
of datapoints in Dy predicted correctly.

For Optimization Accuracy, we sample 1,000 states Sop¢
with a concept value of 0, and use the learned concepts to
optimize them into a new set of states S, . We do so by
finding a pose transform on the moving object that maximizes
the concept value, and use the cross-entropy method [29].
Importantly, since this is happening at test time, we use
the high-dimensional observation of the state o; to perform
the optimization. We evaluate S;,,, under ¢* and report the
percentage of states that are labeled as 1. We present results
for an arbitrarily chosen fixed seed.

B. Qualitative results

Fig. [2] showcases the 9 concepts trained using PCB. For
every concept, we show the anchor object in green (if appli-
cable), together with positive and negative examples of the
concept. For above and abovey, the positive examples above
the anchor are sparse, which could make learning challenging
from a data diversity perspective: if the robot doesn’t query
for enough positive examples, it won’t be able to learn a
meaningful decision boundary for these concepts. In contrast,
near has a balanced mix of positives and negatives, making
it a simpler concept to learn. The remaining six concepts all
involve affordances which are dependent on the object shapes
(e.g. a bowl is upright if its opening points upwards, an object
is atop the kettle is it’s placed above the lid, etc). Thus, to
learn such concepts describing functionality across a plurality
of objects and camera views, a method that learns directly from
point clouds would need large amounts of data to accurately
capture how the concepts relate to all objects’ morphologies.
The figure shows that PCB handles these challenges gracefully.

PCB
100 above

Baseline (Random)
abovey,

—— Baseline (Active)
near

g 0
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_/\/ — e -

E 0
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100 500 1000100 500
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Fig. 4: Accuracy when optimizing object poses based on the learned
concepts (Optimization Accuracy). PCB (orange) produces satisfac-
tory poses for most concepts, as opposed to the baseline (gray and
blue) which sometimes cannot even surpass 10% performance.

C. Quantitative analysis

Fig. [3| shows Classification Accuracy results. Both variants
of the baseline perform well for above, abovey,, and near,
eventually reaching 70% performance. We think this happens
because these concepts only require absolute position infor-
mation, which is easy to infer from just the positions of the
points clouds. The baseline trained on active data from PCB
performs closer to PCB, suggesting that in some cases we may
use the privileged information and low-dimensional concepts
to guide the labeling process of high-dimensional data and
be more sample efficient, without generating additional high-
dimensional data. However, this does not always hold: the
other six concepts involve affordances in addition to positions,
which is much more challenging to capture with limited data.
As a result, neither baseline version can achieve performance
better than random. In contrast, PCB, which is able to generate
thousands of high-dimensional training data points capturing
different object point cloud morphologies, can successfully
learn these kinds of concepts, correctly classifying at least
80% of the test data after the first 500 queries in most cases.
In Fig. @] Optimization Accuracy results tell a similar story.
Our concepts can be optimized successfully with an accuracy
of over 50%, meaning that we would be able to find positions
for objects to satisfy these concepts [9]. Meanwhile, several
baseline concepts have a success rate barely above 10%.

V. ANALYSIS: LEARNING LOW-DIMENSIONAL CONCEPTS
FROM DIFFERENT TYPES OF HUMAN QUERIES

In the previous section, we saw how our method, given a
low-dimensional concept learned from human input, can out-
perform the baseline learning directly from high-dimensional
sensor data. We now analyze what are the best strategies for
learning low-dimensional concepts from human input. We seek
to answer the following: Q1: Does querying via demonstration
— the most informative type of query but also the most
expensive — benefit learning when compared to random label
queries? Q2: Does modifying the privileged information space
via feature queries speed up learning? Q3: Can we choose
label queries — the cheaper version of demo queries — that are
more informative than random via active learning? Q4: How
does labeling noise affect the quality of the learned concepts?
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Fig. 5: Comparing different query and input space strategies. Demno
queries outperform random label for concepts with few positives, and
feature queries improve learning speed.

A. Benefits of Demonstration, Label, and Feature Queries

Our first experiment compares the three types of human
queries across two dimensions: the query selection strategy
and the privileged input space. For the former, while the
robot could randomly synthesize states and ask the human
to label them (i.e. random label queries), for some concepts
such a strategy would rarely find states with positive concept
values. In contrast, demonstration queries allow the human to
select the states themselves, so they can balance the amount of
positives and negatives the data set contains to be informative.
As for the privileged input space, by default it contains many
features that are correlated with one another or irrelevant to
some concepts altogether. These redundant dimensions can
make learning more difficult. Feature queries, with just a few
simple and intuitive questions, can eliminate some dimensions
of the input space that are unnecessary.

To answer Q1 and Q2, we use a 2 x 2 factorial design.
We manipulate the query strategy (random label and demo),
and the input space strategy (feature and no feature). For both
query strategies, we generate a dataset of labeled states as
described in Sec. and simulate human input by sampling
examples randomly for random label or in a way that balances
positives and negatives for demo. The practical difference is
in the positives-to-negatives ratio: while for random label that
may be low for certain concepts (other than near and forward
the mean ratio is 0.08), for demo it is 1. For feature, we
ask three intuitive questions: F1. Does the concept concern
a single object? F2. Does the concept care about the objects’
absolute poses or their relative one? F3. Do the object sizes
matter? F1 discards dimensions from the redundant object
(useful for concepts like upright). F2 gets rid of correlated
features (absolute or relative pose). F3 drops bounding box
information if the concept doesn’t require it.

We compare the learned concept network ¢; to the ground
truth ¢* with a metric similar to Classification Accuracy from
Sec. we measure ¢;’s correct prediction rate for Dyest.

In Fig.[5] we show results with varying amounts of queries
from 100 to 1000. Comparing the solid lines, we immediately
see that, for most concepts, demo queries perform much
better than random label queries. The only concepts where
this trend doesn’t hold are forward and near, which are
concepts where random sampling can already easily find many

Random -==- Confusion Confrand
Random+Augment —— Confusion+Augment Confrand+Augment
100 above abovey, near
Y P— 7
5047 -
100 upright_ alignedyyiz alignedyer
> =z o P,
57 v e z
: = 7
50
100 __forward front top
7 e a— i
75 ﬁ /
50100 500 1000100 500 1000100 500 1000

Number of Queries

Fig. 6: Comparison amongst active labeling and positives selection
strategies. Confrand is the most consistently beneficial strategy, and
Augment boosts performance, especially in low data regimes.
positives. This result stresses that having enough positives
is crucial for learning good concepts. We can also compare
the effect of feature queries: whether we use demo or label
queries, feature queries considerably speed up learning, and
this result holds across all 9 concepts. Another observation
is that the combination of demo and feature queries plateaus
in performance after about 200-300 queries, suggesting that,
although each query requires more human time, the teaching
process altogether might be shorter.

B. Active Query Labeling

In Sec. [V-A] we saw that demonstration queries substan-
tially benefit concept learning when compared to random
label queries. Unfortunately, demo queries are also very time-
consuming to collec which only makes them feasible in
low-data regimes. In this section, we tackle Q3 and explore
whether we can make label queries more informative by
employing active learning techniques, rather than simply ran-
domly selecting them. This way, we can have the benefits of
both informative query generation and easy label collection.

We use a 3 x 2 factorial design where we vary the active
strategy (random, confusion, and confrand) and the positives
selection (augment and no augment). As described in Sec.
IlI} random generates a query state randomly and confusion
picks a state at the decision boundary of the currently learned
concept. We also introduce confrand, which randomly selects
between the two strategies, to balance exploration of new areas
and disambiguation of the current concept. With an augment
positives selection, for every query the method also randomly
chooses whether to exploit the space of positives it has found
so far or just go with the selected active strategy. We use a
batch size of 100. We train ¢; with each strategy and varying
number of queries, and report accuracy on Dyg;.

In Fig.[6] we show results with increasing number of queries
across the 6 total label query selection strategies. Right off
the bat, we see that active learning helps more the harder it is
to find positives. For concepts like forward or near, random
label queries do well because the positive-to-negative ratio is
already high. For all other concepts, however, active learning

'Empirically, an expert user can label 100 queries in 2 minutes, but needs
10 minutes for the same amount of demo queries.
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Fig. 7: Comparison for different labeling noise levels. Our method
can withstand reasonable noise levels around 1-10%

helps considerably, certain techniques more than others. A
general trend is that using augment queries outperforms not
using them, especially in lower data regimes, confirming our
intuition that finding positives earlier on improves learning.
Amongst random, confusion, and confrand, we don’t see a
clear winner for all concepts, but confrand, the combination
of novelty and uncertainty exploration, seems to perform the
best across. It is encouraging to see that the performance can
reach 80% accuracy after the first 500 queries, which would
require a mere 10 minutes of human labeling time.

C. Noise Ablation in Human Query Labeling

Until now, we assumed the simulated human answered the
queries perfectly. As this is not necessarily going to be the
case for novice users, we examine Q4, how labeling noise
affects our concept learning results. We do this by varying
the noise level by 0%, 1%, 5%, 10%, 25%, and 50%. A
“noisy” query has its label flipped. 50% is equivalent to a
random labeler. We train ¢; by adding varying noise levels to
the queries and report accuracy on Dy . Fig. [/| reveals that,
unsurprisingly, the noisier the queries, the worse the learned
concept performs. While unrealistic noise levels like 25% or
50% severely worsen the quality of the learned concepts, our
method seems to be able to withstand lower noise levels.

VI. USING CONCEPTS IN MOTION PLANNING TASKS

We test our learned PCB concepts ¢, on a Franka Panda
robot with a RGB-D camera in motion planning tasks, as
shown in Fig. [I] For each trial, a user selects the concept
to test, and the anchor and moving objects. Given the initial
object placement, the robot’s goal is to compute a new pose
for the moving object that maximizes the concept value with
respect to the anchor, grasp the object, and move it to the
optimized pose. We used unknown object instance segmenta-
tion [36] to segment out the objects, 6-DOF GraspNet [35]] to
generate grasps, and RRT-connect [37] for motion planning.

We optimize a pose such that when applied to the moving
object’s (mean-centered) point cloud it results in a scene
point cloud that maximizes the concept value. We use the
Cross-Entropy Method (CEM) [29] with the cost function
given by the concept value of the moved scene point cloud.
To encourage the model to find object poses at reasonable

orientations, we added a quaternion-angle cost to the CEM
optimization, similarly to the metric used in prior work [38]]:

d(Q17Q2) = )\(1 - <Q1,Q2>)

where ¢, is the pose being optimized, ¢o = I = (0,0,0,1) is
an identity quaternion, and A = 0.001 is manually-tuned.

When optimized, our concept models found good poses,
even on real-world data of previously unseen objects. Since
our method’s performance depends on that of the off-the-
shelf point-cloud segmentation model used, failures may occur
when large portions of the objects are occluded. Moreover, we
focus on generating poses that maximize the concept without
any collision constraints, so the moved objects sometimes
collide with the anchor. In the future, we would fix this by
incorporating these concepts into a planner such as that pro-
posed in [9]], so as to include the robot’s kinematic constraints
directly in the optimization process.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we presented a method for learning relational
concepts with as little expert human interaction is possible.
Our approach quickly learns a concept in a low-dimensional
space, which is used to generate a large data set for training
in a high-dimensional space such as the robot’s sensor space.

While our results demonstrate that our concepts can be used
on a 7-DoF Franka Panda arm operating with real sensor
data, we still need to investigate how concepts taught by real
people would fare. Our noise analysis in Sec. suggests
that limited random labeling noise might not affect the results
too much, but this type of noise might not be a good model for
how people make labeling errors. It could also be interesting
to study the trade-off between learning accuracy and human
burden for different types of queries.

Additionally, while we demonstrated our method in the
context of object relations for manipulation, we are excited
about future extensions to other types of concepts: many-
object concepts (“the cup is surrounded by plates”), order-
ing (“sorted from largest to smallest”), or even functional
relationships (support / concealment). We could extend PCB
to any concepts where privileged information is available at
training time. For instance, if the privileged space contains
poses between two frames, we could learn an acceptable speed
threshold for manipulating objects. A potential limitation is
that the privileged space does become more complex the more
(possibly correlated or irrelevant) information we add to it, so
learning low-dimensional concepts may require more data. Our
results give some evidence that PCB would overall still require
much less data than learning directly from high dimensions,
but more future work would be beneficial.

Finally, it could be worthwhile to study modifications to our
training and query collection procedure to further improve the
quality of the data. For example, we could combine demo
and label queries by “warm-starting” the model with demo
queries and then actively asking for label queries. The robot
could also display examples of the currently learned concept
to assist the person in deciding what new examples to give.
Lastly, we could consider “chaining” learned concepts (“mug
upright and in front of the hammer”).
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APPENDIX
A. Concept Objects

For data generation, we modified the objects in the
ShapeNet dataset [33]] such that they are consistently aligned
and scaled. We selected objects commonly found in tabletop
manipulation tasks, like bowls, cereal boxes, cups, cans, mugs,
bottles, cutlery, hammers, candles, teapots, fruit, etc. (see
Fig. @ The concepts above, abovey,, and near used all the
selected objects because they don’t involve object affordances.
For the concepts that involve affordances, we selected subsets
from the object set accordingly. For upright and top, we
used objects with evident upright orientations: bottles, bowls,
candles, mugs, cups, cans, milk cartons, pans, plates, and
teapots. For alignedy,,;; we used objects that can be hori-
zontally aligned: calculators, can openers, cutlery, hammers,
pans, and scissors. For aligned,.,; we used objects that can be
vertically aligned: bottles, boxes, candles, cups, milk cartons,
and cans. For forward and front we used large enough objects
with clear fronts: hammers, pans, and teapots.
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Fig. 8: We show the well-aligned and scaled ShapeNet objects we
used. We chose objects commonly found in manipulation tasks.

B. PCB Results for Demo Queries

In this section, we expand on the results in Sec. by
showing the case where the human provides the robot with
demonstration queries. We compare PCB to a baseline that
learns ¢, directly from the queries. For PCB, we take the
¢, concepts we trained using both demonstration and feature
queries in Sec. and use them to label a large set of 80,000
training states, resulting in Dg,. Our method then trains ¢y,
using Dy, , while the baseline trains the same architecture using
the original queries we used to learn ¢;. Importantly, both
methods use well-balanced demonstration queries. We report
results on the same two metrics from Sec. Classification
Accuracy and Optimization Accuracy.

Fig. 0] shows Classification Accuracy results. The baseline
actually performs well for above, abovey,,, and near, eventually
reaching 80% performance. We think this happens because
for these concepts it is easy to infer the necessary privileged
information just from the positions of the point clouds. For
example, for near, given the position of the two object point
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Fig. 9: Classification accuracy on a held-out test data set (Classifica-
tion Accuracy), for models trained on a varying number of queries.
Concepts trained using our PCB method (orange) correctly classify at
least 80% of the test data after the first 200 demo queries. Meanwhile,
the baseline (gray) struggles to perform better than random, especially
on the last six concepts that involve affordances.
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Fig. 10: Accuracy when optimizing object poses based on the learned
concepts (Optimization Accuracy). Our PCB method (orange) pro-
duces satisfactory poses for most concepts, as opposed to the baseline
(gray) which sometimes cannot even surpass 25% performance.

cloud centers, learning a relationship between their distance
and the concept value should not require more than a few
samples. The other concepts involve affordances in addition
to position information, which is much more challenging to
capture. As a result, the baseline can barely achieve perfor-
mance better than random. In contrast, our method, which
is able to generate thousands of high-dimensional training
data points, can successfully learn these kinds of concepts,
correctly classifying at least 80% of the test data after the first
200 queries. Note that PCB with demo queries reaches this
accuracy faster than with the label queries from Sec. but
demo queries are more effortful to give than label queries. This
shows the trade-off between human effort and informativeness
we investigated in Sec. [V]

In Fig. {] Optimization Accuracy results tell a similar story.
Our concepts can be optimized successfully with an accuracy
of over 50%, meaning that we would be able to find positions
for objects to satisfy these concepts [9]. Meanwhile, several
baseline concepts have a success rate barely above 25%.
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