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Sparse Semantic Map-Based Monocular
Localization in Traffic Scenes Using Learned
2D-3D Point-Line Correspondences

Xingyu Chen!, Jianru Xue'!, and Shanmin Pang'

Abstract—Vision-based localization in a prior map is of crucial
importance for autonomous vehicles. Given a query image, the
goal is to estimate the camera pose corresponding to the prior
map, and the key is the registration problem of camera images
within the map. While autonomous vehicles drive on the road
under occlusion (e.g., car, bus, truck) and changing environment
appearance (e.g., illumination changes, seasonal variation), ex-
isting approaches rely heavily on dense point descriptors at the
feature level to solve the registration problem, entangling features
with appearance and occlusion. As a result, they often fail to
estimate the correct poses. To address these issues, we propose
a sparse semantic map-based monocular localization method,
which solves 2D-3D registration via a well-designed deep neural
network. Given a sparse semantic map that consists of simplified
elements (e.g., pole lines, traffic sign midpoints) with multiple
semantic labels, the camera pose is then estimated by learning the
corresponding features between the 2D semantic elements from
the image and the 3D elements from the sparse semantic map.
The proposed sparse semantic map-based localization approach
is robust against occlusion and long-term appearance changes in
the environments. Extensive experimental results show that the
proposed method outperforms the state-of-the-art approaches.

Index Terms—Localization, Visual Learning

I. INTRODUCTION

HERE has been an increasing demand for autonomous
vehicles in recent years. To achieve autonomous capa-
bility, autonomous vehicles need to locate in a prior map.
Due to the low-cost, high resolution, and rich color of camera
images, monocular localization has received significant atten-
tion. Given a query image, the goal is to estimate the camera
pose corresponding to the prior map, the key problem is the
registration of camera images within the map. Most existing
work on map-based localization assumes that correspondences
are established between the 2D query image and the database
of geo-tagged 2D images [1], [2] or 3D map [3], [4], by
matching local image features (e.g., SIFT [3], ORB [6l]).
Unfortunately, in many scenarios, the query images and
the images used to create the map are captured under dif-
ferent appearances, or even under occlusion. For example,
illumination changes and seasonal variation lead to appearance
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changes, and dynamic objects contribute towards occlusions,
such as cars, buses, and trucks around robots. As a result,
monocular localization under different visual conditions using
the aforementioned methods often fail to estimate the correct
pose of the camera [7].

To resolve these challenging issues, the idea of visual
localization with a semantic map is proposed [8]], [9]. The
semantic map is employed for solving the registration problem,
which is compact for storage and robust to occlusion and
long-term changes in appearance. The semantic map in these
works contains the graphs on the ground plane, the localization
problem is then formulated into a semantic ICP problem by
inverse perspective mapping the points on the 2D image plane
to the 3D ground plane. However, these methods work for lane
lines on the ground but can not been used for traffic signs or
poles in the air.

Conventional Perspective-n-Points (PnP) methods are viable
to solve the 2D-3D registration problem when the correspon-
dences are given by matching query image features and map
features. However, while using a sparse semantic map that
is made up of simplified and standardized elements (e.g.,
lines of poles, midpoints of traffic signs), the correspondences
between 2D and 3D elements are often not known a priori,
the task becomes non-trivial chicken-and-egg problem since
the estimation of correspondence and pose is coupled.

In this paper, we simultaneously solve for both the 6-DoF
camera pose and 2D-3D correspondences by the proposed
blind PnP method. Firstly, we integrate off-the-shelf convo-
lutional neural networks to detect standardized 2D semantic
elements and extract the discriminative matching features of
2D and 3D semantic elements by a two-stream neural network.
The learned features encode local geometric structure, global
context, and semantic topologies of elements, which do not
rely on the features of raw images. Secondly, an optimal
transport based global feature matching module is employed
to estimate a joint correspondence probability matrix among
all 2D-3D pairs. Sorting the 2D-3D matches in decreasing
order with their probabilities produces a prioritized match
list. Thirdly, we exploit the obtained prioritized match list in
the P3P-RANSAC approach [[10]], [[11]] and optimize the joint
correspondence residuals in a weighted Perspective-n-Points-
and-Lines (PnPL) manner. The contribution of this paper is
summarized as follows:

1) An efficient learning based blind PnP approach for 2D-3D
registration is proposed for monocular localization using
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a sparse semantic map, which integrates correspondence
learning with the PnP algorithm.

2) A robust correspondence learning module is developed to
extract the discriminative matching features of 2D and 3D
semantic elements and estimate the joint correspondence
probability matrix.

3) A differentiable weighted PnPL module is modeled point-
line-wise to optimize correspondence residuals.

II. RELATED WORK

A traditional map-based localization pipeline usually con-
sists of feature extraction, feature matching, and optimization.
Given different types of queries and maps, there are various
methods to implement the pipeline. Here, we focus on the
issues of feature matching and optimization, and divide these
localization technologies into three categories: 2D-2D, 3D-3D,
and 2D-3D.

A. 2D-2D

2D-2D localization [12], [13] is usually the first step in
current Simultaneous Localization and Mapping (SLAM) [14]]
or Structure from Motion (SfM) [15]). It is done in the image
space. Given a query image, the goal is to retrieve the image
corresponding to the same place from a database of geo-tagged
images and estimate the query pose via the retrieved image.
Typically 2D-2D localization includes feature extraction and
matching, optionally followed by a relative pose estimation
solver. First, a set of local features such as SIFT [5] or
ORB [6] are extracted from both query and database images.
Then the local features of the query image are aggregated
to a global descriptor [1l], [2] and used to approximate the
pose of the query image via matching against its nearest
neighbor in database images. Dense correspondences can be
established based on the local features, which is used to solve
for the finer pose using the five-point algorithm [16]], or eight-
point algorithm [[17]], etc. However, these 2D-2D localization
methods often failed under different visual condition. Such as
illumination changes, weather, season, and occlusion [7].

B. 3D-3D

The availability of 3D information such as Lidar enables
3D-3D localization [18]. Existing work can be classified into
two categories: (1) blind correspondences methods and (2)
two-step feature-based methods. Methods like ICP [19], NDT
[20], and Go-ICP [21] can estimate the query pose without
establishing correspondences between the 3D observation and
the prior 3D map. Two-step feature-based methods use 3D
feature detectors [22], [23] and descriptors [24], [25] to
establish the correspondences by matching the features, then
estimates pose using the Singular Value Decomposition (SVD)
solver [26]. The 3D-3D localization methods are widely used
in Lidar-based SLAM algorithms like LOAM [27], Cartog-
rapher [28], etc. However, the expensive Lidar and memory-
consuming dense 3D map make it unaffordable for the mass
production of mobile robots.

C. 2D-3D

Most existing work on 2D-3D localization assumes that
correspondences are first established from local image fea-
tures of the 2D query image and the 3D map [3], [4]. The
3D map is usually built from a collection of images using
SfM [15]], and the associated local features, e.g., SIFT [3l],
are stored with the map. To estimate the pose, each 2D-
3D feature pair votes for its correspondence independently,
without considering other pairs in the image. Then a minimal
solver algorithm, e.g., EPnP [29], combined with RANSAC
[L1] iterations, is used for pose estimation. Similar to 2D-2D
localization, these approaches require local image features that
suffers from domain shifts. To close the domain gap, methods
[30], [31] are proposed, which employ neural networks to
extract domain-invariant features from 2D images and dense
3D maps. Nevertheless, these methods are still hampered
by the difficulty of extracting domain-invariant features from
appearance-variant images. The BPnPNet [32] is designed to
extract domain-invariant features from 2D-3D points and solve
the point-wise PnP problem. However, it suffers from noise
points and clutter maps. In contrast, our method tries to learn
the features of sparse 2D and 3D semantic elements that are
simplified and standardized, which means it is robust across
all domains. And we solve the PnP problem in the point-line-
wise, which takes more advantage of the geometry constraints
than point-wise PnP.

III. OVERVIEW

We propose to simultaneously estimate both the 6-DoF
camera pose and sparse semantic 2D-3D correspondences, as
shown in Fig. [T] Specifically, we propose to build sparse se-
mantic maps based on standardized semantic elements offline
and use such maps for online localization. Given the GPS,
we first get the initial guess of the pose with the error of 10
meters or so. We use GPS as the origin and a radius of 20
meters to crop a submap. In order to find the correspondences
between the camera image and the submap, we integrate off-
the-shelf deep models to detect standardized 2D elements. If
the scene is simple, the correspondences could be obtained
directly by semantic information, we will perform the direct
PnPL algorithm to get the camera pose. In many cases, the
search space of correspondences is enormous, and outliers are
prevalent, so we propose to learn correspondences by a neural
network, and optimize correspondence residuals in a weighted
PnPL manner.

IV. CORRESPONDENCE LEARNING
A. 2D semantic Detection and Representation

The involved semantic elements include two major types:
lines of poles and midpoints of traffic signs. Given an image,
we use YOLOVS [33]] to detect the bounding box of the 2D
elements, then we expand the bounding box by 10% and feed
it to deeplabv3+ [34] to segment the 2D elements. We use
Canny [35] followed by dilation and erosion to get the edge
of the 2D elements, and then we parameterize a traffic sign
using a midpoint and parameterize a pole using a peak point
with a unit vector pointing to the bottom point.
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Fig. 1. Overview of the proposed sparse semantic map-based localization pipeline. The blue blocks are inputs of our system, where we assume the sparse
semantic map is built offline. The red blocks show the pre-processing steps to get the standardized 2D and 3D semantic elements. The yellow block indicates
that we perform direct PnPL if the scene is simple that correspondences are directly given by semantic information. Most of the time, the search space of
correspondences is enormous, and outliers are prevalent. The green blocks indicate the solution for complex scenes.
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Fig. 2. Framework of our pose estimator. The input is a set of 2D and 3D elements coordinates, direction, and semantic vector, from which point-wise
discriminative matching features are extracted using a two-stream network. Feature matching is then performed by computing the L2 distance between the 2D
and 3D features and using the Sinkhorn algorithm to estimate a joint probability matrix among all 2D-3D pairs. To estimate the camera pose, We exploit the
obtained joint correspondence probability matrix in the P3P-RANSAC approach and optimize correspondence residuals in a weighted Perspective-n-Points-

and-Lines (PnPL) manner.

B. Feature Extractor

Let p € R? denote a 3D point, and f € R? denote a
unit bearing vector corresponding to a 2D point in the image
plane of a calibrated camera. That is, ||f]| 1 and f x
K~ !u,v,1]T, where (u,v,1) are the 2D image coordinates
in homograph form, and K is the known intrinsic camera
matrix that comes from pre-calibration of camera. Given a
set of bearing vectors F = {f;}!"; detected by semantic
element detector and a set of 3D points P = {p;}, of
the corresponding submap, we concatenate them with vectors
Vsp and V,p, which describes the direction and semantic
information of 3D and 2D point sets, respectively. (For poles,
we know a priori that bottom points are easily occluded by
moving objects, while peak points are not, so we use peak
points, the direction vector pointing to the bottom points,
and one hot semantic vector (e.g., 0001) to represent poles.
Accordingly, we use the center point, zero direction vector,
and one hot semantic vector (e.g., 0010---1000) to repre-
sent traffic signs.) We learn the discriminative features using
PointNet [36]] inspired neural networks ®, and ¥, in which
parameters ¢ and ¢ account for the local geometric structure,
global context, and semantic topologies at each element of the

2D and 3D input, respectively:

Zr = @, (concat (F,Vap)),

Zp = Uy (concat (P, Vsp)), )

where Zr = {z¢,}, |, Zp = {2p, },_, and the latent vector
zg, € R12, z,,. € R'?® are the discriminative features of 2D
and 3D respectively.

To extract point-wise features, similar to Liu et al. [37],
we use a point-wise KNN graph to aggregate features. Firstly,
we build a point-wise KNN graph and concatenate the anchor
point and edges (residuals features of anchor point and neigh-
bor points), then we perform multilayer perceptron (MLP) to
extract the features followed by average pooling. We replicate
the process 12 times with residual connections [38], and
extract features from local to global with the help of the KNN
graph, where the feature of different semantic elements will
not aggregate together in the first few layers of the network
since there is a one hot semantic distance between them.

C. Feature Matcher

Given the learned features Zr, Zp, we perform feature
matching to estimate the likelihood of a given 2D-3D pair. To
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do so, we use the pairwise L2 distance in Euclidean space to
establish the distance matrix M € R’"*" between 2D and 3D
features, which measures the cost of assigning 2D elements to
3D elements:

Mi; = ||z¢, — Zp, [|2- 2

Furthermore, to globally handle the likelihood of pairwise
match, we describe the matching ambiguities as an optimal
transport problem [39] and solve the joint correspondence
probability matrix P by solving:

m n

arg min Z Z (MZJPU + ,U,Pij (log P” — 1)), (3)
PeU(r,s) ;4 =1
where U (r,s) is the transport polytope that couples two prior
probability vectors r and s, given by:

U(r,s) = {PGRTX"'|P1”:r,PT1m:s}. @)

The prior probability vectors r € R and s € R’} with
> r=1and ) s = 1, which represent the likelihood that a
2D or 3D element has a valid match and is not an outlier. In
this work, we use the uniform priors r = =1 and s = 1,
as introduced by Campbell et al. [32], which means that each
element has the same prior likelihood of matching.

We use the Sinkhorn algorithm [40] to solve the optimal
transport problem Eq. 3] as has been previously demonstrated
in the literature [32].

More precisely, different semantic elements will pass
through different branches of the feature matcher. Each one
is used to optimize the correspondence probability matrix
P, ---P,, or P; of the specific semantic elements, given the
distance matrix M, ---M,, or M; of specific traffic signs
and poles, respectively, as illustrate in Fig.

V. POSE ESTIMATION
A. Coarse Pose Estimator

The objective of the coarse pose estimator is to find the
rotation R € SO(3) and translation t € R? that transforms
P to the coordinate system of JF with the greatest number
of inlier correspondences. Given the correspondences of the
peak points of the poles, we can solve the correspondences
of the bottom points at the same time. Although the outlier
correspondences of the bottom points are easy to be introduced
due to the occlusion, we can utilize the correspondences of
bottom points to solve the pose with the help of the RANSAC
[L1] algorithm, which is robust to outliers.

Specifically, we solved the pose through the P3P [10]
algorithm with RANSAC, which repeatedly selects 3 pairs
of matching elements in a subset of prioritized matches and
1 pair of verification points to estimate the pose and then
chooses the solution with the highest inlier rate as the coarse
pose estimation. To obtain the subset of prioritized matches,
we reshape P into a correspondence probability vector, sort
it by decreasing probability and truncate it to obtain the
Top-K prioritized matching subset with high correspondence
probability. The indicator that correspondence is inlier is
defined by an angular threshold 6 of the reprojection error:

£ (Rp; + t))
arccos | ~———2—2 | 5)
< IRp; +tl

where p; is the closest point of P reprojected to the coordinate
of F, with respect to f;, given the estimated rotation R and
translation t. The solution R and ty of the robust randomized
global search is used as a coarse pose to initialize the weighted
PnPL optimization.

B. Weighted PnPL

We now have a coarse pose, a correspondence probability
matrix P, of points, a correspondence probability matrix P;
of lines, then we refine the camera pose by optimizing:

argmin fp(Pp,r,t) + fi(Py,r,t), ©)
reR3,ter3
over r and t, where r is an angle-axis representation of the
rotation such that R, = exp[r]x. The operator []x is the
skew-symmetric operation, and the closed-form exponential
map constrains R € SO(3). The f, and f; are the objective
functions for points and lines, the specific formulation is:

Fo(Pport) = iipm ( TM)

i=1j=1 [Rep; + t]
fi(Py,r,t) = )
Rr(pj +v3g) +t >

IR (pj + Vvaa;) +t]|

where vo4, v3g 1S the unit direction vector of lines in 2D
and 3D respectively. On the one hand, a point in the image
corresponds to a ray in space and f, encourages the trans-
formed point R.p; + t to lie on the ray spanned by f;, i.e.
R.p; +t and f; be collinear. On the other hand, a line in the
image corresponds to a plane in space and f; encourages the
transformed point p; + v3g; to lie in the plane spanned by f;
and vy, i.e. be perpendicular to f; X vag;.

We minimize the full nonlinear function using the L-BFGS
optimizer [41] to get the finer R and t for the given joint
probability matrix.

m2 n2

55 e (1

i=1j=1

f; X vaq;

[If; X vaqil|

C. Direct PnPL

When the scene is simple that the correspondences are
directly given by the semantic information, we will perform
the direct PnPL:

argmin f,(PY,r,t) + fi(P],r,t) (8)

rcR3 tcR3
where the P}’? and PP is the Boolean one-to-one correspon-
dence matrix with at most one nonzero element in each row
and column. Most of the time, we perform weighted PnPL
because the search space of correspondences is enormous, and
outliers are prevalent.

VI. THE JOINT LEARNING METHOD
To optimize the parameters ® and v of the feature extractor,
we minimize two loss functions. The first is a correspondence
loss L to bring the estimated correspondence matrix P, closer
to the ground truth:

Le —ZZ (1-2C%)P

Pij, t), (C)]
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where the ground-truth correspondence matrix C,;; is 1 if
{f;,p;} is a true correspondence and 0 otherwise. Optimiz-
ing the L. encourages the feature extractor ®4 and WU, to
maximize the joint probability of inlier correspondences and
minimize the joint probability of outlier correspondences.

The second is a pose loss L, to encourage the network
to generate correspondence matrices that are amenable to the
weighted PnPL solver:

L,= arccos% (trace R;R — 1) + |t — tgll, - (10)

To achieve accurate and robust pose estimation, we combine
the aforementioned loss and jointly train all the parameters to
optimize the full objective:

L=Lc+vLy. (11)

Where the first term is balanced by the second, which
corresponds to a regularizer with a multiplier «y,, and this
discourages the feature extractor from ignoring the demand
of the pose estimator. Note that loss functions L. and L,
are complementary while generating a perfect correspondence
matrix is not achievable in practice. There are a series of
suboptimal corresponding matrices, which achieves the same
value of L. but yields distinct value of L,. The gradients
backward from the pose loss to the feature extractor guarantees
that the weighted PnPL pose estimator indeed benefits from
the extracted features and correspondences.

VII. EXPERIMENTS
A. Implementation Details

We closely follow the procedure of YOLOvS [33]] and
deeplabv3+ [34] to train the element detector. The rest of
our framework is implemented in PyTorch follows [37]], [31],
[32]. We train the feature extractor using the Adam optimizer
[42] with a learning rate of 5 x 10~*. We use a batch size
of 12 and train for 120 epochs with the correspondence loss
only (7, = 0), followed by 80 epochs with the pose loss
as well (y, = 1), because the pose loss works only when
the correspondence probability matrix P, has been warm
started. For the KNN-graph of the feature extractor, we set
the number of neighbors to 4. The entropy parameter p of
the Sinkhorn algorithm is set to 0.1. The inlier reprojection
threshold and the maximum number of iterations of P3P-
RANSAC are set to 0.003 and 1000. The back-propagation
of gradients through the optimization layers (weighted PnPL
and Sinkhorn) is interpreted as a bi-level optimization problem
and solved by the implicit differentiation technique [43]. All
experiments are run on a single Titan Xp GPU.

B. Evaluation

We evaluate our method on the KITTI [44] dataset with
a second construction. We follow the common practice of
utilizing the 0-8 sequences for training and 9-10 for testing.
Evaluation of Element detector. For the element detector,
we select one image per 10 frames of the training sequence
to train the object detection network YOLOvS5. We label the
bounding box for 4098 images with four types of traffic

elements, including poles, triangular, rectangular, and rounded
signs. Then, we use the bounding box to crop images to label
the semantic information at the pixel level. Combining them
with the data that we have cropped and labeled on TT100k
[45]], we use a total of 1157 images with the size of 128 x 128
to train the Deeplabv3+ network.

We evaluate the performance of the element detector on

216 images with three criteria: Recall Rate (RR), Root Mean
Square Error (RMSE), Mean of Error (ME), and Standard
Deviation of Error (SDE). As shown in Table the RR of
our element detector is about (80%), which is sufficient for
the pose estimation since our weighted PnPL is robust for
missing detection, as shown in Fig. ] It indicates the statistical
Relative Translation Error (RTE) and Relative Rotation Error
(RRE) when the element detector has different Recall Rate.
Furthermore, we report the RMSE, ME, and SDE of our,
which is acceptable for pose estimation when the image
resolution is 1382 x 512.
Evaluation of Localization Accuracy. To construct the data
for training the feature extractor and evaluate the localization
accuracy, we need to build the 3D elements map. Considering
that it is difficult for horizontal Lidar to capture the high
poles and high traffic signs, we need to build a 3D map
through images. Firstly, We label and match the 2D elements
between the left and right view images of the KITTI data set.
Secondly, we use the linear triangulation method to reconstruct
the 3D elements based on the matched 2D elements. Finally,
we utilize the optimized global pose [46] as the ground truth to
construct the 3D elements map, followed by the DBSCAN [47]]
algorithm for de-duplication. Similar to the criteria of element
detector, we report the RMSE, ME and SDE reprojection error
between the reprojected 2D elements of constructed 3D map
and 2D annotation elements in Table[[TI] The reprojection error
between the 3D elements map and 2D annotation elements
is less than 1 pixel/1°, indicating that the accuracy of the
3D elements map meets the requirements of localization. The
image-submap pairs are sampled within £20m. We apply
the data augmentation on 3D elements by random rotation
within 360 degrees and random translation within 5m on the
horizontal plane. Note that since pose estimation requires at
least four 2D elements, only images with 2D elements greater
than or equal to 4 are considered valid data, and other images
will not be included in the training and test set. The percentage
of valid data in all sequences is 3.29%. In total, there are 2934
frames for training and 459 frames for testing.

Following the practice of [31], the localization accuracy is
evaluated with two criteria: Relative Translation Error (RTE)
and Relative Rotation Error (RRE). The distribution of the
localization accuracy of RTE (m) and RRE (°) on the KITTI
dataset is shown in Fig. |3| Specifically, the average of the
translational/rotational errors are 0.22m/0.34°, the median of
the translational/rotational errors are 0.18m/0.26°. We achieve
the robust performance where 99.5% of the translational errors
are less than 1.0m, and 94.7% of the rotational errors are less
than 1.0°.

Comparisons. We compare our method against BPnPNet [32]],
DeepI2P [31], 2D3D-MatchNet [30] and five variants of them.
All methods are trained and tested using the same training and



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2022

TABLE 1
LOCALIZATION ACCURACY ON THE KITTI DATASETS
RTE (m) RRE (°)

Mean QI Q2 Q3 Mean QI Q2 Q3

Running on Raw Data 2D3D-MatchNet 27.1 12.0 233 63.1 134 115 127 162
DeepI2P 429 154 327 962 145 82.4 131 167

Point 2D3D-MatchNet* 184 6.72 13,5 273 | 758 23.1 537 146

Running on Detected Elements Point Deepl2P* 394 057 139 583 | 241 537 132 36.5
BPnPNet 1.14 021 049 157 | 210 052 074 2.69

Ours w/o Semantics 049 0.14 021 097 092 0.17 035 1.83

Semantic Point 2D3D-MatchNet* | 521 2.14 432 126 | 243 649 186 372

Running on Semantic Elements Semantic Point DeepI2P* 217 025 071 324 | 8.69 215 621 124
Semantic BPnPNet* 036 0.17 025 082 | 065 023 039 122

Ours 022 0.09 018 029 | 034 014 026 045

* Methods are modified by us to utilize the standardized elements and semantic information.

RTE Histogram

0.06 -

0.0 0.2 0.4 0.6 0.8 1.0 12 14

RRE Histogram

125 150 175

Fig. 3. Histograms of localization accuracy RTE and RRE on the KITTI datasets. x-axis is RTE (m) and RRE (°), and y-axis is the percentage.
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Fig. 4. Analysis of RTE and RRE with respect to Recall Rate. x-axis is the Recall Rate of a single image, and y-axis is the statistical RTE and RRE when

the element detector is under that specified Recall Rate.

test set, and are compared in terms of the localization accuracy,
except Deepl2P and 2D3D-MatchNet, where we use their pre-
trained network and fine-tune the parameters in our training
set since train a network from scratch to extract the features
from the original image requires more data. We report the
mean and quartiles for translation error RTE (m) and rotation
error RRE (°) according to baselines. We denote the first,
second (median), and third quartiles as QI, Q2, and Q3, as
summarized in Table

Both 2D3D-MatchNet [30] and DeepI2P [31] suffer from
the difficulty of extracting the features from raw images
and matching the features with 3D elements. To utilize the
standardized elements, we modified them to Point 2D3D-

MatchNet and Point DeeplI2P, which learns to match across 2D
elements detected by our element detector and 3D elements
of the map. The improvement of the RTE and RRE showed
in Table [l demonstrates that the sparse elements do help with
localization accuracy.

The BPnPNet is designed to solve the blind PnP
problem, which is naturally suited to the task of matching 2D-
3D elements and pose estimation. It produces a more accurate
pose estimation and is able to achieve RTE/RRE error in the
single digits. However, the RTE/RRE of BPnPNet still tends
to exhibit significant variances, while Ours w/o Semantics
does not. Ours w/o Semantics is ablation of our method,
which builds upon our full model by eliminating the semantic
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TABLE I
DETECTION ACCURACY ON THE KITTI DATASETS
Poles  Triangular ~Rectangular ~Rounded

RR (%) 66 89 87 79

RMSE (pixel) NA 1.81 4.10 3.17
Lateral ME (pixel) NA -1.38 -0.80 -0.61
Lateral SDE (pixel) NA 0.90 4.25 1.63
Longitudinal ME (pixel) NA -0.86 -1.74 1.49
Longitudinal SDE (pixel) | NA 0.84 343 4.31
Angular ME (°) -1.52 NA NA NA
Angular SDE (°) 1.32 NA NA NA

TABLE III
MAPPING ACCURACY ON THE KITTI DATASETS
Poles  Triangular Rectangular  Rounded

RMSE (pixel) NA 0.86 0.74 0.62
Lateral ME (pixel) NA -0.02 0.03 0.05
Lateral SDE (pixel) NA 0.83 0.76 0.46
Longitudinal ME (pixel) NA -0.06 0.01 -0.03
Longitudinal SDE (pixel) | NA 0.44 0.38 0.31
Angular ME (°) -0.03 NA NA NA
Angular SDE (°) 0.27 NA NA NA

information from the inputs.

In order to make full use of the semantic information, we
implement the Semantic Point 2D3D-MatchNet and Semantic
Point DeepI2P, which have a more accurate pose estimation,
but cannot to achieve the accuracy of BPnPNet and Ours w/o
Semantics due to the lack of robust differentiable geometric
optimization.

Furthermore, we implement the Semantic BPnPNet to en-
able the BPnPNet to extract features from both element posi-
tion and semantic information. However, it still suffers from
significant variances in RTE and RRE. These variances are the
consequence of Semantic BPnPNet’s attempt to split lines into
points and use only points to estimate the matching and pose,
where the structured information of lines are underutilized and
underexploited. Our method exploits benefits of both points
and lines and thereby produces better localization accuracy on
all metrics than these baselines.

Moreover, we analyze the average runtime for inference.
2D3D-MatchNet and Deepl2P take about 3.1s and 5.7s to
extract features from raw data and estimate pose. For BPnPNet
and ours, it spends about 0.2s to detect the 2D elements and
0.1s to extract features from elements and achieve the pose
estimation.

Limitations. As illustrated in Fig. 5] the 3D elements map
suffers from duplication of the same element, which shows that
DBSCAN algorithm is not enough for de-duplication. Specific
tracking and graph optimization pipelines of standardized
elements have to be developed to build a more accurate map.
Additionally, although we have built a robust feature matcher,
there will still be outliers in the correspondences. Thanks to
the P3P-RANSAC and weighted PnPL, we have estimated the
correct pose (RTE = 0.08m) with tiny reprojection errors.
Without exception, given a better feature matcher, the proposed
method will achieve better performance in the future. On
the other hand, when 2D semantic elements are less than 4,
our method fails. Therefore, how combining vision or inertial
odometry with our framework is an essential topic in the
future.

Fig. 5. Visualization of the 3D elements map projected onto the images using
the ground truth pose (top), where the yellow and green points are the traffic
sign and pole elements respectively. Correspondences with outlier (middle),
where the blue and red points are the detected and ground truth projected
elements, and the green lines between them are correspondences. Reprojection
error of pose estimation (bottom), the blue points are the projected 3D
elements using the estimated pose, the red points are the projected 3D
elements using the ground truth pose, and the green lines between them
indicate the reprojection error.

VIII. CONCLUSION

Localization in a prior sparse semantic map has grown
in prominence and can be utilized in various applications,
including mobile robots and autonomous vehicles. While
BPnPNet works effectively with 2D and 3D elements, it
is hard to achieve low variance pose estimation. Experimen-
tal results demonstrate that our method can accurately and
robustly locate in a prior sparse semantic map. Specifically,
the proposed learning correspondence module can efficiently
extract the discriminative matching features of 2D and 3D
semantic elements, via simultaneously utilizing the semantic
information and element position. Furthermore, the weighted
PnPL module optimize the joint correspondence residuals in
the point-line-wise, which performs robust differentiable geo-
metric optimization with the points and lines. The advantages
of our proposed framework are verified with the constructed
KITTI dataset.

REFERENCES

[1] C. Valgren and A. J. Lilienthal, “Sift, surf & seasons: Appearance-
based long-term localization in outdoor environments,” Robotics and
Autonomous Systems, vol. 58, no. 2, pp. 149-156, 2010.

[2] I Ulrich and 1. Nourbakhsh, “Appearance-based place recognition for
topological localization,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), vol. 2. Ieee, 2000, pp.
1023-1029.

[3] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization,” IEEE transactions
on pattern analysis and machine intelligence, vol. 39, no. 9, pp. 1744—
1756, 2016.



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2022

Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose
estimation using 3d point clouds,” in European conference on computer
vision. Springer, 2012, pp. 15-29.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2. leee, 1999, pp. 1150-1157.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. leee, 2011, pp. 2564-2571.

T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg,
D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, et al., “Benchmarking
6dof outdoor visual localization in changing conditions,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 8601-8610.

T. Qin, T. Chen, Y. Chen, and Q. Su, “Avp-slam: Semantic visual
mapping and localization for autonomous vehicles in the parking lot,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2020, pp. 5939-5945.

T. Qin, Y. Zheng, T. Chen, Y. Chen, and Q. Su, “A light-weight semantic
map for visual localization towards autonomous driving,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2021, pp. 11248-11254.

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 25, no. 8, pp.
930-943, 2003.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

M. Xu, N. Snderhauf, and M. Milford, “Probabilistic visual place
recognition for hierarchical localization,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 311-318, 2020.

L. Clement, M. Gridseth, J. Tomasi, and J. Kelly, “Learning matchable
image transformations for long-term metric visual localization,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1492-1499, 2020.
R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147-1163, 2015.

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

D. Nistér, “An efficient solution to the five-point relative pose problem,”
IEEE transactions on pattern analysis and machine intelligence, vol. 26,
no. 6, pp. 756770, 2004.

H. C. Longuet-Higgins, “A computer algorithm for reconstructing a
scene from two projections,” Nature, vol. 293, no. 5828, pp. 133-135,
1981.

I. D. Miller, A. Cowley, R. Konkimalla, S. S. Shivakumar, T. Nguyen,
T. Smith, C. J. Taylor, and V. Kumar, “Any way you look at it: Semantic
crossview localization and mapping with lidar,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2397-2404, 2021.

P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586—-606.

P. Biber and W. Straler, “The normal distributions transform: A new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2003)(Cat.
No. 03CH37453), vol. 3. IEEE, 2003, pp. 2743-2748.

J. Yang, H. Li, and Y. Jia, “Go-icp: Solving 3d registration efficiently
and globally optimally,” in Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 1457-1464.

F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d
keypoint detectors,” International Journal of Computer Vision, vol. 102,
no. 1, pp. 198-220, 2013.

J. Li and G. H. Lee, “Usip: Unsupervised stable interest point detection
from 3d point clouds,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 361-370.

F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms
for local surface description,” in European conference on computer
vision. Springer, 2010, pp. 356-369.

Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d
point cloud matching with smoothed densities,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5545-5554.

G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear algebra. Springer, 1971, pp. 134-151.

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]

(471

J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1-9.

W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d lidar slam,” in 2016 IEEE international conference on robotics and
automation (ICRA). 1IEEE, 2016, pp. 1271-1278.

V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, pp. 155-166, 2009.

M. Feng, S. Hu, M. H. Ang, and G. H. Lee, “2d3d-matchnet: Learning
to match keypoints across 2d image and 3d point cloud,” in 2019
International Conference on Robotics and Automation (ICRA). 1EEE,
2019, pp. 4790-4796.

J. Li and G. H. Lee, “Deepi2p: Image-to-point cloud registration via
deep classification,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 15960-15 969.
D. Campbell, L. Liu, and S. Gould, “Solving the blind perspective-n-
point problem end-to-end with robust differentiable geometric optimiza-
tion,” in European Conference on Computer Vision. Springer, 2020,
pp. 244-261.

G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWangl900, D. Patel, D. Yiwei, F. You, J. Hajek,
L. Diaconu, and M. T. Minh, “ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,” Feb.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6222936
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801-818.

J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679-698,
1986.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652-660.

L. Liu, D. Campbell, H. Li, D. Zhou, X. Song, and R. Yang, “Learning
2d-3d correspondences to solve the blind perspective-n-point problem,”
arXiv preprint arXiv:2003.06752, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

C. Villani, Optimal transport: old and new. Springer, 2009, vol. 338.
A. W. Marshall and I. Olkin, “Scaling of matrices to achieve specified
row and column sums,” Numerische Mathematik, vol. 12, no. 1, pp.
83-90, 1968.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on scientific
computing, vol. 16, no. 5, pp. 1190-1208, 1995.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

S. Gould, R. Hartley, and D. J. Campbell, “Deep declarative networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The Kkitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231-1237, 2013.

Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2110-
2118.

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and
C. Stachniss, “Towards 3D LiDAR-based semantic scene understanding
of 3D point cloud sequences: The SemanticKITTI Dataset,” The Inter-
national Journal on Robotics Research, vol. 40, no. 8-9, pp. 959-967,
2021.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226-231.


https://doi.org/10.5281/zenodo.6222936

	I INTRODUCTION
	II RELATED WORK
	II-A 2D-2D
	II-B 3D-3D
	II-C 2D-3D

	III Overview
	IV Correspondence Learning
	IV-A 2D semantic Detection and Representation
	IV-B Feature Extractor
	IV-C Feature Matcher

	V Pose Estimation
	V-A Coarse Pose Estimator
	V-B Weighted PnPL
	V-C Direct PnPL

	VI The Joint Learning Method
	VII EXPERIMENTS
	VII-A Implementation Details
	VII-B Evaluation

	VIII CONCLUSION
	References

