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Abstract—Soft continuum arms have significant potential for
use in various applications due to their extremely high degrees of
freedom. For example, these soft arms can be used for grasping
and manipulating fragile materials in the deep sea or carrying a
human to rescue in unstructured environments. However, in these
situations, the environment is often dark and visual cues are not
always usable. Therefore, these arms must estimate their pose from
proprioceptive sensors to control their behavior and execute their
tasks in dark places. Estimating the pose in a dynamic situation
is still challenging because of the arms’ high dimensionality and
the complex structural changes in the body shape. Therefore, this
study demonstrates a novel method for estimating the pose of
proprioceptive bending sensors using recurrent neural networks
(RNNs). In particular, an RNN framework known as deep reservoir
computing was used for this purpose. Results from experiments
using an octopus-inspired soft robotic arm clearly indicate that the
proposed method significantly outperforms existing methods using
long short-term memory models or linear models. We expect that
our proposed method will enable behavioral control of these arms
in dark places such as the deep sea, space, and inside the human
body in future applications.

Index Terms—AI-based methods, control, learning for soft
robots, modeling.

I. INTRODUCTION

A SOFT robotic arm changes the entire continuum-body-
pose in a continuous, complex, and varied manner. A soft

robotic arm has great potential for use in a variety of applications
due to its extremely high degrees of freedom [1]. Possible
applications include grasping and manipulating fragile materials
in the deep sea or carrying humans [2] to rescue in unstructured
environments [3], [4]. Therefore, the robotic arm must often
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estimate its pose from proprioceptive sensors to execute their
tasks in dark places. Estimating the entire continuum-body-pose
of a soft robotic arm is currently a challenging task because
of its high dimensionality and the fact that complex structural
changes in the body shape often require many embedded sensors.
Therefore, in this study, we aim to develop a novel method for
estimating the entire continuum-body-pose of a soft robotic arm
for various patterns of control inputs and movements.

A soft robotic arm is often driven at the base of the arm,
generating passive body dynamics that is largely affected by the
history of the motor commands [5], [6]. Therefore, recurrent
neural networks (RNNs) that can deal with memories of past
inputs are suitable for estimating the pose. In this study, we
present a method to estimate the center line of the soft robotic
arm as representative of the pose from the outputs of the bend
sensors using echo state networks (ESNs) of reservoir computing
(RC) as a type of RNN [7], [8], [9]. In particular, we make use of
an architecture known as deep reservoir, which aligns multiple
reservoirs in a feed-forward manner [10]. In general, RC can be
trained stably and quickly, and accordingly, it is computationally
inexpensive, making it suitable for physical implementations for
edge computing [9], [11].

The contribution of this work is the proposal of a method
for estimating the continuum-body-pose of a soft robotic arm
from embedded bending sensors using an RC framework. This
paper is organized as follows: Section II summarizes related
research; Section III introduces the methods used for continuum-
body-pose estimation, Section IV describes the experiments,
and Section V discusses the comparative experiments. Finally,
Section VII concludes the manuscript.

II. RELATED WORKS

The pose of a soft robotic arm can be estimated using embed-
ded proprioceptive sensors if the relationship between the output
of the sensors and the resultant pose have been revealed. This
forms a type of indirect sensing task and learning from these
relationships from the data has often been done using machine
learning approaches [12], [13], [14].

Soter et al. proposed a method for predicting the visual
information of an octopus-inspired soft robotic arm from bend
sensors integrated into the soft body, using a combination of
a stacked convolutional autoencoder (CAE) and an RNN [15].
This method predicts the visual images of the octopus-inspired
soft robotic arm from the bend sensors. However, their method
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trained and tested the CAE and RNN using only one pattern
of arm motion specific to a single input series. Therefore, esti-
mating the pose of a soft robotic arm, in general, may require
additional techniques when the robot receives different patterns
of input commands and executes various motions.

Thuruthel et al. presented a method for the real-time per-
ception of a soft actuator using embedded bending sensors
and RNNs [12]. Their method predicted the touching force on
the actuator and the tip position from: the output of the soft
sensors, the input pressure to the actuator, and the current state
of the long-short term memory (LSTM) network. Although this
method predicted the tip position of the soft actuator when it bent
in one direction, complex changes in the shape of the soft robotic
arm, such as bending multiple times, were not considered in this
method.

Tariverdi et al. proposed a method for predicting the dynamics
of soft robotic arms using RNNs [16]. A kind of soft robotic arm
can be used for closed-loop applications using their method,
which generates force and torque in the middle part of the arm
and controls the movement of the arm. However, their method
is only applicable for specific settings of a soft robotic arm, and
it cannot be extended to the wholly passive dynamics of a soft
robotic arm directly, which is the focus of this study.

Van Meerbeek et al. developed sensors made of internally
illuminated elastomer foam for soft robot proprioception [17].
Optical fibers transmitted light into the foam and received dif-
fuse waves from internal reflection. From the diffuse reflected
light, machine learning models detected the deformation type
from four different types: clockwise rotation, counterclockwise
rotation, bent up, or bent down. These models also estimated
the magnitude of the deformation type. Although these models
detected the type and magnitude of the deformation, the con-
tinuous change of the center line of the soft robotic arm in a
complex manner was not considered.

In contrast to these methods, our method estimates the center
line of the soft robotic arm driven at the base from embedded
bending sensors, which can change in a complex manner, by
receiving multiple patterns of input commands.

III. METHOD

A. Problem Formulation: Continuum-Body-Pose Estimation

A soft robotic arm was immersed in the water tank for
measurements as shown in Fig. 1. The soft robotic arm used
in the present study was 447 mm long, made of silicone rubber
(ECOFLEX 00-30 from Smooth-On, Inc.), equipped with ten
flexible bending sensors (Flexpoint Sensor Systems, Inc.) em-
bedded in the robot, and driven by a servo motor (Dynamixel
RX-64, ROBOTIS) placed on the base. These bending sensors
are light and flexible such that they do not affect the movement
of the soft robot. The size of the tank is 1000x500x500 mm
(WxDxH). Further details are described in [5], [18], [19]. A
computer sent the target joint angle to the motor as a set of input
commands and received a joint angle of the motor from the servo
motor.

The input to the neural networks for the pose estimation
comprised of twelve components including the target joint angle,

Fig. 1. Schematic representing the overall strategy of our experiments. With
this schema, we aim to implement a continuum-body-pose estimation from
embedded bending sensors using reservoir networks.

Fig. 2. Image and schematic illustration of the points of the center line. The
number of the point was 1000. We set the Y position of the starting points, and
its X position was calculated from the image area of the arm and the Y position.

actual joint angle, and outputs of the ten bending sensors. A
vector u ∈ RNu represented the input, where Nu(= 12) is the
number of variables of u.

A camera on the side of the water tank captured the mo-
tion of the arm. As shown in Fig. 2, the L-point sequence
(r1, r2, . . . , rL) was extracted from the captured video im-
age, where rk = [Xk, Yk]

� is a vector that represents the
position of the k-th point counted from the base to the
tip. The center line of the soft robotic arm was represented
as y = [X1, Y1, X2, Y2, . . . , XL, YL]

� ∈ RNy (Ny = 2L,L =
1000). The length of the arm in the video images is 110 px,
which means 1 px represents 4 mm. Note that the points of the
center line are often located between image points, and Xk and
Yk are not integers.

Two types of signal were used for input commands. The target
joint angle of the motor was the control input, and its scale was
normalized using the maximum angle as described in the final
part of this subsection. The first was a random input of −1 and
+1 (Random Condition) from a uniform probability distribution
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and determined in an independent and identically distributed
(i.i.d.) condition. The input was changed at every τ timesteps.
The time length τ was set to 5, 11, and 20 timesteps [5], [18].
The second type of command was a superimposed sine wave
(Sine Condition) [19]. The input at the timestep t is

It = 0.2 sin

(
2πf1

t

τ

)
sin

(
2πf2

t

τ

)
sin

(
2πf3

t

τ

)
, (1)

where (f1, f2, f3) is set to (2.11, 3.73, 4.33), and τ is set to
100, 200 and 300 timesteps, respectively.

Note that the input is independent from its past inputs in
the Random Condition, because the binary sequence of the
random input command is i.i.d., whereas the input had a temporal
correlation in the Sine Condition.

The scale of the control input, angle, and positions were
changed as u = uraw/cu, where uraw are the raw data and cu
is a constant for scaling, respectively. The cu of the control
input was same to cu of the angle and different from cu of the
positions. The cu of the control input and the angle were set to
the maximum angle. The cu of the positions was set to 700 px,
which is approximately the maximum value of Xk and Yk. The
samples do not have a unit after scaling.

B. Center Line Extraction From Video Images

From the captured video image of the robotic arm, y, the
point sequence representing the center of the soft robotic arm,
was extracted as follows (details can be found in [20]). Note that
the extracted center line was used as the target data and for the
evaluation.

First, the basal point r1 = (X1, Y1) is estimated. Initially, the
raw image is binarized, and the region of the object Ω is ex-
tracted from the binarized image. Next, the minimum Euclidean
distance field D(x)(x ∈ Ω) is calculated from the contour of Ω.
Based on D(x), r1 is estimated. Note that we set Y1 manually
in our setup, and X1 was calculated from Y1 and D(x).

Second, the tip point rL = (XL, YL) is estimated. First, the
speed vector field is calculated as

F (x) = exp (αD(x)), (2)

where α is a constant value. We set α = 0.5. Next, a closed
curve Γ propagates the normal curve to itself with speed F (x)
from r1. The traveling time field T (x) denotes the time when Γ
passes over x. Assuming a special case in which the wave front
moves in one direction, F (x) and T (x) are calculated as

|∇T (x)|F (x) = 1. (3)

The local maximum point of T (x) was selected as rL.
Finally, the L point sequence {ri}(i = 1, . . . , L) distributed

at regular intervals on the center line are extracted by connecting
r1 and rL. The curve C that minimizes the accumulated value
of cost function U is

C := argmin
∫
C

U(C(s))ds, (4)

U := exp (−αD(x)) = (F (x))−1. (5)

A point sequence {qi}(i = 1, . . . , L) on the minimum cost path
is determined by backtracking along a gradient∇T from rL until
r1 is reached. The sequence {ri} are calculated by smoothing
{qi}.

C. Reservoir Computing System

In our experiments, we used a deep reservoir computing
framework that aligns multiple RNNs in a feed-forward manner.
First, we briefly explain the basic settings of a single-reservoir
computing system in this section. We consider ESNs with Nu

inputs, Nx reservoir neurons, and Ny output neurons. The
middle layer receives the input u and is referred to as the
reservoir. A vector x ∈ RNx represents the state of the nodes in
the reservoir. The reservoir has weight matricesWin ∈ RNx×Nu ,
W ∈ RNx×Nx , and Wout ∈ RNy×Nx . The state transition of x
at the discrete time t is

xt+1 = tanh(ρWxt + kinWinut+1), (6)

where kin is scalar and ρ is the spectral radius ofW , respectively.
The output of the reservoir is

y = Woutx. (7)

The initial weights in Win, W , and Wout were randomly deter-
mined using a uniform distribution in (−1, +1). Only the matrix
Wout was trained using back propagation with a loss of the mean
square error (MSE). MSEs were calculated as (1/N)ΣN−1

t=0 ||ε||2,
where ε = y − ŷ is the vector of prediction errors, ŷ is the
actual position, y is the predicted position, and N is the number
of samples (N = 500). The parameters ρ and kin were subse-
quently optimized using a grid search and back propagation, as
described in [21], [22], where the grid search is applied to set the
initial values of parameters to start back propagation. We tested
kin = 10k (k = −4.0, −3.5, . . . , 1.0) and ρ = 0, 0.2, . . . , 1.2
when using a grid search. The parameter p ∈ {kin, ρ} is updated
as

pt+1 = pt − kp
∂Et+1

∂p
, E =

1

2
||ε|| (8)

where kp is scalar. The gradient ∂E/∂p is calculated as

∂xt

∂ρ
= tanh′ (ρWxt−1 + kinWinut) .∗

ρW
∂xt−1

∂ρ
, (9)

∂xt

∂kin
= tanh′ (ρWxt−1 + kinWinut) .∗
(
ρW

∂xt−1

∂kin
+Winut

)
, (10)

∂Et+1

∂p
= −ε�t+1Wout t+1

[
∂xt+1

∂p
;0u

]
, (11)

where tanh′ is the derivative of tanh, 0u is a zero vector, and
.∗ denotes component-wise multiplication of two vectors, re-
spectively. We set the learning rate, the number of epochs and
the batch size for back propagation to 0.001, 100, and 1000,
respectively. The model was trained using an Adam optimizer.
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Fig. 3. Deep echo state network with a two-layered setting.

D. Deep Echo State Networks With a Two-Layered Setting

We speculated that using variables related to the pose of a
soft robotic arm to estimate the pose may increase the accuracy
of the pose estimation. Any points within the point sequence
of the center line were expected to depend on each other under
certain relations. For example, a point should be between its two
neighbors. Thus, we established a working hypothesis that using
the partial information of the center line positions may increase
the accuracy of the estimation of the entire center line positions.
Based on this consideration, we used partially predicted center
line positions, control inputs, and sensor outputs to estimate the
pose.

We introduce a deep ESN for our experiments, which is a
type of deep reservoir architecture with two-layered settings, as
shown in Fig. 3. As shown in the figure, reservoir1 estimates
the partial information of the center line positions, and reser-
voir2 estimates the entire center line positions from the partial
information. We selected Lsub points at equal intervals to be
predicted byu and to predicty. The vector ysub ∈ RNsub(Nsub =
2Lsub) represents the positions of the points. Our proposed
method trains a reservoir fpre (referred to as reservoir1) that
approximates ysub = fpre(u) and fpost (referred to as reservoir2)
that approximates y = fpost(usub), where usub = [u�,y�

sub]
� is

a vector. Reservoir1 and reservoir2 are trained by the same
method described in Section III-C. The ρ and kin of reservoir1
are optimized, and Wout of the reservoir is trained first. Next, ρ
and kin of reservoir2 are optimized, and Wout of the reservoir is
trained. We set the number of nodes in reservoir1 and the number
of nodes in reservoir2 to 500.

To determine the appropriate setting of ysub, we changed
Lsub and compared the time-and-position averages of the
MSEs, as shown in Fig. 4. The time-and-position average is
ΣNt

t=1Σ
L
k=1|Xk(t)− X̂k(t)|/L/Nt, where Xk(t) and X̂k(t) are

the estimated and actual X positions, respectively, of the kth

point at the timestep t and Nt(= 500) is a number of the
timesteps. The MSEs of the “Two layered” system were calcu-
lated using deep echo state networks with a two-layered setting,
as shown in Fig. 3. The MSEs of the “One layered” system were
calculated using one ESN with 1,000 nodes to investigate the
effects of using deep ESNs. The MSEs of the “Lower bound”
system were calculated by reservoir2 using ŷsub to investigate

Fig. 4. The time-and-position averages of the MSEs when changing the
number of intermediate points Lsub. The red dots show the minimum MSEs
obtained using the two-layered ESNs.

the lower bound of the MSEs in cases where reservoir1 estimates
ysub without error, where ŷsub is the actual ysub.

Fig. 4 shows that the MSEs of the “Two layered” system
were smaller than those of the “One layered” system in the
most cases. The figure also shows that the MSEs of the “Lower
bound” system decreased as Lsub increased, but the changes
of the MSEs of the “Two layered” system were small in most
cases, which was unexpected. The reason why the change of
MSEs of “Two layered” system were small can be speculated
that the errors of reservoir1 increases as Lsub increases and the
prediction errors of reservoir1 cause the errors of reservoir2 in
the system. From these results, we used Lsub = 3 throughout the
paper.

IV. EXPERIMENT

The measured samples in a condition were divided into 1,000,
15,000, 500, and 500 samples, which correspond to the samples
used for washout, training, validation, and testing, respectively.
The washout was the initialization of the ESN. The predictions
were evaluated by MSEs using test samples.

The time series of the measurement and learning results are
shown in Fig. 5. Fig. 5 shows the motor command and angle, the
response of the bend sensors, the activation of the nodes in the
reservoirs, the actual X positions of the sequence, the predicted
X positions of the point sequence, and the difference between
the actual X and the predicted X .

The graph of the command to the motor and the angle in the
Random Condition with τ = 11 shows that two target angles
were given and that the angle of the motor converged to that
target angle during the time τ = 11.

The graphs of the nodes in reservoir1 and reservoir2 show
that the different nodes were synchronized in the Random
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Fig. 5. Timeseries. (a) Random τ = 11, (b) Sine τ = 300. From top to bottom: the motor command and angle, the response of the bend sensors, the activation
of nodes in the reservoir, the predicted X positions of the point sequence, the actual X positions of the sequence, and the difference between the predicted X and
the actual X . The points are also shown in Fig. 2. In Random τ = 11, the spectral radius of the reservoir1 ρ = 1.43[10−5] and that of the reservoir2 ρ = 0.74. In
Sine τ = 300, the spectral radius of the reservoir1 ρ = 6.50[10−5] and that of the reservoir2 ρ = 2.77[10−7]. Note that the response of some nodes is small in
Sine τ = 300, which are the node 1-1, node 1-2, node 2-2, and node 2-3, but these nodes respond to the input and affect the output.

Fig. 6. Snapshots. (a) Random τ = 11, (b) Sine τ = 300. The snapshots show the actual center lines and predicted ones every 5 steps. See also Supplementary
Videos.

Condition with τ = 11. The spectral radius of the reservoir1
ρ = 1.43[10−5] < 1 and that of the reservoir2 ρ = 0.74 < 1 in
the condition and the response of these reservoirs has the echo
state property. Thus, the generalized synchronization would
appear [23], [24].

The graph showing the response of the bend sensor and the
X position of the points on the center line shows the effect of
the input propagated from the base to the tip.

Lastly, the prediction error figure shows that a large error
occurred at the tip. This may be because the soft robotic
arm was driven from the base, so the state of the location
far from the base tends to be uncertain in relation to the
input, whereas the location near the base could be reliably
predicted.

Fig. 6 shows the snapshots of the predicted center line along-
side the actual one. The snapshots demonstrate that the learned
model was able to predict the center line positions from the base
to the tip, even when the arm bent in multiple directions (see
also the Supplementary Movies).

V. ABLATION STUDY

A. Type of Input Commands

In both the Random and Sine Conditions, the input changed
as the value of τ changed, the behavior of the soft robotic arm
changed, and the accuracy of the pose estimation changed. Thus,
we compared the prediction accuracy for different inputs.



TANAKA et al.: CONTINUUM-BODY-POSE ESTIMATION FROM PARTIAL SENSOR INFORMATION USING RECURRENT NEURAL NETWORKS 11249

TABLE I
MSE OF DIFFERENT INPUT. mean± std

TABLE II
MSE OF DIFFERENT METHOD. mean± std [10−3]

The means and standard deviations of the MSEs are shown
in Table I. The prediction errors were larger in conditions with
a smaller τ = 5 in Random Conditions. This could be because
if the input frequently changes with a smaller τ , the pose of the
arm tends to be affected by the older control input. In such a
case, a longer memory is needed to estimate the pose. Thus, it
is more difficult to estimate the pose of a soft robotic arm with
a smaller τ than with a larger τ in the Random Conditions. The
size of τ does not relate to the size of the memory to estimate
the pose in the Sine Conditions.

The errors in the Sine Conditions were smaller than those in
the Random Conditions. This may be because the superimposed
sine wave input in the Sine Conditions had temporal correlations
and thus there was less uncertainty in the state.

B. Type of Regression

To evaluate the effects of nonlinear regression and the echo
state networks, we compared the results of ESN (ESN) with
those of the LSTM model (LSTM) and the linear model (Linear)
in the Random conditions. For the linear model, the training data
were approximated by the least-squares method. In the LSTM,
the learning rate was set to 0.001, the number of intermediate
layers was set to 1, the number of iterations was set to 20,000,
and the number of nodes was set to 1,000. The model was trained
using an Adam optimizer. These parameters of LSTM models
were optimized in validation of the τ = 11 conditions.

The means and standard error deviations of the MSEs are
shown in Table II. For all τ conditions, the errors of LSTM were
smaller than those of Linear, and those of ESN were smaller
than those of LSTM. This suggests that the target function was
approximated more accurately with nonlinear regression (ESN
and LSTM) than with linear regression (Linear) and the errors
of ESNs were smaller than those of LSTM for our conditions.

Training models of Linear, LSTM, and ESN in the τ = 11
conditions took 0.01 s, 1716 s, and 661 s, respectively. The mean
time of predicting 100 times using models of Linear, LSTM, and
ESN in the conditions were 0.001 ms, 0.05 ms, and 0.05 ms,
respectively. These results indicate that pose estimation using
each model is fast enough to be used in real-time application.
ESN learns the task faster than LSTM by updating kin, ρ, and
Wout while LSTM changes all the weights of networks.

TABLE III
MSE OF GENERALIZATION. mean± std [10−3]

Fig. 7. The time averages of the MSEs when using only each bend sensor.
Circles represent positions with the minimum error. The points are shown in
Fig. 2.

C. Generalization

To clarify whether one set of the proposed models could
estimate the pose of the soft robotic arm which receives control
inputs with varying τ , the models were trained by including
data obtained in different τ conditions. ESN, LSTM, and linear
models were used as the models and compared. The models were
trained using training samples from the Random Condition with
τ = 5, τ = 11, and τ = 20, and were tested using test samples
under these conditions. LSTM models and linear models were
trained as described in the previous sub-section.

The means and standard deviations of the MSEs are shown in
Table III. The table shows that the errors of LSTM were smaller
than those of Linear and those of ESN were smaller than those
of LSTM. This result indicates that ESN can estimate the body
pose of different input types with smaller errors than the Linear
and LSTM models.

D. Pose Estimation Using One Bend Sensor

To investigate the contribution of the number and locations of
the bending sensors in the soft arm to estimate the continuum-
body-pose, we compared the prediction accuracy using only the
outputs of a single bend sensor for u in the Random Condition
with τ = 11.

Fig. 7 shows the time average of the MSEs of Xk when using
all sensors, Sensor 1, Sensor 3, Sensor 5, Sensor 7, and Sensor
9, respectively. Sensor 1 is near the base and Sensor 9 is near the
tip. This figure shows that the position with the minimum error
moved from the base to the tip as the conditions changed from
predicting based on the bend sensor at the base to predicting
based on the bend sensor at the tip. This outcome suggests that
each sensor provides the best estimation of the position nearest
its embedded location in the arm. The figure also shows that the
error in the tip position predicted by the sensor near the base
was smaller than the error predicted by the sensor at the tip.
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The reason why the MSEs using Sensor 1 near the base was
smaller than those using Sensor 9 near the tip may be as follows.
The motor on the base region moves the arm based on the control
input. The movement of the arm is propagated from the base
to the tip with a particular time delay. The control input de-
termines the future pose of the arm. Sensor 1 near the base
can receive the information of the current control input accu-
rately from local bending of the arm. The RNNs can deal with
memories of past inputs, and thus, they can estimate how the
arm behaves in the tip region. However, Sensor 9 near the tip
receives the past information of the control input. As such, it
is difficult to estimate the going process in the base region of
the arm currently. Furthermore, the information regarding the
propagated control input along the arm would decay because of
the perturbation from the waves in the water.

Interestingly, the MSEs of the 100th–500th positions using
Sensor 1 were roughly the same as those of the MSEs using all
sensors. This suggests that embedding a few bending sensors
into the optimal locations of the soft robotic arm enables the
estimation of the continuum-body-pose with approximately the
same accuracy as embedding ten bending sensors.

E. Future Pose Estimation

The effects of the input commands appear at the base of the
soft robotic arm at first, and move from the base to the tip, as
shown in Fig. 5. Thus, the positions of the points far from the
base of the soft robotic arm may be mainly determined by the
past input commands and the past states, and the future pose
may be estimated from the current and past input commands
and states. To confirm whether the proposed model can estimate
the future pose of the robot, we trained ESNs to predict the pose
after i-steps (i = 0, 1, 2, 4, . . . , 128) in Random Conditions.

Fig. 8(a) shows the time average of the MSEs of Xk when
predicting the pose at i steps in the future. This figure shows
that the position with the minimum error moved from the base
to the tip as the far future positions were predicted in the
i = 0, 1, 2, 4, 8, 16 conditions. This is because the future input
is randomly determined, and the future tip position is determined
by the propagation of the current input from the base.

Fig. 8(b) shows that MSEs were saturated when predicting
the pose after 64 steps. This indicates that the soft arm retains
information about the previous inputs (approximately 64 input
commands) in its state, which makes it possible for the external
networks to predict its state only from the input stream within a
certain range of time.

VI. DISCUSSION

The experimental results indicate that ESNs can estimate the
continuum-body-pose of a soft robotic arm using embedded
proprioceptive sensors. Pose estimation from partial observation
enables the soft robotic arm to execute its tasks in dark places
such as the deep sea [2], [25], space [26], and inside a human
body [27]. The results of our ablation study can contribute to
the development of a soft robotic arm with pose estimation for
manipulation and locomotion in a dark place.

Fig. 8. (a) The time averages of the MSE when predicting future pose. Circles
represent positions with the minimum error. (b) The time-and-position averages
of the MSE for each future prediction step. The points are shown in Fig. 2.

In medical applications, a soft robot (a continuum robot) can
be used for ophthalmic surgery [28], [29], single-port access
surgery [30], [31], arthroscopy [32], and colonoscopy [33].
Although many medical soft robotic arms have been developed,
the development of a method for shape sensing (i.e., pose esti-
mation) is still one of the main challenges for such robots [27].
Thus, our method for estimating the continuum-body-pose can
contribute to a soft robot for medical applications.

In this study, the arm is moved with one motor in a plane.
Using multiple motors enables the arm to move in a 3D space.
In addition, attaching bending sensors to different directions on
the circumference facilitates our pose estimation scheme of the
arm to be workable in a 3D space.

Our approach can be extended in several ways. For example,
although our final goal includes manipulating objects with a soft
continuum arm, in this study we have only tested our scheme
for passively driven cases, with no interaction or contact with
external objects during movement. By adding training data and
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including cases in which a soft robotic arm contacts external
objects, our approach would be applicable in a straightforward
manner for such cases.

Another direction would be to investigate the optimal net-
work architecture for the RNN. For example, in the current
study, our architecture outperformed the conventional LSTM.
We speculate that this is due to the limited number of training
datasets obtained in our experiments. When the training data
is limited, or if there is a limit to the time spent for training
(which is frequently the case in soft robotic applications) then
RC is beneficial because there are fewer parameters to be tuned
compared to the conventional LSTM. However, there may be
other situations in which LSTM works better. Furthermore, there
still exist many free parameters to be investigated for the setting
of deep ESNs. Although we used a two-layered deep ESN for
our experiments, the number layers for this architecture or the
training scheme for it have many variations, and these variations
should be tested according to each application scenario so that
the appropriate setting can be selected.

VII. CONCLUSION

This letter presents a method for estimating the continuum-
body-pose of a soft robotic arm using embedded proprioceptive
sensors and validates this method experimentally. Our future
work will be to investigate the optimal network architecture for
the RNN and to develop a soft robotic arm using a method for
manipulation and locomotion in dark places.
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