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Visual Haptic Reasoning: Estimating Contact Forces
by Observing Deformable Object Interactions

Yufei Wang, David Held, and Zackory Erickson

Abstract—Robotic manipulation of highly deformable cloth
presents a promising opportunity to assist people with several
daily tasks, such as washing dishes; folding laundry; or dressing,
bathing, and hygiene assistance for individuals with severe motor
impairments. In this work, we introduce a formulation that
enables a collaborative robot to perform visual haptic reasoning
with cloth—the act of inferring the location and magnitude
of applied forces during physical interaction. We present two
distinct model representations, trained in physics simulation, that
enable haptic reasoning using only visual and robot kinematic
observations. We conducted quantitative evaluations of these
models in simulation for robot-assisted dressing, bathing, and
dish washing tasks, and demonstrate that the trained models can
generalize across different tasks with varying interactions, human
body sizes, and object shapes. We also present results with a real-
world mobile manipulator, which used our simulation-trained
models to estimate applied contact forces while performing
physically assistive tasks with cloth. Videos can be found at our
project webpage.1

Index Terms—Physically Assistive Devices; Deep Learning for
Visual Perception; Perception for Grasping and Manipulation

I. INTRODUCTION

ROBOTIC manipulation of highly deformable cloth
presents a promising opportunity to assist people with

many tasks, such as assisting an older adult with muscle atrophy
or a physical disability to get dressed [1], bathing and hygiene
assistance with a washcloth or towel [2], cleaning dishes with
a dish towel, folding laundry [3], [4], or bed making [5], [6].
In each of these scenarios, it can be helpful for a robot to
infer how cloth interacts with and applies forces to objects it
makes contact with. For example, the applied force between
a gown and human body can inform a robot if the gown is
getting caught during assistive dressing, and the force between
a washcloth and the cleaning surface can tell if the dirt on
the surface is successfully removed during assistive bathing
or dish cleaning. Besides inferring such task execution status,
knowing the applied force is also vital to prevent harm and
discomfort during physical interactions between robots and
humans in these tasks.

In this paper, we introduce methods that enable collaborative
robots to perform haptic reasoning with cloth by using only
point cloud observations and robot kinematics. As shown in
Fig. 1, haptic reasoning consists of inferring the distribution of
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Fig. 1. An illustration of the predicted contact force distributions by the
proposed visual haptic reasoning model as a deformable gown physically
interacts with a manikin in the robot-assisted dressing task. Note that the
model is trained entirely in physics simulation.

applied forces as cloth physically interacts with other objects.
Prior work has introduced methods for estimating contact
forces purely from visual feedback as rigid objects undergo
contact with robot end-effectors or human hands at a few
discrete points [7]–[9]. In contrast, cloth lacks a succinct
state representation, has inherently high-dimensional non-linear
dynamics, and has contacts with objects over large surface areas,
which collectively presents unique challenges for estimating
the location and magnitude of applied forces as cloth interacts
with other objects in the environment.

To overcome these challenges, we take a data-driven
approach with physics simulation to model the physical
interactions between cloth and other objects. We present two
model formulations for doing haptic reasoning during cloth
manipulation. The first introduces a graph neural network
(GNN) [10] architecture that encodes the local interactions
between the cloth and object in contact, whereas the second
approach uses a PointNet++ [11] architecture. Both models
form a mapping from a point cloud observation of the task
to a 3D representation of the applied forces on an object.
We conduct quantitative evaluations in physics simulation
and contrast the predicted force distributions of both model
formulations during robot-assisted dressing, bathing, and dish
washing tasks. We perform ablation studies on these models
and evaluate generalization performance as cloth interacts
with a wide distribution of human body sizes and object
shapes. Finally, through cloth manipulation studies in the real
world, we demonstrate that haptic reasoning models trained in
physics simulation can be transferred to a real-world mobile
manipulator to infer applied contact forces.

In summary, we make the following contributions:
• We introduce model formulations for visual haptic reason-

ing, which enable a robot with visual sensing to infer the
force distributions that cloth applies onto other objects
during manipulation.

• We performed analysis of these haptic reasoning models
in physics simulation across a number of tasks including
robot-assisted dressing, bathing, and dish washing.

• We evaluate haptic reasoning in the real world and
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demonstrate these models with a mobile manipulator
performing physically assistive tasks.

II. RELATED WORK
A. Deformable cloth manipulation for robotic assistance

Several assistive robotic tasks involve manipulating de-
formable objects like cloth around the human body. Examples
include dressing assistance with hospital gowns, jackets,
scarfs [1], [2], [12]–[14]; bathing assistance with a towel [2],
[15], picking and placing garments on hangers [16], [17],
laundry folding [3], [4], [18]–[25], and bedding assistance [5],
[6]. Prior work [26] has showed how a robot could predict if
an end effector trajectory would succeed in dressing a hospital
gown sleeve onto a person by leveraging force measurements at
the end effector. In contrast to these prior works, we introduce
a methodology for an assistive robot to infer the location and
magnitude of the forces that cloth applies onto the human body
using point cloud observations.

B. Estimating Contact from Vision
Several previous works [7]–[9], [27]–[32] have explored

estimating contact points and forces between objects in contact
purely from vision using RGB, RGB-D or thermal images.
Most of them focus on interactions between human hands and
non-deformable objects [7], [9], [30], or between a rigid robot
end effector and a non-deformable object [8], [27], [33], or
between a rigid robot tool and a deformable organ [31], [32],
where there are only a few points of contact. In contrast to these
prior works, our work focuses specifically on estimating contact
forces when manipulating deformable cloth around other rigid
objects, which results in hundreds of points of contact and
applied forces across a human body or object surface. Zhu et
al. [28] are able to predict contact forces on every human mesh
vertex when the human sits on a chair from RGB-D images, by
using Finite Element Method (FEM) and modeling the human
as a soft body. This approach is intractable for a collaborative
robot that must make predictions in real time when physically
interacting with people. We instead use neural network models
trained entirely in physics simulation to predict the force that
cloth applies onto other objects, which is much faster as it
only needs a single forward pass of the network.

C. Estimating Contact Force during Interaction Involving
Deformable Objects

One prior work [29] most relevant to ours estimates the
contact forces between a hospital gown and human limbs
during assistive dressing. The trained models rely on manual
discretization of the human limb into a fixed set of contact
locations, which limits generalization. In a following work [1]
the estimated forces are used in model predictive control for
assistive dressing. Instead, by using point cloud observations,
we need no such discretization for the object and our trained
model generalizes across different assistive tasks, human shapes
and object sizes. Clever et al. [34] used physics simulation to
compute the pressure of a human lying on a deformable bed,
and trained a neural network model for estimating human pose
in bed. We also use physics simulation to get high-resolution
force distributions, but we focus on estimating the forces
applied by deformable cloth to other objects in tasks such
as robot-assisted dressing and bathing, instead of the forces
applied from a lying rigid human to a deformable bed.

III. PROBLEM FORMULATION

Given a robot manipulation scenario where deformable cloth
interacts with another fixed object (e.g., helping a person dress
a garment), we aim to learn a model that predicts the applied
normal forces between the cloth and the object based on a
point cloud observation of the scene. Formally, given a depth
image I ∈ RH×W (where H and W are the height and width
of the image) of the scene, we transform the depth image to a
point cloud PPP ∈ RH×W×3 using the camera’s intrinsic matrix.
We then segment the point cloud to obtain a set of points
associated with the cloth PPPC ⊆ PPP and a set of object points
PPPO ⊆ PPP. In simulation, the classification and segmentation of
points is provided directly by the simulator. In the real world,
we use color thresholding on the RGB image of the scene to
perform the segmentation. We aim to learn a haptic reasoning
model that can predict the magnitude of the contact normal
force fi ∈ R that cloth applies to each point pppiii ∈ PPPO on the
object.

We make the following assumptions for this problem. First,
we assume the object remains static during the interaction.
This assumption helps address the visual occlusion of the
object caused by cloth during the interaction, as with this
assumption we can obtain the object point cloud PPPO before the
cloth occludes the object. Future work can investigate methods
such as capacitive sensing [1], [13] to track the pose of an
object or human limb under visual occlusion. In addition, we
assume the critical contact areas between cloth and an object
are observable through a partial point cloud. Future work could
incorporate 3D model inference [35], [36] and force/torque
sensing to predict force distributions over the full 3D model
of an object.

IV. CLOTH MODELING AND CONTACT FORCE
COMPUTATION VIA PHYSICS-BASED SIMULATION

We use physics-based simulation to compute the contact
force between cloth and other objects, which are used as the
ground-truth labels for training our proposed visual haptic
reasoning models. Specifically, we choose NVIDIA FleX as
our simulator, which uses position-based dynamics [37] for
cloth simulation. We describe briefly here how position-based
dynamics models cloth and how contact forces are computed,
and refer the readers to [37]–[39] for full details. We also note
that the proposed framework is orthogonal to the simulation
techniques used to compute the contact forces.

In position-based dynamics, objects are represented using
particles and constraints between them. A cloth can be created
from a triangular mesh. A particle is created for each vertex
in the mesh, and a stretching constraint is created for each
edge [37], [38], which models a spring that tries to maintain its
rest length. A bending constraint and a shearing constraint
are created for pairs of adjacent triangles. Three stiffness
parameters kstretch, kbending and kshare are used to model how
strong these constraints are. At each simulation step, after the
positions of the particles are updated due to external forces
such as gravity, the particle positions are projected to obey the
constraints using a Guassian-Sidel algorithm.

Each particle in the cloth can have contacts with other objects,
e.g., represented using another triangular mesh. The contact
forces are solved using the classic Lagrangian dynamics, with
a contact constraint in the form: c(ppp) = nnnT (ppp− qqq)− d ≥ 0,
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Fig. 2. An overview of the proposed visual haptic reasoning model, which estimates the location and magnitude of applied normal forces when deformable
cloth (hospital gown in this example) physically interacts with other objects (human body in this example). The contact prediction model predicts if a point on
the human body is in contact with the gown, denoted as the black regions. The force prediction model predicts the magnitude of applied force. Both models
take the segmented point cloud as the input, and the force model also takes as input the gripper kinematics. In this example, the haptic reasoning models are
instantiated as GNNs, and the middle part shows the graph construction process for GNNs.

where ppp is the position of the particle, nnn is the normal for
the contact plane, and qqq is the point that the particle should
not penetrate into, e.g., the vertex of the object mesh. d is
a threshold parameter that the particle should maintain from
the object point. After the dynamics is jointly solved with the
constraint, the contact normal force is then fff = λnnn, and the
Lagrangian multiplier λ represents the contact normal force
magnitude.

We now describe how to get the magnitude of the contact
normal force fi for each point on the object pppiii ∈ PPPOOO, which are
used as training labels for the proposed visual haptic reasoning
models. In simulation, contact points between cloth and an
object may not directly align with object points PPPO from the
observed point cloud. Given a contact between the cloth and
an object that occurs at position xxxC

j ∈ R3 ( j = 1, ...,N) with
normal force fff C

j ∈ R3, we distribute the applied force to all
nearby observed object points that are within a distance ε

of the contact position. This distribution of the contact force
is inversely proportionate to the distance between xxxC

j and pppi.
Formally, let xxxi ∈ R3 denotes the position of point pppi ∈ PPPO,
the contact normal force magnitude FC

j = || fff C
j ||2 is distributed

to a point pppi as follows:

Fj→i = Fj ·
wi

∑
H×W
k=1 wk

,

wi =

{
1

||xxxC
j −xxxi||ξ

if||xxxC
j − xxxi||2 < ε

0 Otherwise
,

(1)

where ξ > 0 controls the smoothness of the distribution, which
we set to be 0.5. The contact normal force magnitude fi on
point pppi is then the sum of all distributed forces: fi =∑

N
j=1 Fj→i.

Our goal is to learn a model h(PPP) that takes as input the point
cloud PPP, and predicts the force magnitude fi for every point
pppi ∈ PPPO on the object.

V. VISUAL HAPTIC REASONING MODEL
A. Method Overview

An overview of the visual haptic reasoning framework is
shown in Fig. 2. As the bottom branch shows, we train a
force prediction model h f orce, which takes the point cloud PPP
(consisting of the object points PPPO and cloth points PPPC), and the
robot gripper kinematics as input, and predicts the magnitude
of the contact force fi at each point pppiii ∈ PPPOOO. Since the force
prediction model is performing regression, it is common to

predict small non-zero forces at many points on an object that
are not in contact with cloth. To address this issue, we further
introduce a contact prediction model hcontact , shown in the top
branch of Fig. 2, to predict if a point ppp ∈ PPPO is having contact
with cloth during manipulation, which removes the need for
choosing a force threshold for determining contact at inference
time. For training the contact model, a point ppp has a label of
1 if fi is greater than 0, and a label of 0 otherwise.

The force prediction model h f orce and the contact prediction
model hcontact can be instantiated using different neural network
architectures (Fig. 2 shows a GNN instantiation). Several
learning methods have been designed specifically for modeling
point cloud data [11], [40]. In this paper we explore two distinct
architectures for the haptic reasoning models, PointNet++ [11]
and graph neural networks (GNN) [22], [41]. In the following
subsections, we describe in detail how we instantiate the force
and contact prediction models as PointNet++ or GNN.

B. Point Cloud Based Input Representation
We first describe how we construct the input to the Point-

Net++ and GNN haptic reasoning models based on the point
cloud PPP, which consists of the segmented cloth points PPPC, and
object points PPPO obtained before visual occlusion as described
in Section V-B. We first filter the point cloud with a voxel
grid filter by overlaying a 3D voxel grid over the observed
point cloud and take the centroid of the points inside each
voxel. This voxelization step is done both in simulation and in
the real world, which makes the model agnostic to the density
of the observed point cloud, and more robust to sim2real
transfer. Then, given the voxelized point cloud PPP (we overload
the notation PPP to refer to the voxelized point cloud in the
rest of the paper), we remove object points from PPPO that are
sufficiently far from the cloth. We define this new point cloud
P̃PP as:

P̃PP = P̃PPO∪{pppgripper}∪PPPC,

P̃PPO = {pppi|(∃pppi ∈ PPPO)(∃ppp j ∈ PPPC)[||xxxi− xxx j||2 < τ]},
(2)

where xxxi represents the position of point pppi, and P̃PPO denotes
object points that are within a distance τ of some cloth point.
pppgripper is a single point at the position of the robot gripper.

P̃PP can be directly used as input to a PointNet++ model. To
form a GNN model, we build a graph G = 〈V,E〉 from the
point cloud, where V are the nodes and E are the edges of
the graph. Fig. 2 visualizes the graph construction process.
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The nodes V of the graph simply consist of all the points in
P̃PP. For edges, we connect an edge e jk between a node j and
node k when the following criteria are satisfied: 1) the distance
between nodes is below a threshold α , i.e. ||xxx j− xxxk||2 < α ,
where xxx j denotes the position of node j, and 2) at least one
node is a point on the cloth. Intuitively, message passing along
the edges of the GNN can simulate the propagation of force
from the gripper to the cloth, within the cloth itself, and from
the cloth to the object.

C. Force Prediction Model
We describe two different instantiations for the force

prediction model h f orce, which is capable of predicting the
forces that cloth applies onto objects in contact. The first
instantiation uses a PointNet++, which can be directly applied
to the cropped point cloud P̃PP. The input includes the position
xxx of each point ppp ∈ P̃PP and a feature vector associated with
each point ppp. The feature vector consists of robot gripper
velocity vvv and a 3-dimensional one-hot encoding vector
[1ob ject(ppp),1cloth(ppp),1gripper(ppp)] indicating the type of the
point (where 1y(ppp) is 1 if ppp belongs to y and 0 otherwise).
We normalize the positions of the point to be zero-mean so
that the model is invariant to translations of the point cloud.

To model force predictions with a GNN, the input to the
force model is the graph built from the point cloud, as described
in Section V-B. We use the GNS architecture [22], [41] for the
GNN model. The features for each node in the graph include the
one-hot encoding vector [1ob ject(ppp),1cloth(ppp),1gripper(ppp)] and
the gripper velocity vvv. The edge feature of an edge connecting
node i and node j includes the distance vector xxxi− xxx j and its
L2 norm ||xxxi−xxx j||2. By using only relative distance in the edge
features, the GNN model is also invariant to translations of the
point cloud in Cartesian space. We do not include positions
in the node features since the edge features are sufficient to
capture the relative relationship between nodes.

As described in Section V-A, the output of the force
prediction model h f orce is the estimated magnitude of the
contact normal force f̂i for every point pppiii ∈ P̃PPOOO. We train the
force model using a Mean Squared Error loss between the
predicted contact force f̂i and the ground-truth contact force
fi, which can be obtained in simulation and computed using
Eq (1). We mask the loss to be computed only on points that
are having contact during the interaction, i.e., for points whose
contact force fi is greater than 0.

D. Contact Prediction Model
When training both PointNet++ and GNN models for contact

prediction, we remove the gripper point pppgripper from the point
cloud and reduce the point/node features to include only a
1-dim one-hot encoding Iob ject(p). A PointNet++ for contact
prediction still includes normalized point positions as part of
its input, and a GNN for contact prediction uses the same edge
features as presented in Section V-C.

The output of the contact model hcontact is the probability mi
of each point pppi ∈ P̃PPOOO being in contact with the cloth. We train
it with a Binary Classification Loss, where the ground-truth
contact information can be obtained in simulation. For each
point pppi ∈ P̃PPO, the ground-truth label is 1 if it has non-zero
contact force fi (computed using Eq (1)), otherwise the label
is 0. At test time, we combine the predictions of the contact

Fig. 3. Visuals of the 4 simulation tasks. From left to right: assistive dressing,
assistive bathing, dish washing, and primitive shapes.

and the force prediction model to compute the final contact
normal force magnitude of a point pppi:

f pred
i =

{
f̂i if mi > β

0 Otherwise , (3)

where β is a decision threshold.

VI. TASKS AND DATASET COLLECTION

As described in Sec. IV, we use the NVIDIA FleX wrapped
in SoftGym [42] as our physics simulation. As shown in Fig. 3,
we build three representative robotic assistive and manipulation
tasks that involve physical interactions between cloth and other
objects: 1) Assistive dressing, where a robot must dress a
hospital gown onto a person’s right arm; 2) Assistive bathing,
where the robot manipulates a washcloth to clean a person’s
arm; 3) Dish washing, where the robot uses a washcloth
to clean the surface of a dish. To further evaluate visual
haptic reasoning between cloth interacting with arbitrary rigid
objects, we build a task where the robot pulls a rectangular
towel over random combinations of objects with primitive
shapes, including cylinders, cubes and spheres (referred to
as the primitive shape task). In all tasks, we use a point
grasp (visualized as a small white sphere), and the grasping is
simulated by creating rigid anchors between the point grasp
and the closest particles on the cloth.

We add the following variations for these tasks. For assistive
dressing and bathing, we use the SMPL-X [43] model to
generate 100 human body meshes varying in body shape and
size. For dish washing, we randomly select 3 plates from the
ShapeNet dataset [44]. For primitive shape, we vary the number
of primitive shapes between 1 to 3, use a random selection of
chosen shapes (cylinder, sphere, or cube), and vary the size
and pose of each shape. For all tasks, we generate the gripper
movement trajectories by linearly interpolating between some
way points, where the way points are chosen differently for
each task. For the dressing and bathing task, the waypoints
consist of the fingertip, wrist, elbow, and shoulder of the human
arm, with random deviation uniformly sampled from [−5,5]cm
added to these waypoints. For dish washing, we randomly
sample way points on the surface of the plate. For primitive
shape, we randomly sample waypoints on the surface contour
of the combination of the primitive objects. For all tasks, we
vary the gripper movement velocity across different trajectories.
Depending on the gripper velocity and the waypoint locations,
each simulated cloth manipulation trajectory can have between
200 to 800 time steps, where at each time step we store the
point cloud, gripper velocity, and ground-truth contact normal
forces between the cloth and the object as a data point for
training. For assistive dressing, assistive bathing, and dish
washing, we collect 600, 60, and 30 trajectories for training,
validation and test, while due to the large task variation of
primitive shape task, we collect 1800, 200, and 90 trajectories
for training, validation, and test. The exact number of data
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Assistive
Dressing

Assistive
Bating

Dish
Washing

Primitive
Shapes

Training size 81379 187568 258624 624724
Validation size 7948 17978 24003 69413

Test size 3977 8989 11853 33889
average # cloth points 2361 79 76 353
average # object points 267 114 130 370

TABLE I
STATISTICS OF THE COLLECTED DATASET.

points for the collected datasets is summarized in Table I. The
average number of object points and cloth points that will be
inputted to our model, i.e., size of P̃PPO and PPPC, are also reported
in Table I.

VII. EXPERIMENTAL RESULTS

A. Evaluation Metrics and Baselines

For evaluation metrics, we use Mean Absolute Error (MAE)
in Newtons for force prediction in relation to the ground-
truth contact forces, and F1 score for contact prediction. For
all learning methods, we search over the contact prediction
decision threshold (β in Eq. (3)) on the validation dataset, and
use the threshold that produces the highest F1 score.

We compare the proposed GNN and PointNet++ learning
methods with the following baselines: MLP, where we trained
two separate Multilayer Perceptrons that take as input a
vectorized point cloud, one for contact prediction and one for
force prediction. As the number of points in the point cloud
can vary across tasks and trajectories, we take the maximum
number of points as the fixed input dimension and pad the
observation with 0 when it has fewer dimensions. Constant
Force Prediction, a force prediction baseline which predicts a
constant force for every point in contact. The constant force is
chosen to be the median force on the training dataset which
gives the lowest MAE on the training dataset. Neighborhood
Contact Prediction, a contact prediction baseline that predicts
a point on the object to be in contact if its distance to the
closest point in the cloth is below a threshold. We perform
a grid search over the threshold on the training dataset and
evaluate with the one that results in the best F1 score.

For GNN, PointNet++, and MLP, we train two variants: the
first is the task-specific model that is trained with data only from
a single task, and the second is the task-agnostic model that
is trained with data from all three assistive dressing, assistive
bathing, and dish washing tasks. We hold out the primitive
shape task and use it to evaluate the generalization performance
of our task-agnostic models. In all evaluation tables, we use
the suffix ‘-S’ to denote the task-specific models, the suffix
‘-A’ to denote the task-agnostic models, and we use bold text
to denote the best result, and underlined text to denote the
second best result.

B. Implementation Details

For PointNet++, we use the standard segmentation type of
architecture in the original paper [11]. For GNN, we use the
standard GNS [41] architecture. More details about the network
architectures can be found on our project website. For the MLP
baseline, we use a MLP of [1024,512,256,512,1024] neurons
and ReLU activation. We train the PointNet++, GNN and MLP
models using the Adam [45] optimizer, with a learning rate
of 0.0001 and batch size of 8. We train all models until they
converge on the training dataset, and pick the model that has

Method
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.200 0.028 0.064 0.931
GNN-A 0.192 0.035 0.063 1.460

PointNet++-S 0.188 0.029 0.066 1.073
PointNet++-A 0.189 0.034 0.065 1.398

MLP-S 0.640 0.057 0.134 1.503
MLP-A 0.696 0.057 0.122 1.502

Constant Force 0.555 0.059 0.118 1.367

TABLE II
FORCE PREDICTION MAE (IN NEWTONS) ON TEST DATASET.

the lowest loss on the validation dataset for evaluating on the
test dataset. For NVIDIA FleX simulator, the particle radius in
the simulator is 0.625cm. Due to different sizes of cloth used
in different tasks, we tune the stiffness of the stretch, bending,
and shear constraints to ensure stable simulation behaviours of
cloth for different tasks. The stiffness of these constraints are
set to be [1.7,1.7,1.7] for assistive dressing, and [1.0,0.9,0.8]
for the other three tasks. We set the threshold for contact (d in
Sec. IV) to be 5mm. For hyper-parameters described in Sec.V,
the value of ε used in Eq.(1) is set to be 3.12cm, the voxel
size we used to voxelize the point cloud is 1.56cm, the value
of τ in Eq.(2) is 6.25cm, and the value of α for determining
the edge connection for GNN is 3.75cm.

C. Simulation Results
1) Force Prediction Result: The force prediction MAE

of all methods over all tasks in simulation are shown in
Table II. As shown in the first 3 columns, for assistive dressing,
assistive bathing, and dish washing, for either task-agnositic
or task-specific models, both GNN and PointNet++ models
achieved significantly lower error than the constant force
prediction baseline and the MLP baseline. Both GNN and
PointNet++ models achieved similar performance overall, with
GNN performing slightly better on bathing and dish washing,
while PointNet++ achieved lower error for the assistive dressing
task. Interestingly, for both GNN and PointNet++, the task-
agnostic models achieved similar prediction errors compared
with the task-specific models, indicating we can train a single
model on multiple tasks instead of one for each task. When
compared to task-specific models trained on primitive shapes,
we observe from the 4th column of Table II that task-agnostic
force prediction models do not generalize as well to the
primitive shape task, due to the large distribution shift. In
addition, a task-specific GNN performs better than task-specific
PointNet++ for inferring applied forces during the primitive
shapes task, indicating that GNN architectures may be better
suited for tasks with very large variations. We also report the
percentage of error, i.e., the ratio between the force prediction
MAE and the mean value of the ground-truth force of the
dataset, for the best methods on each dataset. For assistive
dressing, the PointNet++-S has an error percentage of 33.1%,
for assistive bathing, the GNN-S has an error percentage of
34.0%, for dish washing, the GNN-A model has an error
percentage of 43.2%, and for primitive shapes, the GNN-S
model has an error percentage of 68% due to the large variation
for this task. We later show in Fig. 6 that the force predictions
are good enough for potential downstream tasks. On a NVIDIA
3090 GPU, the inference time for the GNN force model is
∼10ms, and the inference time for the PointNet++ force model
is ∼20ms.

2) Contact Prediction Result: Table III shows the contact
prediction F1 score of different methods on all tasks in
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Algorithm
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.888 0.910 0.955 0.930
GNN-A 0.890 0.912 0.954 0.872

PointNet++-S 0.933 0.953 0.956 0.949
PointNet++-A 0.930 0.946 0.948 0.866

MLP-S 0.790 0.748 0.902 0.781
MLP-A 0.788 0.728 0.888 —

Neighborhood 0.740 0.844 0.873 0.843

TABLE III
CONTACT PREDICTION F1 ON TEST DATASET.

Method
Task Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.200 0.028 0.064 0.931
GNN-S-particle 0.160 0.026 0.059 0.622
PointNet++-S 0.188 0.029 0.066 1.073

PointNet++-S-particle 0.193 0.029 0.067 0.734

GNN-A 0.192 0.035 0.063 1.460
GNN-A-particle 0.178 0.030 0.055 1.444
PointNet++-A 0.189 0.034 0.065 1.398

PointNet++-A-particle 0.194 0.034 0.034 1.431

TABLE IV
FORCE PREDICTION MAE: POINT CLOUD VS. CLOTH PARTICLES.

simulation. For all three assistive tasks shown in the first
3 columns, both GNN and PointNet++ achieved substantially
higher F1 scores than the Neighborhood Contact Prediction
and the MLP baselines. For contact prediction, PointNet++
is consistently better than GNN, for both task-agnostic and
task-specific models. We also observe similar F1 scores for
both task-agnostic and task-specific contact prediction models,
indicating that we are able to train a single model on multiple
tasks. In contrast to force prediction, the task-agnostic GNN and
PointNet++ models generalized well to predicting cloth-object
contact for the primitive shape task. The task-agnostic MLP
model is unable to generalize due to its limiting way of handling
point cloud data. The inference time for the GNN contact model
is ∼10ms, and the inference time for the PointNet++ contact
model is ∼20ms.

3) Visualizations of Contact and Force Predictions: Fig. 4
compares the predicted contact and force distributions from
the task-agnostic PointNet++ model with the ground-truth for
assistive dressing, assistive bathing, and dish washing tasks in
simulation. As shown, the predicted contact areas and force
magnitudes are qualitatively similar to ground-truth. In assistive
dressing, the model accurately predicts large forces around the
finger, elbow, and shoulder when the gown gets caught at those
regions, and in bathing and dish washing, the model accurately
predicts a spherical shape force distribution that decays from
the center of the contact. More visuals on varying trajectories,
human body shapes, and plate sizes can be found on the project
webpage.

4) Comparison to Using Ground-truth Cloth Particles:
We investigate how haptic reasoning models perform when we
replace the cloth point cloud with ground-truth cloth particles in
FleX simulation. Intuitively, since the cloth particles perfectly
represent the underlying cloth mesh and its deformation, we
would expect using particles to result in lower force prediction
error and higher contact prediction accuracy. The object is still
represented using point cloud.

Table IV shows the force prediction result with particles,
and Table V shows the contact prediction result. Interestingly,
we find that for both force and contact prediction, using
particles with GNN models resulted in higher performance,
yet using ground-truth particles did not improve performance

Method
Task2 Assistive

Dressing
Assistive
Bating

Dish
Washing

Primitive
Shapes

GNN-S 0.888 0.910 0.955 0.930
GNN-S w/ particles 0.944 0.961 0.970 0.973

PointNet++-S 0.933 0.953 0.956 0.949
PointNet++-S w/ particles 0.932 0.950 0.954 0.961

GNN-A 0.890 0.912 0.954 0.872
GNN-A w/ particles 0.945 0.962 0.970 0.898

PointNet++-A 0.930 0.946 0.948 0.866
PointNet++-A w/ particles 0.932 0.950 0.954 0.893

TABLE V
CONTACT PREDICTION F1: POINT CLOUD VS. CLOTH PARTICLES.

with PointNet++ models. We attribute this to the message
passing scheme in GNN, which may leverage the particle
representations better compared with the abstraction layers
in PointNet++. We also note that for both contact and force
prediction, among all compared methods and for all tasks,
the best-performing method is always a GNN with access to
ground-truth cloth particles. This finding suggests an interesting
direction for future work in tracking the underlying mesh
particles of deformable cloth in the real world.

5) Sensitivity to Noise in Point Cloud: Since point clouds
obtained in the real world are usually noisy, we test the
sensitivity of our method to noise in the point cloud in
simulation. We manually inject different levels of noise to
the point cloud positions, which are modeled as Gaussian
distributions with different standard deviations (Std) [46]. We
test the GNN-A model on the assistive dressing task. The force
model is robust up 3mm of noise, where the MAE slightly
increases from 0.189 to 0.253, while the contact model is
robust up to 10mm of noise, with the contact F1 score drops
slightly from 0.889 to 0.808. The project website details more
experiments on the models’ sensitivity to noise.

D. Real World Results
1) Experimental Setup: We evaluated our model trained

purely in simulation on the same three tasks in the real world
with a Stretch RE-1 mobile manipulator. For assistive bathing,
we use a medical manikin lying on a hospital bed for the human
body. For assistive dressing, we use a silicone torso and arm
model that is posed similar to human models in simulation.
For dish washing, we pick a common dinner plate. Fig. 5
visualizes these three tasks. We use the same type of control
trajectories as we used in simulation. An Intel D435i camera is
used to capture a depth image of the scene, and we use color
thresholding on the RGB image to segment the cloth and the
object. Due to the challenge of sensorizing these environments
with high-resolution force sensing arrays, we provide qualitative
results of the contact and force predicted by our trained models
in these three tasks. We conduct an additional experiment to
illustrate the accuracy of the trained models. As shown in
Fig. 6, we command the Stretch RE-1 robot to clean the blue
powder on a black plate, and we use the trained model to
predict which regions are cleaned after the robot action. A
point on the plate is assumed to be cleaned if the predicted
force magnitude is above a chosen threshold. Such predictions
can be potentially used for downstream control tasks to clean
specific area of the plate.

2) Qualitative Results: As shown in Fig. 5, the various
haptic reasoning models trained entirely in simulation produce
qualitatively reasonable contact and force distribution predic-
tions for all three tasks. As the gripper and washcloth move
over the edge of the plate during dish washing, our trained
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t

Ground-truthGround-truth Prediction Prediction Ground-truth Prediction

Fig. 4. Visuals of the force and contact predictions of the task-agnostic PointNet++ model for the assistive dressing, assistive bathing, and dish washing tasks
in simulation, on the test dataset. For each task, the left column is the ground-truth and the right column is the prediction. The color map is scaled differently
for each task due to different magnitudes of forces, but the same color map is used to visualize the ground-truth and predicted forces within each task. Better
viewed zoomed-in.

Fig. 5. Qualitative visualizations of the force and contact predictions of the trained visual haptic reasoning models for real-world tasks. Left: GNN-A for
dish washing; Middle: PointNet++-A for bathing a manikin; Right: PointNet++-S for dressing a gown on a silicone arm. All models are trained entirely in
simulation. Better viewed zoomed-in. The colors are scaled differently for each task to better show different magnitudes of forces in different tasks.

Before Cleaning Robot Action Actual Cleaned Result Predicted Cleaned Result

Fig. 6. Comparison of the predicted cleaned area (the white regions in the
4th plot) of the GNN-S model and the actual cleaned area (the 3rd plot) after
the robot wipes the blue powder on the black plate with a wash cloth.

haptic reasoning models (GNN-A) predict a visually accurately
force and contact distribution, with greater forces applied on
the edges of the plate. For dressing assistance, we observe
the contact model (PointNet++-S) predicts sizable regions of
contact between the garment and body that align with visible
observations. We observe greater forces on the hand as the
hospital gown sleeve is initially pulled onto the hand and
briefly snags, and we observe larger force predictions near the
shoulder as the robot begins to stretch and pull the garment
over the shoulder. More trajectories and some failure cases
are in the supplement video and on the project webpage. As
Fig. 6 shows, the trained model gives qualitatively correct

predictions on which regions of the plate were cleaned by
the wash cloth, demonstrating the potential of using visual
haptic reasoning models for downstream control tasks. All
these results indicate that haptic reasoning can be reasonably
transferred from simulation to the real world, and presents a
promising direction for continued research in robotic caregiving
and robotic cloth manipulation.

VIII. CONCLUSION
We introduced a formulation for robots to compute haptic

reasoning during cloth manipulation. Haptic reasoning enables
a robot the infer the distribution of applied forces as cloth
interacts with other objects or people in the environment. We
presented two distinct model representations, including GNN
and PointNet++ implementations, that enable haptic reasoning
using only point cloud and robot kinematic observations. We
conducted quantitative analyses of model performance during
robot-assisted dressing, bathing, and dish washing tasks in
simulation and demonstrated generalization performance across
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human body sizes and object shapes. We also transferred
simulation-trained models to a real environment and evaluated
visual haptic reasoning with a mobile manipulator performing
physically assistive tasks with cloth.
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