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Abstract— Pressure Field Contact (PFC) was recently intro-
duced as a method for detailed modeling of contact interface
regions at rates much faster than elasticity-theory models, while
at the same time predicting essential trends and capturing rich
contact behavior. The PFC model was designed to work in
conjunction with error-controlled integration at the acceleration
level. Therefore a vast majority of existent multibody codes
using solvers at the velocity level cannot incorporate PFC in
its original form. In this work we introduce a discrete in time
approximation of PFC making it suitable for use with existent
velocity-level time steppers and enabling execution at real-time
rates. We evaluate the accuracy and performance gains of
our approach and demonstrate its effectiveness in simulating
relevant manipulation tasks. The method is available in open
source as part of Drake’s Hydroelastic Contact model.

Index Terms— Contact Modeling, Simulation and Animation,
Grasping, Dynamics.

I. INTRODUCTION

THERE is a need for smooth, rich, artifact-free models
of contact between arbitrary geometries as encountered

in modern robotics applications such as grasping and ma-
nipulation, assistive and rehabilitative robotics, prosthetics,
and unstructured environments. Most often these applications
involve compliant surfaces such as padded grippers, de-
formable manipuland objects or soft surfaces for safe human-
robot interaction. Moreover, with the emerging field of soft
robotics, designers have begun to incorporate significant
compliance in their robot designs; consider for instance the
Soft-bubble gripper [1] in Fig. 1 for which the accurate
prediction of contact patches is critical for meaningful sim-
to-real transfer. Still, the rigid-body approximation of contact
is at the core of many simulation engines enabling them to
run at interactive rates.

Point contact is a useful and popular approximation of
non-conforming contact (e.g. contact between a sphere and
a half-space), but it does not extend well to conforming
surfaces nor non-convex shapes. Localized compliance can
be incorporated using spring-dampers [2], Hertz theory [3]
and volumetric models [4], [5]. However, while point contact
modeling approaches are fast, they are non-smooth, and
extensions to arbitrary geometry often involve non-physical
heuristics [6], [7] that heavily influence the correctness and
accuracy of simulation results [8].

The Elastic Foundation Model [9] (EFM) computes rich
contact patches providing an alternative to point contact
that can solve many of its issues. However, current imple-
mentations [10] need highly refined meshes and can even
miss contact interactions if coarse meshes are used. The

All the authors are with Toyota Research Institute, USA,
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Fig. 1: Left: Contact geometry modeling the highly compli-
ant Soft-bubble gripper [1] holding a spatula. Right: One of
the fingers is hidden to better show the simulated contact
patch. With a coarse discretization, the model is able to
predict patch shape, size, and contact pressure (shown as
colored contours) along with net forces and moments. Our
polygonal tessellation of the contact surface combined with
our velocity-level time stepping approximation enables this
simulation to run at real-time rates.

work in [11] introduces pressure field contact; a modern
rendition of EFM designed to work with coarse meshes at a
computational cost suitable for real-time simulation. While
previous work focuses on smooth geometric queries and
continuous penalty forces, see for instance [12], [13], [14],
the work in [11] is different in that it introduces a new contact
model rather than algorithms for an already existing model.
An implementation of pressure field contact is available in
open source as part of Drake’s [15] Hydroelastic Contact
model. The implementation in Drake includes support for
primitive geometries such as spheres and boxes, convex
meshes, rigid objects and both triangular and polygonal
tessellations, see Section III for details. The hydroelastic
contact model provides rich information such as contact
patch shape and pressure distribution, see Fig. 1 for an
example.

The hydroelastic contact model is originally formulated at
the acceleration level in [11] resulting in a system of ODEs
advanced forward in time using error-controlled integration.
While error-controlled integration guarantees the accuracy of
the solutions, it comes with the additional cost of needing to
compute error estimates and taking smaller time steps during
stick/slip transitions.

In contrast, popular simulation engines such as ODE
[16], Dart [17], Vortex [18], MuJoCo [19] and Drake [15]
provide formulations at the velocity-level. In this approach,
time is advanced at discrete intervals of fixed size; contact
impulses and the resulting velocities are found by solving a
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challenging Nonlinear Complementarity Problem (NCP), or
some approximation of an NCP.

Our main contribution with this work is a discrete in time
approximation of the hydroelastic contact model that enables
its use within existent simulation engines formulated at the
velocity-level. We derive an algebraic expression for the rate
of change of the pressure field in terms of local quantities
and use it to write an implicit in time approximation of the
pressure field at the centroids of mesh elements. Finally, we
cast the problem in terms of an equivalent set of compliant
point contact forces that can be incorporated into existent
velocity-level formulations.

This work also introduces a novel polygonal representation
of the contact surfaces introduced in [11]. We strive to
enable simulation of contact rich patches, eliminate artifacts
introduced by point contact, and capture area dependent
phenomena otherwise missed by point contact while still per-
forming at real-time rates. This is achieved with a complete
implementation in Drake [15].

II. MULTIBODY DYNAMICS WITH FRICTIONAL CONTACT

Here we closely follow the notation in our previous
work [20], [21] for consistency. However, we point out that
velocity-level engines with the capability to model compliant
point contact can incorporate the approximations introduced
in this work to model compliant contact patches using the
hydroelastic contact model. For stability, our approximations
are implicit in time.

The state of our system is described by the generalized
positions q ∈ Rnq and the generalized velocities v ∈
Rnv , where nq and nv denote the number of generalized
positions and velocities, respectively. Time derivatives of the
configurations are related to the generalized velocities by
q̇ = N(q)v, with N(q) ∈ Rnq×nv the kinematic map.

A. Contact Kinematics

Given a configuration q of the system, we assume our
geometry engine reports a set C (q) of nc potential contacts
between pairs of bodies. The i-th contact pair in C (q) is
characterized by its location, a contact normal n̂i, and the
signed distance φi ∈ R, defined negative for overlapping
bodies. The relative velocity between the pair of bodies at
the contact point is denoted with vc,i ∈ R3. The normal and
tangential components of vc,i are given by vn,i = n̂i · vc,i
and vt,i = vc,i−vn,in̂i respectively, so that vc,i = [vt,i vn,i].
We form vector vc ∈ R3nc (bold, no italics) by stacking the
velocities vc,i. Contact velocities are related to generalized
velocities by vc = J(q)v, where J is the contact Jacobian.

B. Contact Modeling

A popular point contact model of compliance introduces
a spring/damper at each contact point to model the normal
force fn as

fn = (−kφ− d vn)+, (1)

where k > 0 is the point contact stiffness and d > 0 is
a coefficient of linear dissipation, and x+ = max(x, 0) is
the positive part operator. Since we take the positive part,

the force is always repulsive. This model can be cast as the
equivalent complementarity condition [22]

0 ≤ φ+ d c vn + c fn ⊥ fn ≥ 0, (2)

where c = k−1 is the compliance and 0 ≤ a ⊥ b ≥ 0 denotes
complementarity, i.e. a ≥ 0, b ≥ 0 and a b = 0. Using the
first order approximation φ = φ0 + δt vn where φ0 is the
signed distance function at the previous time step and δt is
step size, Eq. (2) becomes a linear complementarity condition
between the velocities of the system and the contact forces.
We use the naught subscript to denote quantities evaluated
at the previous time step while no subscript is used for
quantities evaluated at the next time step.

0 ≤ φ0 + (δt+ d c)vn + c fn ⊥ fn ≥ 0. (3)

The tangential component ft ∈ R2 of the contact forces is
modeled according to Coulomb’s law of dry friction, which
can be compactly written as

ft = argmin
‖f‖≤µfn

vt · f (4)

where µ > 0 is the coefficient of friction. Equation (4)
describes the maximum dissipation principle, which states
that friction forces maximize the rate of energy dissipation.
In other words, friction forces oppose the sliding velocity
direction. Moreover, Eq. (4) states that contact forces fc are
constrained to belong to the friction cone F = {[xt, xn] ∈
R3 | ‖xt‖ ≤ µxn}.

The optimality conditions for Eq. (4) are [23], [24]

µfnvt + λft = 0

0 ≤ λ ⊥ µfn − ‖ft‖ ≥ 0 (5)

where λ is the multiplier needed to enforce Coulomb’s law
condition ‖ft‖ ≤ µfn. Notice that in the form we wrote Eq.
(5), multiplier λ has units of velocity and it is zero during
stiction and takes the value λ = ‖vt‖ during sliding. Finally,
the total contact force fc ∈ R3 expressed in the contact
frame C is given by fc = [ft fn].

C. Discrete Time Stepping
We discretize time into intervals of fixed size δt and seek

to advance the state of the system from time tn to the
next step at tn+1 = tn + δt. To simplify notation, we use
the naught subscript to denote quantities evaluated at the
previous time step tn while no additional subscript is used
for quantities at the next time step tn+1. The full contact
problem consists of the balance of momentum discretized in
time together with the full set of contact constraints, where
the unknowns are the next time step generalized velocities
v ∈ Rnv , forces f ∈ R3nc and multipliers λ ∈ Rnc

M0(v − v0) = δtk0 + δtJT0 f , (6)
0 ≤ φ0,i + (δt+ di ci) vn,i + cifn,i

⊥ fn,i ≥ 0, i ∈ C (q0) (7)
µifn,ivt,i + λift,i = 0, i ∈ C (q0) (8)
0 ≤ λi ⊥ µifn,i − ‖ft,i‖ ≥ 0, i ∈ C (q0) (9)
q = q0 + δtN0v, (10)



where M0 ∈ Rnv×nv is the mass matrix and k0 ∈ Rnv

models external forces such as gravity, gyroscopic terms and
other smooth generalized forces such as those arising from
springs and dampers.

We note that typically these velocity-level formulations
are written in terms of impulses δtf . The full problem (6)-
(10) constitutes a nonlinear complementarity problem (NCP).
Many variants of this formulation exist in the literature. [25]
introduces both primal and dual formulations of the prob-
lem, [26] uses barrier functions along a lagged dissipative
potential to include friction, [23] uses a polyhedral approxi-
mation of the friction cone to write a linear complementarity
problem (LCP).

In the next section we describe an approximation that
allows one to incorporate the hydroelastic contact model into
velocity-level NCP formulations of this type. The approach
is general in that it can be incorporated into any velocity-
level solver that supports the modeling of compliant point
contact.

III. OVERVIEW OF THE HYDROELASTIC CONTACT
MODEL

The hydroelastic contact model [11] combines two ideas:
elastic foundation and hydrostatic pressure. Thus the model
introduces an object-centric virtual or elastic pressure field
pe to mimic the hydrostatic pressure field of a fluid. In
practice, Drake generates a pressure field for primitive shapes
that is maximum at the medial axis, zero at the boundary, and
linearly interpolated in between. In Drake, users specify how
stiff a compliant object is through the hydroelastic modulus
Eh [27], the value of the pressure field at the medial axis.
How to generate pressure fields for arbitrary non-convex
geometries is currently a topic of active research.

Unlike Finite Element models, the hydroelastic contact
model is stateless and the deformed configuration of a body is
approximated. Given two overlapping (undeformed) objects
A and B with pressure fields pA and pB , respectively,
the contact surface S∩ is modeled as the surface of equal
pressure, see Fig. 2. Total forces and moments on these
bodies are the result of the integral of the equilibrium
pressure field pe = pA = pB on the contact surface S∩.

A. Contact Surface Computation

We represent the geometry of a compliant body with a
tetrahedral volume mesh. Each vertex of this mesh stores a
single scalar pressure value resulting in a piece-wise linear
pressure field pe which can be used to interpolate pressure
values at any point inside the volume.

The contact surface between two compliant bodies A
and B consists of a number of polygons. We denote with
La : R3 → R and Lb : R3 → R the linear interpolation of
the respective pressure fields within two tetrahedra τa ∈ A
and τb ∈ B having a non-empty intersection. Intersecting
tetrahedra can be found efficiently with a judicious choice
of data structures [11]. The surface on which La equals Lb
defines an equilibrium plane Pab. The contact surface is the

intersection Pab∩τa∩τb, a convex polygon with at most eight
vertices, Fig. 3. Recall that undeformed bodies are allowed
to overlap, see Fig. 2. Therefore intersecting tetrahedra from
two bodies as depicted in Fig. 3 is commonplace within the
overlap region of Fig. 2.

While a rigid object can be approximated as a compliant
hydroelastic object with a very large modulus of elasticity,
this approach can lead to numerical issues. Therefore, in
Drake, we represent a rigid object solely with a surface
mesh of triangles that tessellates its boundary. In this case,
the contact surface corresponds to the surface of the rigid
object clipped by the volume of the compliant object and the
contact pressure pe is the linear interpolation of the compliant
pressure field onto the contact surface.

B. Triangulated vs. Polygonal Contact Surfaces

In [11] an n sided polygon is divided into a fan of n
triangles that share a vertex at the polygon’s centroid, left
in Fig. 4. This ensures that only zero area triangles are
added/removed to the contact surface as objects move so that
topological changes do not introduce discontinuities in the
contact forces, as required for error-controlled integration.

As we’ll see in Section IV, each face in the contact surface
corresponds to one contact constraint in Eq. 7. Therefore to
arrive to a smaller contact problem, we seek to minimize the
number of contact constraints and consequently the number
of discrete faces. We then propose to replace the fan of
triangles by the original polygon, right in Fig. 4.

The polygonal representation leads to a significant reduc-
tion in the number of face elements representing the surface,
a factor of seven in Fig. 4. Even though much coarser,
the polygonal representation still provides rich contact in-
formation and allows to capture complex area-dependent
phenomena. This is demonstrated with test cases of practical
relevance in Section V. Finally, the equilibrium pressure field

Fig. 2: Two overlapping compliant bodies with pressure
fields pA and pB , with profiles along the normal direction
sketched in dashed lines. The contact surface S∩ is modeled
as the surface of equal pressure. We consider the motion of
the surface along the normal direction n̂, taking into account
directional gradients gA = −dpA/dn = −∇pA ·n̂ and gB =
dpB/dn = ∇pB · n̂.



is linear since it results from the intersection of the linear
pressure fields of overlapping tetrahedra.

IV. POINT CONTACT APPROXIMATION

The key idea introduced in this work is to approximate
the force contribution from each of the polygons described
in Section III-B using a first order expansion in time that
resembles the point contact model in Eq. (7). The elastic
force contribution fe from a polygon with area A is the
integral of the pressure field

fe =

∫
A

pe(x) n̂ dA = n̂

∫
A

pe(x) dA (11)

where the second equality results from the fact that faces are
planar. Moreover, since the pressure field is linear (Fig. 4),
this integral can be computed exactly as

fe = fn,e n̂,

fn,e = Apc (12)

where pc = pe(xc) is the pressure evaluated at the centroid
xc of the polygonal face.

To obtain an approximation consistent with the discrete
framework (6)-(10), we use a first order Taylor expansion to
approximate the pressure as

pc =

(
pc,0 + δt

dpc
dt

)
+

, (13)

where pc,0 is the hydroelastic pressure at the previous time
step. Since pressure is zero at the boundary of each object
and zero outside, we must take the positive part in (13) to
properly represent this functional form when bodies break
contact.

We will show next that the time rate of the pressure at the
surface can be approximated as

dpc
dt

= −g vn, (14)

where g is an effective pressure gradient, with units of Pa/m
and vn is the normal relative velocity at the centroid. Using
this approximation in Eqs. (12) and (13), we can write

fn,e = (−kφ)+, (15)

Fig. 3: Steps to compute a contact polygon for compliant-
compliant contact. a) Two overlapping tetrahedra. b) Their
equilibrium plane is clipped by the bottom tetrahedron into
a square. c) The top tetrahedron clips the plane further into
the final polygon, in this example, an octagon. d) Contact
polygon with linearly interpolated equilibrium pressure.

with

k = g A0,

φ0 = −pc,0
g
,

φ = φ0 + δt vn. (16)

where we froze geometric quantities at the previous time
step. This is common practice in many discrete time step-
ping strategies in the literature, see for instance [28], [29].
Dissipation in (15) is incorporated as in (1) to obtain an
equivalent point contact model.

Using this surrogate signed distance φ0 and stiffness k
we introduce the contribution of the i-th face of the contact
surface as a compliant point contact constraint in (7). Note
that the resulting scheme is implicit in the next time step
velocities through (7), making the scheme robust to the
choice of time-step size even for stiff materials.

Since these quantities are a function of polygon area and
effective pressure gradient, the approximation converges to
the original continuous model in the limit to zero time step.
Notice this would not be true for a simple model where
spring-dampers are located at the polygons’ centroids.

A. Pressure Time Rate

At a given point on the contact surface in Fig. 2 we analyze
the relative motion of bodies A and B in the direction
normal to the surface. We define a coordinate x in the normal
direction such that x = 0 at the surface and it increases in
the direction along the normal.

Along this normal direction, in the neighborhood to the
contact point, we approximate pressure fields pA(x) and
pB(x) as linear functions of the coordinate x

pA(x) = −gA(x− xA(t)) + bA, (17)
pB(x) = gB(x− xB(t)) + bB , (18)

where gA = −∇pA · n̂ and gB = ∇pB · n̂ are the slopes
along the normal, xA(t) and xB(t) are points rigidly affixed
to A and B, respectively, and bA and bB are simply the

Fig. 4: Triangular tessellation (left) as required in [11] and
the proposed polygonal approximation (right). The pressure
field is linear on the polygon as shown by the contour lines
and the color shading. The white rectangle outline is a visual
cue for the spanning plane of the contact polygon relative to
the compliant tetrahedron drawn in orange outline.



pressure values at xA(t) and xB(t), respectively. This is a
reasonable approximation given that the pressure fields are
piecewise linear functions within each compliant volume.

The equilibrium pressure at the surface, x = 0, is found
by equating the hydroelastic pressures

pe = gA xA(t) + bA = −gB xB(t) + bB . (19)

We take the time derivative of (19) to find the rate of
change of the pressure, as we need it in (13) at each polygon
centroid

dpe
dt

= gA vA(t) = −gB vB(t), (20)

where vA(t) and vB(t) are the respective velocities of each
body along the normal. These velocities are relative to the
contact surface since coordinate x is defined relative to the
surface, located at all times at x = 0. Since the pressure
fields are fixed in the body frames, ḃA = ḃB = 0. In terms
of these velocities, the normal velocity vn is given by

vn = vB − vA (21)

Combining Eqs. (20) and (21) we can write velocities
vA(t) and vB(t) in terms of the normal velocity vn as

vA = − gB
gA + gB

vn,

vB =
gA

gA + gB
vn. (22)

The final expression for the rate of change of the pressure
at the interface is obtained using the relative velocities from
(22) into (20). After some minimal algebraic manipulation,
the result is

dpe
dt

=
−gA gB
gA + gB

vn. (23)

Typically the pressure gradients and the normal direction
align along the same line and therefore both gA and gB
are positive. In this case dp/dt < 0 for vn > 0 and the
pressure decreases as the bodies move away from each other,
as expected. However, special care must be taken when
gA < 0 or gB < 0. Since the discrete approximation of
point contact requires k > 0, we simply ignore polygons
where the conditions gA > 0 and gB > 0 are not satisfied.
We find that this is not a major problem in practice since
this situation corresponds to corner cases of the hydroelastic
contact model for which pushing into the object leads to
a decrease of the contact forces instead of an increase as
expected.

V. RESULTS AND DISCUSSION

We present a series of simulation cases to assess the
robustness, accuracy, and performance of our method. The
time step for each simulation is chosen such that it can
properly resolve the dynamics of each specific problem. It is
a trade off between accuracy and speed.

In Drake we have two velocity level solvers; TAMSI [20]
and SAP [21]. SAP uses a convex approximation of contact
excellent for problems dominated by stiction or sliding at
low velocities. We use SAP in Section V-B for our scalability
studies since it uses supernodal sparse algebra and TAMSI
everywhere else.

A. Sliding and Spinning Disk

To assess the accuracy of our method’s ability to capture
the highly non-linear coupling between net force and torque,
we study a sliding and spinning disk with a known analytical
solution [30].

Based on the dimensions of a U.S. quarter dollar coin,
we simulate a disk of radius R = 1.213 cm, thickness
t = 1.75 mm, mass m = 5.67 g, friction coefficient µ =
0.2, and hydroelastic modulus Eh = 1.0 GPa lying flat
on a horizontal plane set into motion with initial values of
translational velocity v and angular velocity ω. The analytical
result for this example establishes a dimensionless parameter
ε = v

ωR that, regardless of initial conditions, converges to
ε∗ ≈ 0.653 as the coin comes to rest. We set initial angular
and translational velocities to span initial values ε0 in the
range [0.1; 10].

A fan of 152 triangles discretizes the circular geome-
try of the coin. To estimate the error introduced by the
discrete geometry, we first simulate our model using error
controlled integration to a tight accuracy of 10−2%. We find
the numerical solution with discrete geometry converges to
ε∗disc = 0.64426, at only 1.3% error from ε∗.

We now use our velocity-level discrete solver with a fixed
time step of δt = 10−3 s to compute numerical approx-
imations ε∗num from various initial conditions. Theory [30]
predicts a constant ε∗ regardless of the initial conditions. The
numerical results confirm this prediction within 0.01-0.5% of
ε∗disc and within 1.3% of ε∗, see Fig. 5. Variations in these
results are caused by numerical sensitivity to the zero-over-
zero limit in ε = v/(ωR) as the disk comes to rest.

Finally, we perform a convergence study to verify the
convergence of our method. For the reference solutions used
in Fig. 6 we use a time step size and grid size an order
of magnitude smaller than the smallest size shown in the
figures. For each timestep δt we define the relative error of
the computed trajectory xδt(t) vs the reference trajector x(t)
as:

εδt = ||x(t)δt − x(t)||2
/
||x(t)||2

and likewise for εδx. Our solver TAMSI [20] is first order
accurate in time, which is verified with the time step con-
vergence study in Fig. 6. Even though we show that a single
point at the centroid of each polygon integrates pressure
exactly, Fig. 6 shows a quadratic convergence with grid size.
This is due to the fact that moments are proportional to both
pressure and position, and therefore are not integrated exactly
but with a truncation error quadratic on the grid size. If
case this is not clear, the integration of moments is being
accounted for by the term JT0 f in Eq. (6), which effectively
accumulates the contributions from each polygon onto the
corresponding body.

B. Pancake Flip

In this scenario, a Kinova JACO arm (6 DOF) is outfitted
with a highly compliant Soft-bubble gripper [1]. The arm
is anchored to a table which has a stand holding a spatula,
a cylindrical stove top, and a pancake, modeled as a flat



Fig. 5: Numerically computed ε∗num vs. initial ε0 (circles).
Values are within 0.01-0.5% of the numerical reference
ε∗disc = 0.64426 (dash-dotted line) and within 1.3% of the
theoretical value ε∗ = 0.653 (dashed line).

Fig. 6: Convergence study with time step size (left, δx =
2.4 mm) and with grid size (right, δt = 1.0 ms). Dashed
references lines are shown for first order on the left and for
second order on the right.

ellipsoid, on top. The Soft-bubble gripper and the pancake
are modeled as compliant objects with hydroelastic modulus
Eh = 105 Pa and Eh = 104 Pa, respectively. Even though
pancakes fold in reality, synthetic silicone pancakes were
used in the real experimental setup, and therefore hydroe-
lastic contact proved to be a useuful approximation. All
remaining objects are modeled as rigid.

The controller process tracks a prescribed sequence of
Cartesian end-effector keyframe poses. We use force feed-
back to gauge successful grasps and to know when the
spatula makes contact with the stove top.

The robot is commanded to grab the spatula from the stand
and subsequently scoop, raise, and flip the pancake over on
the stove, see Fig. 7 and the accompanying supplemental
video.

Figure 9 shows the number of faces throughout the simu-
lation using both triangular and polygonal tessellations. On
average, the number of faces is 4.05 times smaller when
using the polygonal tessellation. Still, the model is able
to resolve the net torque on the spatula needed to achieve
a secure grasp. Moreover, with the resulting reduction in
the number of contact constraints, our solver performs 4.09
times faster. The computation of polygonal tessellations is
only about 10% faster than the corresponding triangular
tessellations.

To assess scalability and task success at different grid

sizes, we performed a grid refinement study using Drake’s
SAP solver [21]. We used a system with 24 2.2 GHz Intel
Xeon cores (E5-2650 v4) and 128 GB of RAM, running
Linux. However we run in a single thread. We use the steady
clock from the STL std::chrono library to measure wall-
clock time. All grids use polygonal tessellations. Our coarsest
grids result in 230 contacts per time step on average and
we progressively refine grids by a factor of two, resulting
in about 1500 constraints per time step on average, see the
accompanying video. Figure 8 shows wall-clock time for the
geometric queries and for the solver as a function of the
average number of constraints per time-step.

We observe that the cost of the geometric queries is
linear with the number of constraints (faces), demonstrating
the effectiveness of OBBs as acceleration data structures in
our implementation. For fully dense problems, we expect
the solver to have O(n3) complexity, where n denotes the
number of variables. For sparse problems, the complexity is
O(d3), where d is the size of the largest clique in a chordal
completion of the linear system matrix. A best fit exponent is
about ∼ 1.3 in Fig. 8, demonstrating the effectiveness of the
supernodal algebra, even though this case is not very sparse.

For our coarsest set of grids, the spatula resembles a box
rather than the original cylinder shape and the gripper uses
a similarly coarse grid. Still, the robot completed the task
successfully at all grid refinement levels. This demonstrates
that the completion of this task in simulation is rather
insensitive to mesh resolution.

Finally, our colleagues at TRI prototyped controllers in
simulation that transferred seamlessly to the real robotic
system, as shown in the accompanying video.

C. Spatula Slip Control

We now demonstrate the effectiveness of our method to
capture area-dependent phenomena such as the net torque
required to successfully grasp an object. We simulate the
aforementioned Soft-bubble gripper [1] anchored to the world
holding a spatula by the handle horizontally. The grasp force
is commanded to vary between 1 N and 16 N with square
wave having a 6 second period and a 75% duty cycle, left on
Fig. 10. This controller results in a periodic transition from a

Fig. 7: The scoop process of the pancake flip task. See
associated video.



Fig. 8: Mean wall-clock per time step vs. mean number of
constraints per time step, for geometry and SAP solver.

Fig. 9: Number of faces generated as a function of time.
Important events during the task are highlighted.

secure grasp with stiction to a loose grasp where the spatula
is allowed to rotate within the grasp in a controlled manner,
see Fig. 1 and the accompanying video.

Figure 1 (left) shows a closeup of the contact geometry
used for this model. Notice that while well resolved, we use
a rather coarse tessellation of the compliant bubble surfaces
of the gripper. The polygonal tessellation provides a rich
representation of the contact patch exhibited by an elongated
shape induced by the geometry of the handle, Fig. 1 (right).

This level of grasp control is achieved by properly resolv-
ing contact patch area changes; this degree of control would
be very difficult, if not impossible, to emulate using point
contact approaches.

Fig. 10: Commanded grasp force (left) and spatula pitch
(right).

VI. LIMITATIONS

All models are approximations of reality. We would like
to explicitly state the limitations of our approach:
• Acceleration data structures and linear tetrahedra are

key for a performant implementation of the hydroe-
lastic contact model [11] for simulations at real time
rates. Thus far, this limits the implementation to linear
elements. Higher order elements or alternative represen-
tations are in interesting research direction.

• We show in Section IV that a single quadrature point
located at the centroid of a polygon integrates the
linear pressure field exactly. Conversely, moments are
not integrated exactly. However, our method achieves
second order accuracy with grid size as demonstrated
with the grid study in Section V-A.

• The hydroelastic contact model is a modeling approx-
imation which does not introduce deformation state.
Therefore the model cannot resolve large deformations
phenomena such as buckling or folding.

• Thin objects can be problematic. For instance, an equi-
librium surface could not exit if a compliant thin box
is pushed deep enough into a compliant half space. For
this to happen the thin box needs to first get into such a
configuration, which is possible especially for large time
steps. We are currently working on ways to remedy this
problem.

VII. CONCLUSIONS

We presented a discrete in time approximation of the hy-
droelastic contact model to enable simulation of contact rich
patches using velocity-level discrete solvers for simulation
at real-time rates. The approach is general enough in that it
can be incorporated into any velocity level solver that can
handle compliant point contact.

We demonstrated the highly predictive nature of this model
in a test case with strong coupling between net force and
torque, matching known analytical results to within 1.3%
without parameter tuning beyond choosing a mesh that can
reasonably represent the geometry and choosing a time step
that can resolve the temporal dynamics of the problem.
Even though the polygonal tessellations are coarser than the
original triangular tessellations from [11], we demonstrated
the effectiveness of the approach to predict area-dependent
phenomena such as the net torque required for the successful
completion of a manipulation task.

Our novel surface representation in terms of polygonal
faces leads to a drastic reduction in the number of contact
constraints, a significantly smaller contact problem at each
time step, and consequently a substantial speedup enabling
simulation at interactive rates.

We present both time step size and grid size studies in
order to assess the expected rate of convergence of our
approximations. In particular, our method converges quadrat-
ically with grid size. The order of convergence with time
step size depends on the particulars of the velocity level
formulation, first order for our TAMSI [20] solver.



Finally, we include a mesh refinement study on the simu-
lation of a real robotic task that involves grasping. The study
reveals that the success of the task is not very sensitive
to mesh resolution, even when using very coarse grids.
Moreover, the study allowed us to assess the scalability of
the contact queries and our SAP solver [21] with the number
of constraints.

The hydroelastic contact model and the discrete approx-
imation presented in this work are made available in the
open-source robotics toolbox Drake [15]. The new model
has been used extensively for work conducted at the Toyota
Research Institute on prototyping and validating controllers
for dexterous manipulation of complex geometries [31].
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