
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022 1

Monte-Carlo Robot Path Planning
Tuan Dam1, Georgia Chalvatzaki1, Jan Peters1 and Joni Pajarinen1,2

Abstract—Path planning is a crucial algorithmic approach
for designing robot behaviors. Sampling-based approaches,
like rapidly exploring random trees (RRTs) or probabilistic
roadmaps, are prominent algorithmic solutions for path planning
problems. Despite its exponential convergence rate, RRT can only
find suboptimal paths. On the other hand, RRT∗, a widely-
used extension to RRT, guarantees probabilistic completeness
for finding optimal paths but suffers in practice from slow
convergence in complex environments. Furthermore, real-world
robotic environments are often partially observable or with
poorly described dynamics, casting the application of RRT∗ in
complex tasks suboptimal. This paper studies a novel algorithmic
formulation of the popular Monte-Carlo tree search (MCTS)
algorithm for robot path planning. Notably, we study Monte-
Carlo Path Planning (MCPP) by analyzing and proving, on
the one part, its exponential convergence rate to the optimal
path in fully observable Markov decision processes (MDPs),
and on the other part, its probabilistic completeness for finding
feasible paths in partially observable MDPs (POMDPs) assuming
limited distance observability (proof sketch). Our algorithmic
contribution allows us to employ recently proposed variants
of MCTS with different exploration strategies for robot path
planning. Our experimental evaluations in simulated 2D and 3D
environments with a 7 degrees of freedom (DOF) manipulator,
as well as in a real-world robot path planning task, demonstrate
the superiority of MCPP in POMDP tasks.

Index Terms—Planning under Uncertainty, Motion and Path
Planning, Planning, Scheduling and Coordination

I. INTRODUCTION

ROBOT path planning refers to the process of finding
a sequence of configurations that lead a robot system

from a starting configuration to a goal configuration without
violating task constraints. Path planning is a crucial com-
ponent in robotics [1], autonomous driving [2] and other
domains such as surgical planning, computational biology, and
molecules [3]. In robotics, path planning is an integral tool for
manipulation tasks with robotic manipulator arms [4]–[6] and
mobile robots [7]–[9].

Due to the redundancy of robotic arms and the complexity
and constraints of real-world tasks, sampling-based approaches
yielded significant results [10], [11]. Among the different
algorithmic contributions [1], [12]–[14], RRT∗ [15] is a widely
used method that ensures finding the optimal path with proba-
bilistic completeness guarantees [16]. While RRT∗ is effective

Manuscript received: February, 24, 2022; Revised May, 26, 2022; Accepted
July, 23, 2022. This paper was recommended for publication by Editor Hanna
Kurniawati upon evaluation of the Associate Editor and Reviewers’ comments.
This project has received funding from the German Research Foundation
project PA 3179/1-1 (ROBOLEAP), and the Emmy Noether Programme
(#448644653). (Corresponding author: Tuan Dam.)

1Department of Computer Science, Technische Universität Darmstadt,
Germany

2Department of Electrical Engineering and Automation, Aalto University,
Finland

{tuan,georgia,jan,joni}@robot-learning.de
Digital Object Identifier (DOI): see top of this page.

Selection Expansion

Simulation Backup

Start

Goal

MCPP node

Maximum step size

Chosen edge

Backpropagate

Rollout

MCPP edge

New added node

Fig. 1: Four stages of MCPP planner to traverse from the initial position (in
green color) to the goal position (in blue color).

Start position

Goal position

The bunny

Fig. 2: Demonstration of path planning using MCPP in a robotic disentangling
task. A 7-DOF robotic KUKA arm tries to extract an object from the cardboard
box through the hole in the back of the box. The robot does not use any sensors
except for proprioception, making the task partially observable. Therefore,
the task requires advanced MCPP-based path planning that takes information
gathering about the environment into account. We put a limit to prevent the
robot arm to move the hand up, therefore, the robot arm has to find the path
from the start position on the left side to the goal position on the right side
inside the box.

in solving path planning tasks in fully observable MDPs,
real-world robotics applications are characterized by partial
information, casting their settings into POMDP problems.
In the real world, robots should make decisions based on
information from laser sensors [17], camera images [18],
and sensory feedback [19], which generally contains noise,
and subsequently makes it hard for planners such as RRT∗.
Therefore, robot path planning under uncertainty [20]–[23] has
become one of the critical topics in the robotics community
and remains an open research challenge.

This work proposes an algorithmic formulation to path
planning problems based on the popular MCTS algorithm.
We argue that the exploration-exploitation properties of MCTS
algorithms are essential for robotic path planning in POMDPs,
and they can outperform sampling-based planners like RRT∗

that greedily explore the state-space. To this end, we formulate
an MCPP algorithmic framework that we analyze theoretically

ar
X

iv
:2

20
8.

02
67

3v
1

 [
cs

.R
O

]
 4

 A
ug

 2
02

2

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

and provide proofs of convergence for the MDP and POMPD
settings. In particular, when applying the upper confidence
bounds for Trees (UCT) algorithm [24], we can guarantee
the exponential convergence of MCPP to optimal paths in
MDP problems. Crucially, we extend our theoretical analysis
to prove the probabilistic completeness of MCPP in POMDP
problems assuming limited distance observability. To the best
of our knowledge, this is the first work to provide the the-
oretical analysis for MCTS in both MDP and POMDP robot
path plannings. We continue by proposing different exploration
strategies in MCPP for robotic path planning. In particular,
we build on top of our prior work on power-mean UCT
(Power-UCT) [25] and convex regularization with Tsallis En-
tropy Monte-Carlo Planning (TENTS) [26], integrating them
in MCPP. We provide various experimental evaluations of
MCPP, initially in MDP environments for completeness and
thereafter in challenging POMDP tasks in 2D and 3D while
planning with a 7-DOF robot arm. Moreover, we evaluate
the different variants of MCPP against RRT∗ in a real-world
POMDP experiment (see Fig. 2), where the robot can only
observe collisions in the box while planning to take out a
bunny-toy. Our experimental results confirm that MCPP has
a higher probability of solving POMDP path planning tasks
with less planning time and requiring fewer samples than the
baseline methods. We believe that our theoretical findings and
empirical results will shed new light on robotic path planning
in complex, partially observable tasks. To summarize, our
contribution is threefold:
• we prove that MCPP enjoys exponential convergence in

choosing the optimal path in MDP problems and has
convergence guarantees to find a feasible path in POMDP
environments with limited distance observability (for the
POMDP case, we provide the proof sketch);

• using our theoretical insights, we propose an MCTS-
based path planning framework that can incorporate dif-
ferent exploration strategies, such as our state-of-the-art
methods, Power-UCT, and TENTS, into POMDP path
planning problems;

• we provide empirical evaluations in simulation and real-
world experiments that confirm our theoretical findings
for the MCPP algorithmic framework to be a promising
solution for planning in POMDP environments.

II. RELATED WORK

Probabilistic RoadMaps (PRMs) [13] and RRTs [15] are
fundamental approaches for sampling-based motion planning.
RRT∗ improves over RRT by applying the rewiring technique
to shorten the unnecessary traversing path. Moreover, RRT∗

has proven to guarantee probabilistic completeness for choos-
ing the optimal path in MDP problems, but no convergence
rate of RRT∗ has been studied so far.

There are several heuristic improvements over the state-
of-the-art RRT and RRT∗. For example, A* is a sufficient
heuristic path planning-based method for finding an optimal
path given the graph representation of the environment. A*-
RRT [27] integrates the benefit of the heuristic A* in RRT
by sampling a new tree node using an A* path, and therefore

improving the performance in terms of sample efficiency and
cost compared to RRT. A*-RRT∗ [27] combines A* with
RRT∗ to improve the sample efficiency over RRT∗. Theta*-
RRT [28] considers Theta*, an any-angle discrete search
method combined with RRT. Palmieri et al. [28] prove that
Theta*-RRT enjoys the probabilistic completeness of RRT
and RRT∗, while finding shorter trajectories and plans signif-
icantly faster than baseline planners (RRT, A*-RRT, RRT∗,
A*-RRT∗). Informed-RRT∗ [29] focuses the search on the
ellipsoidal informed subset of the state-space of the initial
running solution found by RRT∗.

Regarding applications of MCTS in path planning, Kim et
al. [30] proposes the use of Voronoi diagrams to discretize
the action space and provides a regret-bound analysis for
the sample efficiency, but the authors do not provide a con-
vergence rate for goal reaching in the robot path planning
setting. Sun et al. [31] propose POMCP++, an improvement
over POMCP [32] to solve continuous observation problems.
First, the authors propose using multiple particle samples
from the current initial belief instead of a single particle
sample of POMCP. Second, the authors handle the continuous
observation space by proposing a new measurement sam-
pling method. At each Q-node in the tree, POMCP++ either
samples a new observation or chooses existing observations
with some probability. Experiments show that POMCP++
yields a significantly higher success rate and total reward.
However, there is no actual convergence rate analysis in the
robot path planning settings. Sunberg et al. [33] integrated
the progressive widening technique in MCTS to discretize the
continuous action and observation cases in POMDP settings
and derived POMCPOW and POMCP-DPW (with double pro-
gressive widening). The authors further combined a weighted
particle filter with progressive widening and showed the bene-
fits over the baseline algorithm Determinized Sparse Partially
Observable Tree (DESPOT) [34].

Our work uses a simple uniform discretization of the action
space for the MCTS algorithm in the context of robotic path
planning. While our approach can apply the Voronoi diagram
discretization of [30], in this paper, we focus on the theoretical
justification of our method and its comparison to sampling-
based planners. We provide proofs of convergence for planning
the optimal path to the goal in MDPs and a feasible path in
POMDPs (with a proof sketch), which is not provided in [31],
[33], but can also apply to them. Notably, we propose MCPP
as a general MCTS-based framework for robotic path plan-
ning. MCPP can incorporate different exploration strategies
[25], [26] to continuous actions, adapting, subsequently, the
convergence rates for MCPP.

III. BACKGROUND

Markov Decision Process. A finite-horizon MDP can be
defined as a 5-tuple M = 〈S,A,R,P, γ〉, where S is the
state-space, A is the finite action-space, R : S ×A× S → R
is the reward function, P : S × A → S is the transition
kernel, and γ ∈ [0, 1) is the discount factor. A policy
π ∈ Π : S × A → R is a probability distribution of the event
of executing an action a in a state s. Most sampling-based

DAM et al.: MONTE-CARLO ROBOT PATH PLANNING 3

algorithms consider the environment as an MDP. Notably, in
robot path planning problems, we know the obstacle space
so that when we sample a new vertex, we can determine if
the new sampled point lies in the free space or not and then
calculate the cost function.
Partially Observable MDP. We consider a finite-horizon
POMDP as a tuple M = 〈S,O,A,R,Ps,Po, γ〉, where S
is the state-space, O is the observation space, A is the finite
action-space, R : S × A × S → R is the reward function,
Ps : S×A → S is the state transition kernel, Po : O×A → S
is the observation dynamics, and γ ∈ [0, 1) is the discount
factor. A policy π ∈ Π : O × A → R is a probability
distribution of the event of executing an action a in an
observation o. In POMDP settings, the agent does not observe
the full information of the state of the environment, and
the decisions are based only on observations. In general, the
decision process can be made based either on the history of all
past actions and observations ht = {a0, o0, a1, o1, ..., at, ot},
or through the belief of the agent over the state-space [32].
Monte-Carlo Tree Search. MCTS [35] combines tree search
with Monte-Carlo sampling in order to build a tree, where
states and actions are modeled as nodes and edges, respec-
tively, to compute optimal decisions. The MCTS algorithm
consists of a loop of four steps: Selection: start from the root
node, interleave action selection and sample the next state (tree
node) until a leaf node is reached; Expansion: expand the tree
by adding a new edge (action) to the leaf node and sampling
the next state (new leaf node); Simulation: rollout from the
reached state to the end of the episode using random actions
or a heuristic; Backup: update the nodes backward along the
trajectory starting from the end of the episode until the root
node according to the rewards collected.

UCT [24], [36] is an extension of the well-known
UCB1 [37] multi-armed bandit algorithm. UCB1 chooses the
arm (action a) using

a = argmax
i∈{1...K}

Qi,Ti(n−1) + C

√
logn

Ti(n− 1)
. (1)

where Ti(n) =
∑n
t=1 1{t = i} is the number of times arm i is

played up to time n, and Qi,Ti(n−1) is the average reward of
arm i up to time n−1 and C =

√
2 is an exploration constant.

In UCT, the value of each node is backed up recursively
from the leaf node to the root node as averaging over the
child nodes. At each action selection step in MCTS, each
arm in the tree is chosen as the maximum value of nodes
in the current non-stationary multi-armed bandit setup, as in
(1). UCT ensures the asymptotic convergence of choosing the
optimal arm at the root node [36].

Power-UCT [25], an improvement over UCT, solves the
problem of the underestimation of the average mean and
the max-backup operators in MCTS by proposing the use
of power mean as the backup operator. Power-UCT has a
polynomial convergence rate for choosing the optimal action
at the root node. TENTS [26] is derived as a result of Tsallis
entropy regularization in MCTS. TENTS has an exponential
convergence rate at the root node, which is faster than Power-
UCT and UCT. TENTS has a lower value error and smaller
regret bound at the root node compared to other regularization
approaches.

IV. PROBLEM FORMULATION

Let us define the robot path planning problem, both for
MDPs and POMDPs. Let X = (a, b)d be the configuration
space of the robot, where a, b ∈ R are joint limits in
configuration space, with a < b, and d ∈ N , d > 0 denoted
the robot’s DOF. Let’s define XOBS as the obstacles region
and X\XOBS the open set, and the obstacle-free space as
XFREE = cl(X\XOBS), where cl(·) denotes the closure of a
set. The initial condition, or start region, xINIT is an element
of XFREE, and the goal region xGOAL is an open subset of
XFREE. A path planning problem is defined by the triplet
(XFREE,xINIT,xGOAL). A trajectory is defined as the map
τ : [0, T] → XFREE, where τ(0) = xINIT, τ(T) = xGOAL.
Let’s define a function σ : X × X → R as the cost function
for moving the robot from the configuration point xi to xj ,
where xi,xj ∈ X . A solution to such a problem is a trajectory
that moves the robot from the initial region to the goal region,
while avoiding collisions with obstacles and having minimum
cost.
Fully observable problem. Here, we assume that we know
the state of the environment, i.e., we know the XOBS space
and XFREE regions. Whenever a new point is sampled in the
configuration space X = (a, b)d, we can measure the cost and
determine if the point is inside the free space or not.
Partially observable problem. In this setting, we assume that
the environment is partially observable, i.e., we only know
the start position and the goal position. We do not observe
the full state but only observations of the environment and
progressively build a belief about the environment’s state from
observations.

V. MONTE-CARLO PATH PLANNING

We wish to transform MCTS into a sampling-based method
for solving robot path planning problems when applicable. We
build our proposed MCPP approach starting from the UCT
algorithm. MCPP and UCT share similar ways of selecting
nodes to traverse and back up the value of nodes in the tree.
However, we need to make several algorithmic choices to do
path planning with UCT. First, we draw an ε-ball to limit the
maximum distance that the robot can move from the current
configuration point. Second, we perform uniform sampling
of the configuration points inside the ε-ball to discretize the
continuous actions in the MDP. Third, we investigate different
exploration strategies for MCPP, like in the PowerUCT and
TENTS algorithms. We provide a proof of the exponential
convergence rate of finding the optimal path in MDPs. More-
over, we connect this result to Power-UCT and TENTS and
derive their respective convergence rates for path planning. In
POMDPs, we provide a probabilistic completeness guarantee
for finding the feasible path to the goal with limited distance
observations.

A. Fully observable environment

In an MDP, the agent knows the full state of the environ-
ment. Let us define the start position as xINIT and the goal
position as xGOAL. The cost function is the Euclidean distance
d(x,y) between two points x and y. We want to minimize the

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

Goal position

Start position

Sequential circles

Intersection

,

Maximum step
size

Fig. 3: 2-D sketch of the proof for exponential convergence of MCPP to
the optimal path in MDPs. The MDP proof relies on showing that MCPP
convergences exponentially to a path starting from x0 and ending at xl while
the agent stays inside a tube composed of a sequence of spheres with a radius
of ε.
total cost, that is, the total distance traveled from the start to the
goal position using MCPP. As shown in Fig. 1, at each node
of the tree, starting from the root node, actions are generated
by uniformly sampling random points in the ε-ball distance
from the current node.

The Algorithm 1 provides the pseudocode of the MCPP
method in the MDP case. The MainLoop procedure is
the main loop of the algorithm. The algorithm stops when
the xGOAL position is reached. The algorithm follows the
four basic steps of a regular MCTS method. First, at the
Selection step, we determine the next node to traverse in
the tree by selecting the action as in the SelectAction
procedure. Here, an action is selected based on the UCB
algorithm. Note that when we implement Power-UCT [25]
we also use UCB, while TENTS [26] uses stochastic Tsallis
entropy regularization for the action sampling. Second, at
the Expansion step, |A| number of actions are generated by
uniformly sampling inside the circle C(s, ε) as shown in the
Expand procedure. When we reach the leaf node, a new
node is created and is added to the MCTS tree. Third, at
the Simulation step, as shown in the Rollout procedure,
the value function of the current node s is calculated as the
distance from that node s to the goal position. Finally, at the
Backup step, the return value is backpropagated in the two
procedures SimulateV, SimulateQ.

B. Partially observable environment

Under partial observablity, the agent does not observe the
full state of the environment, but has only access to possibly
noisy observations. The MCPP planner makes decisions based
on the current belief of the agent over the state of the
environment. Therefore, our approach in POMDP will be the
same as in MDP, except for the fact that we do the planning in
the belief space. The other choice is that MCPP planner can
make decisions over the history of actions and observation as
if it has some sufficient statistic [38], [39].

C. Theoretical analysis

In this section, we prove that MCPP ensures an exponential
convergence rate for finding the optimal path from the start
position to the goal position in an MDP environment. In a
POMDP setting, we prove that there is a high probability that
MCPP can find the path to the goal position.

1) MDP: First, we make the following assumption.

Assumption 1. There exists an optimal path from the start
position xINIT to the goal position xGOAL with δ clearance
(minimum distance to an obstacle).

Based on this assumption, we derive a theorem for the
convergence rate of finding the optimal path using MCPP:

Theorem 1. The probability that MCPP fails to find the
optimal path from xINIT to xGOAL after n simulations is at
most ae−bf(n)n, for some constants a, b ∈ R>0.
Proof. Let us consider all feasible paths from the start position
(xINIT) to the goal position (xGOAL). We will prove that MCPP
ensures probabilistic completeness of finding the shortest path
from (xINIT) to (xGOAL). We will further prove that the failure
probability of finding the shortest path decays exponentially
for an infinite number of samples.

We choose a ball with radius ε = δ, where δ is the clearance
of the shortest path τ∗. Along the path τ∗, we define a set of
l + 1 circles with the radius ε and the center xt(t = 0...l) ∈
XFREE. Here x0 = xINIT and xl = xGOAL, as shown in Fig. 3.
We define each circle Ct = (xt, ε), t = 0, 1, ...l. We define
the intersection set ut = Ct ∩ Ct+1. Let p be the probability
that MCPP can move from Ct to Ct+1. Consider starting from
planning node xt, which is the center of the circle Ct. If the
next planning node xt+1 lies in the circle Ct+1, it has to lie
inside the intersection ut, and we can see that p < 1/2. For
the robot to travel from x0 to xl, it has to use at least l MCPP
vertices. Let the probability that MCPP chooses the best action
(action with smallest cost) be f(n). Therefore, the probability
of MCPP of taking an optimal action that also lies inside ut
is f(n)p. The failure probability that MCPP cannot find the
shortest path τ∗ from x0 to xl is Pr(Xn < l) where Xn is
the number of circles Ct, t ∈ 1, 2, ...l which are connected
by vertices, that is, for an optimal path, all circles need to be
connected by vertices. To calculate Xn, the initial value of Xn

is zero. We will incrementally increase Xn by one when a new
circle along the optimal path is connected with a new vertex.
When Xn is equal to or greater than l, we, then, have found
the optimal path. Let us upper bound the failure probability
Pr(Xn < l) by first upper bounding Pr(Xn = h), as

Pr(Xn = h) ≤
(
n

h

)
(f0p)

h(1− f0p)n−h (2)

≤
(
n

h

)
(f(n)p)h(1− f0p)n−h,

where (f(n)p)h is the upper bound probability of having h
circles connected by vertices and

(
n
h

)
makes sure there is at

least one consecutive sequence of connected circles. f0 is the
initial probability of choosing the optimal action. (2) can be
explained as H(x) = xh(1− x)n−h is a decreasing function.
This yields an upper bound for Pr(Xn = h):

Pr(Xn = h) ≤

(
n

h

)
(f(n)p)h(1− f0p)n−h

≤

(
n

h

)
(f(n)p)h(1− αf(n)p)n−h

where f0 = α is a constant and f(n) ≤ 1 so that 1 − f0p ≤
1−αf(n)p. The probability of failing to find the optimal path
is then

DAM et al.: MONTE-CARLO ROBOT PATH PLANNING 5

1 |A|: number of actions.
2 N(s): number of simulations of V Node. Default is 0.
3 n(s, a): number of simulations of Q Node. Default is 0.
4 r, r(s, a): intermediate rewards defined as the distance between two

nodes.
5 V (s): Value of V Node at state s. Default is 0.
6 Q(s, a): Value of Q Node. Default is 0.
7 γ: discount factor. Default is 1.

8 R = Rollout(s)
9 R = Distance from the current node s to the goal position.

10 return R

11 a = SelectAction(s)

12 return argmaxaQ(s, a) + C
√

logN(s)
n(s,a)

13 a = Search(s)
14 while Time remaining do
15 SimulateV (s)
16 end
17 return argmaxaQ(s, a)

18 R = Expand(s)
19 Generate |A| actions for the current node s by randomly

sampling |A| via-points inside the circle C(s, ε)
20 discountedReward = Rollout(s)
21 return discountedReward

22 SimulateV(s)
23 a =SelectAction (s)
24 SimulateQ (s, a)
25 N(s) = N(s) + 1

26 V (s) =
(∑

a
n(s,a)
N(s)

Q(s, a)
)

27 SimulateQ(s, a)
28 (s′, r) ∼ τ(s, a)
29 if V (s′) not expanded then
30 r = r + γ.Expand(s′)
31 else
32 SimulateV (s′)
33 end
34 r(s, a) = r(s, a) + r
35 n(s, a) = n(s, a) + 1

36 Q(s, a) =
(
∑
a rs,a)+γ.

∑
s′ N(s′).V (s′)

n(s,a)

37 where V (s′) is the value function of the next node by action a
from the current Q(s, a) node

38 MainLoop
39 while Xgoal is reached do
40 a = Search(s)
41 Execute(a) in real Robot
42 end

Algorithm 1: Pseudocode of MCPP.

Pr(Xn < l) =

l−1∑
h=0

Pr(Xn = h)

≤
l−1∑
h=0

(
n

h

)
(f(n)p)h(1− αf(n)p)n−h

≤
l−1∑
h=0

(
n

l − 1

)
(f(n)p)h(1− αf(n)p)n−h (as l << n)

≤

(
n

l − 1

)
l−1∑
h=0

(1− αf(n)p)n

(as f(n)p < 1/2 so that f(n)p < 1− f(n)p < 1− αf(n)p)

≤

(
n

l − 1

)
l−1∑
h=0

(e−αf(n)p)n =

(
n

l − 1

)
le−αf(n)pn

(as 1− αf(n)p <= e−αf(n)p)

=

∏n
i=n−l i

(n− 1)!
le−αf(n)pn ≤ l

(l − 1)!
nle−αf(n)pn ≤ ae−bf(n)pn

The provided convergence rate proves that the MCPP al-
gorithm is probabilistically complete and converges to the
optimal path exponentially.

Let us define g(t) as the failure probability of finding the
optimal path from xINIT to xGOAL after t time steps. We derive
the following corollaries:
With Power-UCT, fPower-UCT = 1 − (1

t)
α)t. The probability

that the MCPP using Power-UCT fails to find the path from
x0 to xl is as follows.

Corollary 1. Power-UCT:
gPower-UCT(t) = ae−b(1−(

1
t)
α)t,where 0 < α < 1, a, b ∈ R>0

With TENTS fTENTS = 1 − ct exp{− t
ĉ(log t3))t}. The proba-

bility that MCPP using TENTS fails to find the path from x0

to xl is

Obstacle

Goal position

Start position

Maximum step
size

Fig. 4: Sketch of how to generate paths for MCPP algorithm from xINIT to
xGOAL positions with minimum number of via-points in POMDP environ-
ments.

Corollary 2. TENTS:
gTENTS(t) = ae

−b(1−ct exp{− t
ĉ(log t3))t

}
,where a, b, c, ĉ ∈ R>0

The results show that MCPP-TENTS robot path planning
converges faster compared to MCPP-Power-UCT.

2) POMDP: First, we make the following assumption.

Assumption 2. The agent observes the environment only up
to γ distance.

This assumption is reasonable in many robotic settings, e.g.,
for mobile robotics. Based on this assumption and Assump-
tion 1, we derive a theorem to show that with high probability,
the MCPP algorithm can find the feasible path to the goal
position in a POMDP environment:

Theorem 2. In POMDP environments with limited distance
observability, MCPP will find a path from the start position
xINIT to the goal position xGOAL with high probability.

Proof. We assume that there is a finite number of feasi-
ble paths (τ1, τ2, ...τK) to go from the start position xINIT
(or x0) to the goal position xGOAL. Each feasible path τi

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

has at least δi clearance from obstacles. We choose ε =
min{δ1, δ2, ...δK , γ}. γ is the observation distance defined in
Assumption 2.
Along each path τi, let us define a set of circles Ci =
(xi, ε), i = 0, 1, ...lτi . as shown in Fig. 3. Let us define C
as the set of all circles (along all the feasible paths that we
define). We assume that if the agent collides, the agent moves
back to the last planning point and will not go to the direction
of the obstacle again with high probability. We define that the
probability pcollision → 0 when the time step t→∞. We prove
that with high probability, the agent can find the path from the
start position xINIT to the goal position xGOAL.

The proof is derived by induction. From the start position
x0, there is a finite number of circles Ci ∈ C as the next
feasible region that the MCPP planner can sample as the next
node in the tree (MCPP samples the next planning point inside
the ε-ball distance). Because the probability of colliding again
is pcollision → 0 when the time step t → ∞, and the MCPP
objective is to minimize the cost to go to the goal position.
When we increase the number of samples, the next planning
node will lie inside the circle that contains the optimal path.
Therefore, with high probability 1 − pcollision the next MCPP
node will be inside one of the circles Ci. Assume now that the
agent is inside the circle Ci. Using the same induction, there is
high probability 1− pcollision that the next MCPP node will be
inside one of the next circle Ci+1. Ci+1 ∈ C. Since the number
of circles is finite, the agent will get to the goal region after a
certain number of time steps with high probability, concluding
the proof.

VI. EXPERIMENTS

In this section, we evaluate the performance MCPP in chal-
lenging POMDP environments. In MCPP, we apply the two
recent advanced improvement techniques in MCTS, Power-
UCT and TENTS, along with the baseline MCTS method,
UCT. We compare our new robot path planning methods
against the baseline sampling-based method RRT∗, and a
state-of-the-art continuous action POMDP solver POMCP-
DPW [33]. In simulation, we also compared against two
different simple heuristic methods. The first method puts a
ball around the agent to sample the next point. We use the
same step size (the ball’s diameter) and the same number of
samples as MCPP and RRT*. In the second heuristic, we use
an ε-greedy probability (1%) to sample the goal position or
otherwise the next node, similarly to random node sampling
in RRT*. We do not put any restrictions on the step size to
sample the next node.

The POMDP setting of our experiment is the same as
in [40]. Similarly to the path planning definition in Sec. IV,
the state space X consists of configuration space coordinates
such as robot joint angles. The action space A is identical
to the state space, consisting of target configuration space
coordinates defining where to move the robot. We use linear
interpolation to move the robot from the current configuration
to the next one. The observation is a configuration in collision
with an obstacle in obstacle space XOBS, or the goal config-
uration xGOAL, when the robot reaches the goal. We assume

static obstacles and deterministic transition and observation
probabilities Ps and Po. We define the reward function as
a success pseudo-probability along the path from one con-
figuration (x1) to another (x2): R(x1, x2) = PSUCCESS(x1, x2)
where PSUCCESS(x1, x2) is defined in [40]. We set the discount
factor γ = 1 and limit the planning horizon. As in [40], to
approximate the belief over states, based on prior collisions,
we compute a probabilistic map that assigns a probability of
colliding to any given position in the environment. The belief
distribution is able to represent multi-modal and asymmetric
belief distributions (see Fig. 2 in [40]). Initially, we assume a
non-zero probability of colliding at any location on the map.
After each collision, we update the map by assigning a failure
probability that takes into account the collision coordinates
and the movement direction (see Fig. 2 in [40]).

Following the previous POMDP definition, we evaluate
the methods in simulation in two 7-DOF configuration space
POMDP tasks with 2D and 3D task spaces. Finally, we
compare MCPP to RRT* in a real robot POMDP disentangling
application, similar to the one described in [40].

A. Experimental evaluation in simulation

We provide three simulation settings in 2D and 3D state
spaces to demonstrate that the MCPP planner is more ex-
plorative and can easily solve POMDP path planning prob-
lems compared to baselines. First, in a 2D U-Shape problem
(Fig. 5), the start position is in green color while the goal po-
sition is in blue. We compare UCT, Power-UCT, and TENTS
compared to RRT∗ and POMCP-DPW. As shown in Table
I, over 100 random seeds with the same number of samples
(500), UCT and Power-UCT obtain 93% and 95% success
rate, respectively, with approximately the same number of
collisions. TENTS is less explorative, with 31% success rate
and 18.3 collisions. POMCP-DPW gets 46% success rate and
22.7 collisions while RRT∗ gets 76% success rate with 14.6
collisions. The benefits of MCPP over RRT∗ can be explained
as, even using a similar representation with the updating
belief (probabilistic map), MCPP makes decisions based on
the value function of the POMDP (by building a multistep
look-ahead forward tree search), which is more explorative
towards the goal. In contrast, each step decision of RRT* will
be more greedy in choosing the smallest cost. Meanwhile,
MCPP shows the benefit of uniformly sampling the actions
inside the ε-ball compared to POMCP-DPW, which restricts
the number of actions by using the progressive widening
technique. Both of the two random heuristic baselines fail
to solve this task. We demonstrate one more 2D POMDP
experiment with an L shape obstacle (Fig. 6. Over 20 random
seeds with 500 samples, RRT* fails to solve the problem,
while UCT and Power-UCT obtain 100% success rate. TENTS
is less explorative with 85% success rate. POMCP-DPW
obtains 85% success rate. The two heuristic methods fail to
solve this task.

Third, we build a High-wall 3D POMDP (Fig. 7). In this
problem, the start position (green color) and the goal position
(blue color) are very close, while there is a high wall standing
between. The agent is not aware of the existence of the wall.

DAM et al.: MONTE-CARLO ROBOT PATH PLANNING 7

MCTS after 20 iterations 7 links generic planar robot model

Fig. 5: U-Shape 2D POMDP. Green point is the start position. Blue point is
the goal position. Red points are the collisions. The figure shows a success
case using MCPP, where the blue line depicts the 2D trajectory of the end
effector. Note that in all the 2D experiments we plan in the configuration
space using a 7-DOF planar robot arm model illustrated on the right.

RRT* after 30 iterations MCPP after 9 iterations

Fig. 6: L-Shape 2D POMDP. Green point is the start position. Blue point is
the goal position. Red points are the collisions. The blue lines are the planning
path. The figure shows a failure case of RRT* and a success case for MCPP,
which shows that it is more explorative. Over 20 random seeds, RRT* failure
to solve the problem with 0% success, while MCPP obtain 100% success with
UCT and Power-UCT. TENTS gets 85%.

RRT* After 30 iterations MCPP After 8 iterations

Fig. 7: High Wall Environment in 3D. Grey point is the start position. Blue
point is the goal position. Red points are collisions. Over 20 random seeds,
RRT∗ can only success with 35%, UCT obtains 55% success rate. Power-UCT
gets 70% success rate while TENTS gets 45% success rate.

As we can see in Table II, for 20 random seeds with the
same number of samples (500), UCT obtains 55% success
rate with 16.4 collisions on average. Power-UCT gets a higher
success rate with 70% and 15.7 collisions on average. TENTS
is less explorative with 45% success rate and 23.0 collisions
on average. POMCP-DPW gets 70% success rate and 15.9
collisions. On the other hand, RRT∗ can only obtain 10%
success rate and 26.0 collisions. Finally, the first baseline
heuristic method fails to solve this task, while the second one
achieves 15% success rate.

B. Real robot object disentangling task

We compare MCPP against RRT∗ in the real-robot dis-
entangling POMDP problem, as in [40]. We use a 7-DOF
KUKA LBR robot arm equipped with a SAKE gripper. Fig. 2

TABLE I: Comparison for the U-Shape 2D POMDP

Methods Time(second) Collisions Success Rate

RRT* 1555±229 14.6±1.5 76%

UCT 141.7±16.3 15.9.±1.7 93.0%

Power-UCT 146±17 15.8±1.7 95.0%

TENTS 179.5±16 18.3±1.7 31%

POMCP-DPW 322±30.8 22.7±1.6 46%

TABLE II: Comparison for the High-Wall 3D POMDP

Methods Time(second) Collisions Success Rate

RRT*(bias=1) 2854.6±4.1 26.0±0.4 10%

RRT*(bias=100) 2080.3±2.6 19.4±1.7 35%

RRT*(bias=200) 2548.1±2.7 22.2±1. 55%

UCT 178.8±13.0 16.4±1.0 55%

Power-UCT 208±18.5 15.7±1.2 70.0%

TENTS 267.6±17.1 23.0±1.2 45.0%

POMCP-DPW 215.56±23.9 15.9±1.4 70.0%

TABLE III: Comparison for the real robot object disentangling

Methods Time(second) Collisions Success Rate

RRT* 1099 ±356 10.25 ±3 40%

UCT 346.2 ±64 20.2 ±3 70%

Power-UCT 436.5 ±177 22.5 ±6 40.0%

TENTS 428.5 ±133 25 ±6 20.0%

illustrates the intermediate scenario of the robot arm trying
to reach the goal position in the unknown box environment,
while trying to disentangle the toy-bunny that was lying inside
the box (the grasp part was pre-programmed). The robot does
not know the shape of the box.

To evaluate the performance of our MCPP variants, we run
both UCT, Power-UCT, and TENTS. We run 10 random seeds,
each random seed with 500 number of samples, and perform
30 iterations to determine if the planners can reach the goal
position or not. After each iteration, if the robot hits a collision,
the robot moves back a bit from the last collision position and
performs the planning again with the new start position. The
detailed results are shown in Table III. While RRT* can get
40% success rate over ten random seeds, UCT achieves 70%
which shows the benefits of MCPP in a real-world POMDP.
Power-UCT achieves 40% success rate, and TENTS can only
succeed 20% of the times. In terms of time, the average time
in all success cases of UCT, Power-UCT, and TENTS are
364.2 seconds, 436.5 seconds, and 428.5, respectively, which
are much faster compared to RRT* with an average of 1099
seconds. This can be explained as RRT* spends more time in
performing the sorting to find the nearest node, as it is more
biased to grow towards large unsearched areas.

VII. CONCLUSIONS

This paper addressed the major challenges of planning
robot paths under partial observability from a theoretical
perspective, deriving a new framework for applying MCTS
planning in continuous action spaces for robot path plan-
ning. We theoretically analyzed our proposed Monte-Carlo
Path Planning (MCPP) approach and proved an exponential
convergence rate for MCPP for choosing the optimal path
in fully observable MDPs and probabilistic completeness for

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

finding a feasible path in POMDPs. Moreover, MCPP allows
us to integrate different established exploration strategies in
MCTS literature to improve exploration for path planning.
We empirically analyzed our MCPP variants in benchmarks
for POMDP path planning problems, showing superiority in
terms of performance and computational time compared to
RRT∗, and POMCP-DPW. We further applied our new method
to a real robot POMDP problem using a KUKA 7-DOF robot
arm to disentangle objects from other objects, without any
sensory information, except for the observation of collisions.
Future development involves the application of MCPP to more
complicated robotic tasks and studying heuristics to accelerate
the planning process with MCPP.

REFERENCES

[1] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

[2] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and
tracking for vehicle collision avoidance based on model predictive con-
trol with multiconstraints,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 2, pp. 952–964, 2016.

[3] J.-C. Latombe, “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts,” The International Journal of Robotics
Research, vol. 18, no. 11, pp. 1119–1128, 1999.

[4] G. Sahar and J. M. Hollerbach, “Planning of minimum-time trajectories
for robot arms,” The International journal of robotics research, vol. 5,
no. 3, pp. 90–100, 1986.

[5] B. K. Kim and K. G. Shin, “Minimum-time path planning for robot
arms and their dynamics,” IEEE transactions on systems, man, and
cybernetics, no. 2, pp. 213–223, 1985.

[6] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path planning
for a robot arm in changing environments,” in 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2010, pp.
5906–5911.

[7] A. Zelinsky, R. A. Jarvis, J. Byrne, S. Yuta et al., “Planning paths of
complete coverage of an unstructured environment by a mobile robot,” in
Proceedings of international conference on advanced robotics, vol. 13.
Citeseer, 1993, pp. 533–538.

[8] C. Alexopoulos and P. M. Griffin, “Path planning for a mobile robot,”
IEEE Transactions on systems, man, and cybernetics, vol. 22, no. 2, pp.
318–322, 1992.

[9] H.-y. Zhang, W.-m. Lin, and A.-x. Chen, “Path planning for the mobile
robot: A review,” Symmetry, vol. 10, no. 10, p. 450, 2018.

[10] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[11] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using rrt*
based approaches: a survey and future directions,” International Journal
of Advanced Computer Science and Applications, vol. 7, no. 11, 2016.

[12] S. M. Persson and I. Sharf, “Sampling-based a* algorithm for robot
path-planning,” The International Journal of Robotics Research, vol. 33,
no. 13, pp. 1683–1708, 2014.

[13] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, S. Sorkin et al.,
“On finding narrow passages with probabilistic roadmap planners,” in
Robotics: the algorithmic perspective: 1998 workshop on the algorith-
mic foundations of robotics, 1998, pp. 141–154.

[14] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[15] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[16] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,
“Probabilistic completeness of rrt for geometric and kinodynamic plan-
ning with forward propagation,” IEEE Robotics and Automation Letters
(RAL), vol. 4, no. 2, pp. x–xvi, 2018.

[17] M. Ivanov, L. Lindner, O. Sergiyenko, J. C. Rodrı́guez-Quiñonez,
W. Flores-Fuentes, and M. Rivas-Lopez, “Mobile robot path planning
using continuous laser scanning,” in Optoelectronics in machine vision-
based theories and applications. IGI Global, 2019, pp. 338–372.

[18] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE transactions on robotics and automation, vol. 18, no. 4,
pp. 534–549, 2002.

[19] V. J. Lumelsky, “Dynamic path planning for a planar articulated robot
arm moving amidst unknown obstacles,” Automatica, vol. 23, no. 5, pp.
551–570, 1987.

[20] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–
1276, 2013.

[21] N. Dadkhah and B. Mettler, “Survey of motion planning literature in
the presence of uncertainty: Considerations for uav guidance,” Journal
of Intelligent & Robotic Systems, vol. 65, no. 1, pp. 233–246, 2012.

[22] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-
and uncertainty-aware path planning for micro aerial vehicles,” Journal
of Field Robotics, vol. 31, no. 4, pp. 676–698, 2014.

[23] M. Kazemi, K. Gupta, and M. Mehrandezh, “Path-planning for visual
servoing: A review and issues,” Visual Servoing via Advanced Numerical
Methods, pp. 189–207, 2010.

[24] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[25] T. Dam, P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen,
“Generalized mean estimation in monte-carlo tree search,” in
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20. International Joint Conferences on
Artificial Intelligence Organization, 2020, pp. 2397–2404. [Online].
Available: https://doi.org/10.24963/ijcai.2020/332

[26] T. Q. Dam, C. D’Eramo, J. Peters, and J. Pajarinen, “Convex regulariza-
tion in monte-carlo tree search,” in International Conference on Machine
Learning. PMLR, 2021, pp. 2365–2375.

[27] M. Brunner, B. Brüggemann, and D. Schulz, “Hierarchical rough terrain
motion planning using an optimal sampling-based method,” in 2013
IEEE International Conference on Robotics and Automation (ICRA)).
IEEE, 2013, pp. 5539–5544.

[28] L. Palmieri, S. Koenig, and K. O. Arras, “Rrt-based nonholonomic mo-
tion planning using any-angle path biasing,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
2775–2781.

[29] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.

[30] B. Kim, K. Lee, S. Lim, L. Kaelbling, and T. Lozano-Pérez, “Monte
carlo tree search in continuous spaces using voronoi optimistic opti-
mization with regret bounds,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 9916–9924.

[31] K. Sun, B. Schlotfeldt, G. J. Pappas, and V. Kumar, “Stochastic motion
planning under partial observability for mobile robots with continuous
range measurements,” IEEE Transactions on Robotics, vol. 37, no. 3,
pp. 979–995, 2020.

[32] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
Advances in neural information processing systems, vol. 23, 2010.

[33] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for pomdps
with continuous state, action, and observation spaces,” in Twenty-Eighth
International Conference on Automated Planning and Scheduling, 2018.

[34] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” Advances in neural information process-
ing systems, vol. 26, 2013.

[35] H. Baier and P. D. Drake, “The power of forgetting: Improving the
last-good-reply policy in monte carlo go,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 2, no. 4, pp. 303–309,
2010.

[36] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[37] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[38] T. Smith and R. G. Simmons, “Point-based pomdp algorithms: Improved
analysis and implementation,” in UAI, 2005.

[39] D. Braziunas, “Pomdp solution methods,” University of Toronto, 2003.
[40] J. Pajarinen, O. Arenz, J. Peters, and G. Neumann, “Probabilistic ap-

proach to physical object disentangling,” IEEE Robotics and Automation
Letters (RAL), vol. 5, no. 4, pp. 5510–5517, 2020.

https://doi.org/10.24963/ijcai.2020/332

	I Introduction
	II Related work
	III Background
	IV Problem formulation
	V Monte-Carlo path planning
	V-A Fully observable environment
	V-B Partially observable environment
	V-C Theoretical analysis
	V-C1 MDP
	V-C2 POMDP

	VI Experiments
	VI-A Experimental evaluation in simulation
	VI-B Real robot object disentangling task

	VII Conclusions
	References

