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Abstract— Certain forms of uncertainty that robotic systems
encounter, like parametric model uncertainties such as mass
and moments of inertia, can be explicitly learned within
the context of a known model. Quantifying such parametric
uncertainty is important for more accurate prediction of the
system behavior, leading to safe and precise task execution.
In tandem, providing a form of robustness guarantee against
prevailing uncertainty levels like environmental disturbances
and current model knowledge is also desirable. To that end, the
authors’ previously proposed RATTLE algorithm, a framework
for online information-aware motion planning, is outlined and
extended to enhance its applicability to real robotic systems.
RATTLE provides a clear tradeoff between information-seeking
motion and traditional goal-achieving motion and features
online-updateable models. Additionally, online-updateable low
level control robustness guarantees and a new method for au-
tomatic adjustment of information content down to a specified
estimation precision is proposed. Results of extensive experi-
mentation in microgravity using the Astrobee robots aboard
the International Space Station and practical implementation
details are presented, demonstrating RATTLE’s capabilities for
real-time, robust, online-updateable, and model information-
seeking motion planning capabilities under parametric uncer-
tainty.

I. INTRODUCTION

Robots must deal with multiple forms of uncertainty
arising from sources such as environmental disturbances,
unmodeled dynamics, and more. As robots are deployed in
scenarios demanding greater precision and guarantees on
robust performance, it becomes appealing to account for
these uncertainties within the motion planning and control
portions of the autonomy stack. Microgravity robotics pro-
vides a guiding scenario in the form of on-orbit assembly
and payload transportation tasks [1] [2] [3] [4] [5] owing to
a change in parameters such as mass and moment of inertia
while interacting with payloads. A key scenario is trans-
portion of cargo in space station interiors by a robotic free-
flyer operating alongside crew and other spacecraft while
demanding safe execution under conditions with significant
model uncertainty.

For precise execution for safety-critical tasks such as these,
it is often essential to adequately characterize the system.
Moreover, robustness guarantees on the current level of
system knowledge are desirable. However, it is important
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Fig. 1: The Astrobee robotic free-flyer maneuvering around
simulated obstacles using the RATTLE algorithm onboard
the International Space Station. Credit: ESA/NASA

to note the distinction between epistemic (“learnable”) and
aleatoric (“unresolvable”) uncertainties. If a robotic system
can better understand epistemic uncertainties during system
execution, it is logical to want to leverage this improved
model knowledge for future planning and control tasks.
Meanwhile, accounting for prevailing uncertainty levels in
the form of aleatoric uncertainty is an essential component
of providing a form of guarantee on safe performance.

A number of motion planning and control works ad-
dress the planning under uncertainty problem as a robust
or chance-constrained planning problem. Robust planning
and control treats the effects of uncertainty as unwanted,
bounded disturbances, and designs disturbance rejecting
techniques to achieve control objectives in spite of them;
chance-constrained approaches provide probabilistic satisfac-
tion of safety requirements. Robust or chance-constrained ap-
proaches have been proposed by a number of authors [6] [7]
[8] [9], [10]. However, working with assumed, unchanging
uncertainty can lead to overly conservative behavior. Further,
computations in such approaches are not always real-time.

Another body of work attempts to aid estimation and
learning procedures through motion planning, known as
information-aware planning. Within this exists a class of ap-
proaches entirely focused on generating maximally exciting
trajectories for offline system model identification, where the
identification procedure is run in batch after-the-fact [11],
[12], [13].

Some active learning approaches begin to blend system
identification for online model learning with other nominal
goals. For instance, [14] details a POMDP formulation with
covariance minimization in the cost function, and work
on covariance steering, [15] [16] attempts to answer when
adding excitation would be most effective. However, in

ar
X

iv
:2

20
3.

01
54

7v
1 

 [
cs

.R
O

] 
 3

 M
ar

 2
02

2



general the scalability of these methods remains a challenge,
real-time hardware demonstrations are uncommon, and these
approaches do not address some practical details of motion
planning such as dealing with global long-horizon planning.

For the guiding example of microgravity robotics, though
system identification and active learning is a well-researched
topic in the robotics literature, few works have presented
results for microgravity robotics. In [12], the authors used
telemtery data obtained from the ETS-VII satellite to esti-
mate a reduced set of inertial parameters of a space manipula-
tor. Works such as [17], [18] used the Synchronized Position
Hold Engage Reorient Experimental Satellites (SPHERES)
onboard the International Space Station (ISS) as a testbed
for evaluating vision-based navigation and estimation algo-
rithms, estimating properties of a spinning target. Measure-
ments obtained from the ROKVISS manipulator installed
outside the ISS were used for estimation of friction and
stiffness parameters in space [19].

Despite these advancements, a gap exists between ap-
proaches which can handle robustness guarantees, and those
which seek model improvement. Further, motion planning
and control methods often ignore the ability to use online up-
dates of system models for real-time enhancements to on-the-
fly replanning or online-updateable control. The RATTLE al-
gorithm (Real-time information-Aware Targeted Trajectory
planning for Learning via Estimation) was initially pro-
posed to deal primarily with parametric information-aware
motion planning in the context of a complete motion plan-
ning approach [20]. RATTLE, significantly extended in this
work, is combined with low-level online-updateable con-
trol robustness guarantees via robust tube MPC to provide
tracking tube robustness. Additionally, a new information-
weighting method is proposed that automates the assign-
ment of information-awareness in local planning. Finally,
replanning is introduced for the global planner, opening up
greater flexibility in adapting to changing system models
and constraints. RATTLE is demonstrated for the 6 DOF
Newton-Euler dynamics in real-time on microgravity hard-
ware, and extensively validated in a set of experiments on the
International Space Station using the Astrobee robotic free-
flyer [21]. This is the first time that an information-aware
motion planning framework has been evaluated in space to
the authors’ knowledge. This work’s contributions include:
• The complete RATTLE motion planning algorithm,

providing adjustable levels of parametric information-
aware planning with low-level control robustness

• Automatic information-weighting for parameter learn-
ing, tied to current parameter variance levels

• Online-adjustable tube robustness guarantees for low-
level control

• Hardware integration considerations, including practi-
cal improvements to global planning to enable online
replanning

• Results of microgravity hardware experiments using the
Astrobee freeflyer onboard the ISS, demonstrating RAT-
TLE’s real-time performance on resource-constrained
hardware in the space environment

II. PROBLEM FORMULATION

Fig. 2: A sketch of the 6 DOF dynamics of interest, among
a set of ellipsoidal obstacles. A global plan (red), obeys the
translational dynamics and may even be replanned online
if requested. Information-containing local plans operate be-
tween global plan waypoints.

The dynamics of a robotic system with state x ∈ Rn, input
u ∈ Rm, and uncertain parameters θθθ ∈ Rj can be written as

ẋ = f(x,u, θθθ) + wx (1)
y = h(x,u, θθθ) + wy, (2)

where the vector of the measured quantities is y ∈ Rl,
wx ∼ N (0,ΣQ), and wy ∼ N (0,ΣR) where N repre-
sents the Gaussian distribution. Only initial estimates of the
parameters θθθ0 ∼ N (θ̂̂θ̂θ0,Σθ,0) are known.

A goal region Xg is specified, which the robotic system
aims to approach from initial state x0, while respecting input
and state constraints u ∈ U and x ∈ Xfree. A cost function
of the form

J(x,u, t) = g(x(tf ),u(tf )) +

∫ tf

t0

l(x(t),u(t)) dt. (3)

describes trajectory cost where g(x(tf ),u(tf )) is a terminal
cost and l(x(t),u(t)) is an accumulated cost. The motion
planning problem is known to be at least PSPACE-hard,
even in deterministic kinematic problems, and often requires
approximate solutions [22].

A. Rigid Body Dynamics

For the guiding use case of interest, the linear and angular
dynamics for a 6 DOF rigid body expressed in a body-fixed
frame not coincident with the center of mass are[

F
τττCM0

]
=

[
mI3 −m[c]×
m[c]× ICM −m[c]×[c]×

] [
v̇
ω̇ωω

]
+[

m[ωωω]×[ωωω]×c
[ωωω]× (ICM −m[c]×[c]×)ωωω

] (4)

where v, ω ∈ R3 denote the linear velocity and angular
velocity of the original center of mass (CM0), ICM is the
inertia tensor about the center of mass (CM), m is the system
mass, and c ∈ R3 is the CM offset from CM0. F, τ ∈
R3 are the forces and torques applied through the FB body



frame, where F indicates the inertial reference frame [20].
[−]× is used to indicate a cross product matrix. The model’s
parameters, assuming negligible center of mass change and
known principal axes, are θ , [m, Ixx, Iyy, Izz]

>.

B. Obstacles

The obstacle set Xobs is represented as a set of bounding
ellipsoids, E := {cx, cy, cz, rx, ry, rz}, where c∗ describes
the centroid and r∗ describes semi-major axis length. Obsta-
cles and a system frame diagram are as shown in Fig. 2.

III. METHODS

The RATTLE algorithm addresses the planning under
parametric uncertainty problem by tackling both epistemic
unceratinty reduction and aleatoric robustness. The algorithm
can be summarized in four components: (1) a global kino-
dynamic sampling-based planner for long-horizon collision-
free guidance; (2) a receding horizon local planner with
adjustable information weighting (Γ) on system model un-
knowns; (3) a robust model predictive controller with ad-
justable robustness guarantees coupled with; (4) an online
parameter estimation method, in this case an augmented
state extended Kalman filter (EKF). All elements of the
planning and control feature online updateable models—the
most recent parameter estimates are incorporated into the
planner and controller models for improved prediction and
tracking.

These components, illustrated in Fig. 3, are also explained
in detail in a more limited form in [20]. Each module
is detailed individually, with particular attention paid to
augmentations made to RATTLE in this work.

Fig. 3: The RATTLE planning framework, demonstrating
global long-horizon planning via kino-RRT, and shorter-
horizon local planning incorporating information-aware plan-
ning via an adjustable weighting term, γ that can be tied
to parameter covariance. An online-updateable controller
benefits from online robustness model updating.

A. Global Planner

The global-sampling based planner must obey system
dynamics, perform long-horizon planning, and respect obsta-
cle avoidance constraints. Sampling-based planners [23] are
particularly well-suited to this task—a kinodynamic RRT re-
specting the translational dynamics is used for RATTLE [24].
Using an ellipsoidal-on-ellipsoidal representation, efficient
convex collision checking algorithms may be employed for
three-dimensional collision detection [25]. For computational
speed, focus is placed on the translational dynamics of
equation 4 and a motion primitive approach is used to reduce
the branching factor: pre-selected input actions Ump propa-
gated over small timesteps are used to produce the steer
portion of the kino-RRT implementation. This enables global
planning fast enough for replanning using updated dynamical
properties, detailed further in Section IV. As shown in Fig.
2, the global plan (red) produces translational long-horizon
guidance, Pg := {xk,uk}, and is capable of replanning
using updated obstacle and model knowledge.

B. Information-Aware Local Planner

The local planner performs receding horizon planning
between global plan waypoints, denoted in green in Fig.
2. Mid-level planning occurs over a replan period, Tl, with
updated information about robot parameters incorporated at
each local plan computation. Additionally, this planner intro-
duces excitation into trajectories by maximizing a weighted
trace of the Fisher Information Matrix (FIM) [26]. The FIM
essentially quantifies the amount of information contained
by measurements about the parameters of interest. This
enables the robot to perform exploratory motions and collect
informative data that facilitate parameter estimation, balanc-
ing against other system objectives in a quantifiable way
via the cost function shown in equation 5. The discretized
nonlinear trajectory optimization problem solved by the mid-
level planner is

minimize
u

J =

N−1∑
k=0

x>t+kQxt+k + u>t+kRut+k + Γ>diag
(
F−1

)
subject to xt+k+1 = f(xt+k,ut+k,θ), k = 0, .., N − 1

xt+k ∈ Xfree, k = 0, .., N,

ut+k ∈ U , k = 0, .., N − 1,
(5)

where N is the length of the horizon and Q � 0
and R � 0 are positive definite weighting matrices. The
relative weighting term, Γ ∈ Rj , is used to tune the
amount of information content of the trajectory. The output
Pl := {xt:t+N ,ut:t+N−1} is made available for control over
horizon N .

Instead of using heuristics to design Γ(t)’s evolution, this
work proposes a new method of guiding information content
based on the covariance of the estimates, shown in Fig. 4,
where α and β are tuning parameters for tolerance above
a minimum desired covariance, σn,i, and rate of weighting
decay, respectively. In effect, this introduces feedback from
current model knowledge into the information content of lo-
cal plans, until characterization is within a desired precision



tolerance. Weightings and noise floors may also be tweaked
individually per parameter, allowing selective information
content to be assigned.

1: procedure COVARWEIGHT(Σn,Γ0, α, β)
2: Σk+1 ← UpdateCovar(Σk)
3: for ∀i do
4: if σi ≤ ασn,i then
5: γi ← 0
6: else
7: γi ← γi,0 exp

−
βσn,i
σi

Fig. 4: The covariance-based information weighting proce-
dure. Based on a designated noise floor, parameter weight-
ings can be exponentially decreased to within a learning
tolerance. α and β are tuning parameters.

C. Robust Low-Level Control

Robust tube model predictive control (MPC) is used for
low-level robust control of local plans, respecting current
uncertainty levels [27]. Unlike deterministic model predictive
control, which has no robustness guarantees under uncer-
tainty, tube MPC provides a tube robustness certification
that a system will stay within a reachable set Z (mRPI)
of a nominally planned trajectory z̄, under bounded, addi-
tive disturbances wx ∈ W and an ancillary “disturbance
rejection” controller. The nominally planned trajectory is
subject to additional constraints, including tighter input and
control constraints and a guarantee that the nominal state
z̄ ∈ x

⊕
(−Z), where

⊕
is the Minkowski sum. The

ancillary controller takes the form

uanc = Kanc(x− z̄) (6)
u = v + uanc (7)

where v is an input from a nominal constraint-tightened
MPC and x is the true state. The net effect of this control
scheme creates a guarantee that under disturbances wx the
system will remain within a robust tube of states centered
on z̄.

RATTLE uses a linear tube MPC for translational robust-
ness guarantees. Due to the receding horizon nature, updated
model parameters and recomputed Z can be incorporated in
subsequent plans. The MPC provides robustness guarantees
against collisions under the above assumptions. Addition-
ally, uncertainty from current parameter covariance levels
is converted into noise to supplement wx in a simple 95th

percentile evaluation of the current parameter estimates in
the discretized system dynamics, expanding uncertainty box
constraints to include parameter uncertainty,

W :=

{
wx ∈ Rn :

[
I6
−I6

]
wx ≤

[
wmax

wmax

]}
. (8)

A tuned PD controller is used separately for attitude control
in the guiding example [28].

D. Online Parameter Estimator

In order to perform real-time parameter estimation and
model-updating, an extended Kalman filter (EKF) is used in
RATTLE. The EKF propagates the commanded forces and
torques using a locally linearized model of system dynamics,
and compares this result with the state measurements in order
to determine θ ∼ N (θ̂,Σθ). Another sequential estimation
approach can be used if desired, provided it is fast enough
to provide real-time model updates.

IV. RESULTS

The RATTLE algorithm was validated in a high-fidelity
simulator of NASA’s Astrobee robot and in micrograv-
ity hardware demonstrations on the Astrobee free-flyers
aboard the International Space Station. These experiments
demonstrate the benefit of online information-aware planning
in reducing parametric uncertainty and improving estimate
accuracy in real-time, in reducing the conservativeness of
robustness guarantees online, and responding to changing
constraints via replanning. Automatic information weighting
based on parameter covariance levels is also demonstrated,
along with some discussion of the practicalities of hardware
implementation. This is the first use of information-aware
planning on-orbit to the authors’ knowledge, and provides
useful hardware verification of RATTLE’s capabilities in a
mixture of simulation and hardware demos.

Fig. 5: The RATTLE algorithm executing in the 6DOF
Astrobee simulation environment. A global plan is produced
(a), tracked via information-containing local plans (b), and
even replanned online (c) in the presence of new obstacle
information, eventually reaching a goal region (d).

A. Implementation Discussion

The Astrobees (Fig. 1) are cube-shaped free-flying robots
deployed on the International Space Station [21]. With
potential use cases including inspection and payload trans-
portation, Astrobee is currently used as an experimental
microgravity test platform. The Astrobee robot software uses
ROS middleware for communication, with nodes running
on two Snapdragon-based processors. The Astrobee software



Fig. 6: Online parameter estimates are shown, with a σ bound (top). Dashed vertical lines indicate when estimate confidence
reaches shutoff levels and is reflected in the local plan (red). Below, information content is shown (black) against relative
information weightings (red) for each parameter of interest. While parameter weightings are active, information content is
increased. Note periods where information is obtained “for free” from existing global plan requirements for m and Izz .

simulator environment offers the same ROS interfaces as the
hardware and consists of high-fidelity models of Astrobee’s
systems, including propulsion, navigation and effects such as
drag [29].

In addition to algorithmic details, some implementation
novelties were required for the successful use of RATTLE’s
components within the Astrobee software stack, showing
some of the important considerations when moving to hard-
ware. Determination of post-saturation wrenches for use
by the EKF parameter estimator in place of controller-
commanded wrenches was a critical step for estimator con-
vergence, providing actual system inputs to the parameter
estimator. Moreover, state measurements and commanded
wrenches were not necessarily synchronous, and needed to
be chronologically ordered before their use in the estima-
tor. Astrobee’s default localization system is under active
development, and required special care in map-building and
motion constraints to avoid severe pose estimate jumps,
a major challenge for control. Further, the frequencies at
which the local planner and controller components operated
was essential to remaining within designated computational
periods imposed by RATTLE, given in Table 11; ensur-
ing real-time hardware computation is critical. Finally, the
middleware coordination of RATTLE’s components is non-
trivial, and deserves careful consideration to ensure model
updates, planner outputs, and more are on-time and properly
shared.

Multiple external libraries, integrated within the Astrobee
flight software stack, were used on-orbit. The ACADO
toolkit [30] was used for solving nonlinear programming
of the receding horizon planner, and CasADi [31] for im-
plementation of the robust tube MPC. Additionally, Bullet
Physics’ C++ collision checker [32] and autograd [33]
were used for collision detection and automatic differentia-
tion respectively. Highlights of the Astrobee software stack

and other implementation hurdles are discussed further in
[34].

B. Simulation Results

An example of the RATTLE algorithm running in simula-
tion is shown in Fig. 5. Here, RATTLE progresses through
its initial global plan, with yellow kino-RRT tree shown,
with local plans of varying parametric information content.
A global replan is triggered when an “astronaut” obstacle
is inserted near the global plan path, and a new global
plan is computed online, which is tracked by subsequent
local plans to path completion. All executions of RATTLE
follow this general format of global (re)plan generation,
local information-containing trajectory generation, and low-
level robust control tracking; some of RATTLE’s unique
uncertainty-aware components are now discussed in this
simulation context.

Fig. 7: Online updating of the minimum robust positively
invariant set (mRPI), based on updated mass estimates.
Greater precision of estimated parameters can mean less
restrictive control robustness constraints—a phase plot for
the z-axis is shown.



Fig. 8: Information content of an informative and non-informative RATTLE plan on-orbit. Note the increased information
content when parameter learning is explicitly weighed.

1) Covariance-Informed Information Weighting, Online
Parameter Estimation: Fig. 6 shows one of the principal
benefits of RATTLE: online uncertainty reduction through
parameter estimation. The cumulative information content in
the local plan as the robot makes its way from the initial
position, (a) in Fig. 5, to the goal state, (d) is shown at the
bottom of Fig. 6.

Online automatic information weighting adjustment is en-
abled by the methods of Section III-B. Fig. 6 also illustrates
this feature. At bottom, total Fisher information content
(black) for each parameter is plotted alongside weighting
levels γi (red) used for parameter learning in the local plan
cost function. Weighting levels are automatically varied using
the covariance-informed weighting procedure, until they are
turned off entirely once the parameter estimates reach the
designated noise floor, shown by a vertical red line at top.
After this point, explicit weighting on information content is
dropped, reflected e.g., in the plateau of moment of inertia
information. There are two notable exceptions: m and Izz
continue to receive some information content “for free,”
since the global plan continues translating and has a final
z-axis rotation. The net effect of information weighting is
to increase information content above that of otherwise un-
weighted plans, not to remove information content altogether
(which, for m, would mean halting motion).

2) Online Tube Robustness Adjustment: Another key fea-
ture of RATTLE is the incorporation of the latest system
model parameters into the planning and control. Fig. 7 shows
the shrinking minimum robust positively invariant set, Z, as
lower covariance mass estimates are used for its computa-
tion, using Rakovic’s reachable set approximation method
[35]. This results in less restrictive control of the system—
the reachable set decreases as uncertainty values decrease,
reducing the input reserved for the ancillary controller’s
uanc computation, thus allowing for less conservative control
under better knowledge of the model parameters.

C. Hardware Results

1) Online Parameter Estimation: The microgravity study
of RATTLE aimed to demonstrate its capabilities of uncer-
tainty reduction through parameter estimation and real-time
hardware operation of the entire algorithm. The experimental
volume of the ISS was considered to have two large simu-

lated walls in addition to the physical interior, as in (a) of
Fig.5.

The information content corresponding to the commanded
local plans of these two runs, one with information weighting
and one without, are plotted in Fig. 8. It is evident that while
comparable information content for the mass parameter is
obtained in both runs (both must translate to reach the goal),
the information-aware run creates clear exploratory motion
for inertia estimation. The corresponding parameter estima-
tion results are shown in Fig. 9. While both runs result in
comparable mass estimates, more accuracy and precision in
the inertia estimates is obtained with the information-aware
trajectory, as the exploratory motion aids in information
content for online learning.

2) Online Global Replanning, Planning Speeds: The
global online replanning capabilities of RATTLE were also
demonstrated on-orbit. Fig. 10 illustrates the global and local
plans for a replanning run, again with an “astronaut” obstacle
introduced during execution of the original global plan.
Global (re)planning and RATTLE’s other real-time model-
updating components are enabled on hardware by efficient
computation time given the timescales of the dynamics of
interest. Planning/control periods and approximate hardware-
demonstrated values are shown in Fig. 11. Exact processor
details are provided in [21].

V. CONCLUSION

This work introduced an expanded version of the RATTLE
information-aware motion planning algorithm. RATTLE’s
capabilities include automatic assignment of information
content based on parameter covariance levels, online update-
able robust tube MPC to deal with current uncertainty levels
during local plan execution, and connection with a real-time
dynamics-aware global planer with replanning capabilities.
RATTLE was implemented on hardware for the Astrobee
robotic free-flyers and its features were demonstrated in
simulation and in a space robotics microgravity guiding
example. Namely, its abilities to provide parametric uncer-
tainty reduction, online replanning, and online adjustable
robustness guarantees have been shown. This provides a
template for using RATTLE in a variety of robotic systems
operating under parametric and unstructured uncertainties,
and paves the way for autonomous robots to navigate their
environments with greater precision and safety.



Fig. 9: On-orbit parameter estimation results for the non-informative and informative runs. Note that the information-aware
planning enables parameter estimation to continue for longer, resulting in more accurate and less uncertain inertia estimates.
(Note that the parameter estimates shown here are replayed offline using localization data gathered from microgravity
experiments, due to poor hardware tuning of EKF noise values.)

Fig. 10: An on-orbit replan after an “astronaut” obstacle is introduced. Local plans track the revised global plan after
recomputation. The figure at left shows the approximate position of Astrobee on-orbit at the time of the replan.

Component Replan Period [s] Hardware Speed [s]
Global Planner as-needed 0.5− 2
Local Planner 12 2− 7

Controller 0.2 0.05− 0.2

Fig. 11: Replan periods and approximate actual computa-
tional time taken for computation on Astrobee’s Snapdragon
processors on-orbit.

The results presented here have assumed linearity for the
robust tube MPC online updating, leverage a set of four
unknown parameters in the information-aware local planner,
and use the translational dynamics for global planning.
A number of these assumptions are necessary to assure
real-time computational speed; as processor and algorith-
mic enhancements powering these modules mature, various
components of RATTLE can be adjusted to tackle increas-
ingly harder dynamics with greater numbers of unknown



parameters in real-time. Nonetheless, RATTLE has been
demonstrated successfully on hardware for a challenging
nonlinear robotic system with parametric uncertainty and
significant process noise. RATTLE in its latest form of-
fers wide applicability to robotic systems operating under
uncertainty—future work aims to bring information-theoretic
and robust planning techniques using RATTLE’s framework
to a greater set of uncertain robotic systems.1
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