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Abstract—Although existing monocular depth estimation meth-
ods have made great progress, predicting an accurate absolute
depth map from a single image is still challenging due to the
limited modeling capacity of networks and the scale ambiguity
issue. In this paper, we introduce a fully Visual Attention-
based Depth (VADepth) network, where spatial attention and
channel attention are applied to all stages. By continuously
extracting the dependencies of features along the spatial and
channel dimensions over a long distance, VADepth network can
effectively preserve important details and suppress interfering
features to better perceive the scene structure for more accurate
depth estimates. In addition, we utilize geometric priors to form
scale constraints for scale-aware model training. Specifically, we
construct a novel scale-aware loss using the distance between the
camera and a plane fitted by the ground points corresponding
to the pixels of the rectangular area in the bottom middle of
the image. Experimental results on the KITTI dataset show
that this architecture achieves the state-of-the-art performance
and our method can directly output absolute depth without
post-processing. Moreover, our experiments on the SeasonDepth
dataset also demonstrate the robustness of our model to multiple
unseen environments.

Index Terms—Deep learning for visual perception, computer
vision for transportation, range sensing.

I. INTRODUCTION

MONOCULAR Depth Estimation (MDE) is a fundamen-
tal problem in the field of computer vision, which

refers to predicting the corresponding depth map from a single
image. Depth Estimation has broad application prospects in
autonomous driving, such as 3D object detection [1], scene
understanding [2], and obstacle avoidance [3]. Compared to
other ways of measuring depth [4], [5], monocular depth
estimation has unique advantages in obtaining dense depth
maps at low cost. Therefore, MDE has aroused the interest
of many researchers.
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In the past few years, many deep learning-based MDE
methods [6]–[23] have emerged and continual improvements
[7]–[23] have been made. These methods can be divided
into supervised methods [6]–[9] and self-supervised methods
[10]–[23]. Unlike supervised methods, self-supervised meth-
ods do not need to rely on ground truth depth for training.
Furthermore, existing self-supervised MDE methods can be
divided into two categories: self-supervised stereo training
methods [10]–[12] and monocular training methods [13]–
[23]. The former use stereo image pairs while the latter
use monocular videos as training data. In contrast to stereo
training, monocular training is a more general form of self-
supervised methods and easier to obtain training data.

However, existing self-supervised monocular training meth-
ods still have difficulties in predicting accurate metric depth.
This unsatisfied performance may come from two reasons:
the limited modeling power of the model and the limited
supervision of loss functions. Many existing self-supervised
depth estimation networks [16]–[18], [23], [24] adopt residual
networks [25] based on an encoder-decoder architecture [26].
Such a depth network shows a powerful capacity for capturing
local information and representing hierarchical abstract fea-
tures, but is insufficient to distinguish important details from
interfering information. Due to these characteristics of the
model, it is difficult for these methods to predict accurate depth
estimation results on patterned surfaces or tiny structures.
Thus, we introduce a fully Visual Attention-based Depth
(VADepth) network. Specifically, we build a decoder based on
the designed visual attention blocks and use a visual attention
network followed by a dual attention module as the encoder.
Benefiting from the ability to dynamically handle long-range
dependencies brought by combining channel attention and spa-
tial attention at all stages of the encoder-decoder architecture,
our model not only continuously preserves important details
but also effectively filters out noise.

On the other hand, most depth networks [13]–[22] trained
on monocular videos only output relative depth due to lacking
scale constraints. The commonly used scale recovery method
called median scaling [13] requires ground truth depth data
that is unavailable at test time in many practical applications.
Training a model that directly produces absolute depth in
metric units can omit the scale recovery operation like median
scaling. An intuitive idea to this end is to use object size [27]
but it suffers from seeking ubiquitous fixed-size objects and
detecting the appearance size of detected objects. A simple
but effective approach is to use camera height with respect
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to ground surface because the ground truth camera height in
autonomous driving scenarios is usually fixed and known in
advance. Furthermore, we also observe that the middle bottom
regions of almost all images captured in these scenarios belong
to the ground surface. Considering that not all points on the
ground surface are coplanar, we propose to detect all coplanar
points on the ground surface from the estimated depth, based
on the assumption that a small rectangular region in the middle
bottom of any image is part of the ground surface. Using
the height errors calculated based on detection results, we
construct an absolute scale loss. Combining the scale loss with
photometric reconstruction loss [24], the visual attention-based
depth network is able to output accurate absolute depth map
without post-processing.

In summary, we make the contributions as follows:

• A novel depth network architecture that fully utilizes
the long-range perception properties of visual attention
to better perceive the scene structure and predict more
accurate depth maps.

• An absolute scale loss that leverages the geometric priors
in autonomous driving scenarios to train a scale-aware
depth estimation model.

• We conduct extensive experiments to verify the effective-
ness of our network structure and loss function. Exper-
imental results [28] show that our method outperforms
previous state-of-the-art methods on the KITTI dataset
and our model generalizes well on the unseen Season-
Depth dataset [29] that contains multiple challenging
environments without fine-tuning.

II. RELATED WORK

A. Monocular Depth Estimation

Early deep learning-based works [6], [7] on monocular
depth estimation mainly focused on supervised methods and
dramatically improved the state-of-the-art performance. How-
ever, ground truth depth maps for supervised methods are
hard to obtain. To avoid the heavy work of collecting ground
truth depth, Garg et al. [10] proposed a self-supervised method
inspired by view synthesis task [30], which leverages stereo
image pairs to construct the reconstruction loss. Compared
to stereo image pairs, monocular videos are much easier
to obtain. Therefore, SfMLearner [13] leveraged monocular
videos to train MDE models. Unlike stereo training approaches
[10]–[12], monocular training methods [13], [16] need to
simultaneously estimate ego-motion and depth at training time.

Recently, monocular training methods have been extensively
studied. Some works [14], [15], [17], [20], [24], [31] explored
to design more effective loss functions based on the photo-
metric reconstruction loss. For example, edge-aware depth-
normal consistency loss was used in [14], [15]. Godard et
al. [24] proposed a per-pixel minimum reprojection loss to
solve the occlusion problem, a multi-scale loss for alleviating
the local gradient problem, and the auto-masking method to
filter out stationary pixels. Based on Mondepth2 [24], the use
of feature-metric loss [31], temporal geometric consistency
[17] and semantic-depth consistency [20] further improved

monocular depth estimation accuracy. Our method also follows
the general pipeline of Monodepth2 [24].

Besides, some works [22], [32] proposed more powerful
convolutional networks to enhance the accuracy of depth
estimation. Beyond ResNet-based U-Net, Packnet-sfm [22]
leveraged 3D convolutions to improve representational capac-
ity of the network. HR-Depth [32] introduced more dense skip-
connections to better fuse multi-scale feature maps. Because of
the improvement of loss functions and network architectures,
the performance of self-supervised monocular depth estima-
tion has been improved a lot. However, these methods still
face challenges in predicting metrically accurate depth due to
the scale ambiguity issue and lacking the ability to distinguish
important features from noise.

B. Scale Ambiguity

Because of lacking scale constraints, monocular vision
suffers from the scale ambiguity issue. In order to produce
absolute depth at test time, some MDE works [13]–[22]
leveraged post-processing for scale recovery. The typical post-
processing technique of median scaling proposed in [13] scales
the relative depth map by the ratio of the median of the ground
truth depth values to the median of the estimated depth values.
Median scaling has been adopted by many subsequent works
[17]–[22], [24], [31]. Nevertheless, ground truth depth maps
required by median scaling are not always available at test
time in many cases. As the use of camera height in classical
monocular visual odometry [33], DNet [16] leveraged a dense
geometrical constraints module to determine the scale factor
by the estimated camera height from every ground point.

Compared to post-processing techniques, training a scale-
aware model is more attractive due to its simplicity of testing.
To learn metrically accurate depth estimation, [34] pretrained
depth network on stereo data of one dataset and then fine-
tuned the model on monocular videos of another dataset to
preserve the absolute scale, and PackNet-sfm [22] leveraged
the camera’s velocity and [35] utilized 4-beam Lidar data
to construct scale-aware loss. All of these works require
additional sensor data for training. In order to avoid using
other sensor data, [23] proposed a camera height-based loss
function to enforce metrically-scaled depth during training.
Similar to [23], we also leverage camera height to construct
scale constraints. However, our method directly determines the
pixels corresponding to the ground plane based on predicted
depth instead of relying on an extra pretrained ground plane
segmentation model as in [23]. Thus, we simplify the training
procedure and improve depth estimation accuracy by mitigat-
ing the effects of the limited accuracy of the ground plane
segmentation model and the uneven ground surface.

C. Attention Mechanism

Attention mechanism is a dynamic process that diverts
attention to important features [36]. The pioneering work of
visual attention is the spatial attention network called RAM
[37]. After that, more attention mechanisms [38]–[41] were
proposed, such as self-attention [42] and channel attention
[38]. Nowadays, attention mechanisms have been applied in
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many visual tasks [37]–[41], [43], [44]. As for monocular
depth estimation, the attention-based network has been applied
not only to supervised methods [48], [49] but also to self-
supervised methods [19]–[21]. In [19], an attention module
was used to better perceive contextual information. FSRE-
Depth [20] utilized an attention module to fuse depth features
and semantic features. CADepth-Net [21] applied channel
attention for structure perception as well as skip-connection.
However, these networks [48], [49], [19]–[21] just added
several attention modules to the original network, and the
body of the depth network is still the usual localized convo-
lutional network. Therefore, we introduce the visual attention
mechanism throughout the processing of the network, so that
our model can continuously and adaptively extract important
features and remove noise interference at all stages for more
accurate depth predictions.

III. METHOD

In this section, we first introduce the basic paradigm for
self-supervised monocular depth estimation. Then, we describe
the details of our VADepth network. Finally, we introduce a
simple method for detecting coplanar points and construct a
scale loss based on the planar geometric prior.

A. Self-Supervised Monocular Depth Estimation

During the self-supervised MDE model training, the model
is optimized by minimizing the difference between the target
image and the image synthesized by the source image and
the predicted target depth map. In the training process using
monocular videos, the source frame is chosen from the same
monocular image sequence as the target frame. Following
[13], the source frame Is is an adjacent frame to the target
frame It, i.e. s = t ± 1. Since the relative pose between
two adjacent frames is unknown, we need to estimate not
only the depth but also the ego-motion during training. The
depth network takes an RGB image It as input and outputs
a depth map Dt. Simultaneously, the pose network predicts
the relative pose Tt→s between Is and It. Let K denote the
known camera intrinsic matrix. Then we can project the target
pixel coordinates (u, v) to the source view and obtain the 2D
coordinates of the projected depths Dt(u, v) in Is as follows:

(us, vs) = KTt→sPt(u, v), (1)

and Pt(u, v) = Dt(u, v)K
−1(u, v, 1)T . (2)

Here, (u, v) and (us, vs) are the projected coordinates in
It and Is of the same 3D points Pt(u, v), respectively. For
simplify of notation, the conversions between inhomogeneous
and homogeneous coordinates are omitted in (1). Because
the calculated coordinates (us, vs) are not always integer
values, we use bilinear interpolation to compute pixel values
Is(us, vs) as in [45]. Thus, we can synthesize the target image:

Is→t(u, v) = Is
〈
(us, vs)

〉
, (3)
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Fig. 1. Network structure of VADepth. The encoder extracts feature maps
Xe

i at different resolutions. The Dual Attention Module (DAM) takes the
last level feature map Xe

4 as input and emphasizes the important features
to produce the initial input of the decoder. The decoder has five successive
Visual Attention Blocks (VABs) and outputs multi-scale depth maps for the
top four VABs.

where
〈
·
〉

denotes bilinear sampling operation. Following [11],
we combine the L1 loss and structural similarity index measure
(SSIM) [46] to formulate the photometric error:

PE(Ia, Ib) = α||Ia−Ib||1+(1−α)1− SSIM(Ia, Ib)

2
. (4)

To avoid the false photometric error of occluded pixels in the
source frame, we apply per-pixel minimum photometric loss
[24], i.e.

Lph = min
s∈{t−1,t+1}

PE(It, Is→t). (5)

Besides, we adopt the auto-masking method [24] to filter out
pixels that do not change the appearance between Is and It.
The binary mask µ is computed as

µ = [min
s
PE(It, Is→t) < min

s
PE(It, Is)], (6)

where [·] is the Inverse bracket. Like [11], we also use the
edge-aware smoothness loss:

Lsm = |∂ud∗t |e−|∂uIt| + |∂vd∗t |e−|∂vIt|, (7)

where d∗t = dt/dt is the mean-normalized inverse depth.
Considering the gradient locality of the bilinear sampler, we
predict multi-scale depth maps in the decoder and compute
the individual losses at each scale following [24]. Thus, the
final baseline loss with a hyperparameter λsm is defined as

Lbaseline =
1

S

S−1∑
i=0

µLph + λsmLsm, (8)

where S refers to the number of multi-scale depth maps.
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Fig. 2. Network details of Visual Attention Block (VAB). A Spatial Attention
Module (SAM) and a Channel Attention Module (CAM) are used in the VAB.

B. VADepth Network Architecture

As shown in Fig. 1, VADepth adopts the improved U-shape
encoder-decoder architecture, which takes a single RGB image
as input and outputs multi-scale depth maps. Unlike U-net
architecture [26], the encoder and decoder in VADepth are
not completely symmetrical, and an additional Dual Attention
Module (DAM) head (see details in [40]) is used to connect
the encoder and the decoder.

For the encoder, we employ a visual attention network
(VAN) [44] to extract multi-scale feature maps Xe

i , i =
1, 2, 3, 4. A VAN has four stages, where spatial adaptability
and channel adaptability are efficiently implemented by the
large kernel attention.

Then the internal features of the encoder are fed into the
decoder with skip connections and the lowest resolution fea-
tures are taken as the input of the DAM. The DAM adaptively
selects the discriminative features as the initial input of the
decoder by learning spatial and channel interdependencies of
features in parallel.

As for the decoder, we design a novel Visual Attention
Block (VAB). There are five successive VABs in the decoder.
As illustrated in Fig. 2, the i-th VAB has two inputs, the
internal features Xe

i−1 from the encoder and the features Xd
i

from the previous VAB. Xe
i−a is fed into a Spatial Attention

Module (SAM), which emphasizes the important regions and
suppresses the unimportant or noisy regions as in [39]. In the
SAM, the initial spatial attention maps are formed by max
pooling and average pooling along the channel axis. Then
the concatenated initial attention maps are passed through
a convolutional layer with a sigmoid function to obtain the
final spatial attention map. The output of the SAM is the
element-wise multiplication of the broadcasted final attention
map and Xe

i−1. At the same time, Xd
i is accordingly passed

through a convolutional layer and a nearest upsampling layer
with a factor of 2 to recover the resolution. Then a Channel

Attention Module (CAM) is used to concatenate and fuse the
low-level feature from the SAM and the high-level feature
from the upsampling operation. For the CAM, as in [38], the
concatenated features are processed through the global average
pooling layer, fully-connected (FC) layer with ReLU, and FC
layer with sigmoid function to generate the channel attention
map. Similar to the SAM, the output of the CAM is obtained
by element-wise multiplication of the attention map and the
original features. After the process of CAM, a convolutional
layer is used to output Xd

i−1. Finally, a convolutional layer
with sigmoid is required to process Xd

i−1 when necessary, and
the sigmoid output σ can be converted to the depth map Di

with 1/(aσ + b), which is omitted in Fig. 2 for simplicity.
Note that the SAM is removed from VAB when the internal
feature from the encoder are unavailable.

C. Co-planar Points Detection on Ground Surface

The depth estimation model obtained by minimizing the
baseline loss defined in (8) can only directly output the relative
depth. In order to train a depth estimation model that can
output absolute depth maps, we need to utilize the geometric
information that contains absolute scale. In most self-driving
scenarios, the ubiquitous camera height can be considered as
a known constant value. Therefore, the prior knowledge about
camera height is suitable for constructing scale constraints by
computing the camera height errors derived from the estimated
depth.

To estimate the camera height from the predicted depth map,
we need to detect the co-planar points on the ground surface.
We observe that the middle-lower region of the image is part
of the ground surface in almost all self-driving cases. Based
on such geometric prior knowledge, we suppose that a small
stationary rectangular region in image It is the ground plane.
We use two hyperparameters αu = 0.075 and αv = 0.875 to
predefine an H ×W binary mask Mrect (as shown in Fig. 5)
to distinguish whether a pixel is in the rectangular region.

Mrect(u, v) =

{
1 if |0.5− u

W | < αu and v
H > αv,

0 others.
(9)

Let Prect ∈ RNrect×3 be a matrix for a set of 3D points
{Pt(u, v)|Mp(u, v) = 1} in the predefined rectangular region,
where Nrect = 2αuW (1 − αv)H and Pt(u, v) is calculated
from the estimated depth according to (2). Based on these 3D
points, we can fit a plane Plrect that does not pass through
the origin by solving the equation: Prectn = 1. We take the
Moore-Penrose inverse of Prect to obtain the least-squares
solution of the contradictory equations:

n = P+
rect1. (10)

After plane fitting, we need to detect all 3D points co-planar
with the plane Plrect in the target view using a binary mask:

Mp(u, v) =

{
1 if |Pt(u, v)n− 1| < δ,

0 others.
(11)

In Mp, an element whose value is equal to one indicates that
the corresponding point is on the plane Plrect. The threshold
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TABLE I
QUANTITATIVE RESULTS ON THE EIGEN SPLIT OF KITTI DATASET

Method Train Scale Factor The lower the better The higher the better #Param.Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
SfMlearner [13]† M GT 0.183 1.595 6.709 0.270 0.734 0.902 0.959 31.6M
Monodepth2 [24] M GT 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M

DNet [16] M GT 0.113 0.864 4.812 0.191 0.877 0.960 0.981 14.3M
SGDepth [18] M+Sem GT 0.113 0.835 4.693 0.191 0.879 0.961 0.981 14.3M

Packnet-sfm [22] M GT 0.111 0.785 4.601 0.189 0.878 0.960 0.982 128M
HR-Depth [32] M GT 0.109 0.792 4.632 0.185 0.884 0.962 0.983 14.6M

Johnston et al. [19] M GT 0.106 0.861 4.699 0.185 0.889 0.962 0.982 -
Wang et al. [17] M GT 0.109 0.779 4.641 0.186 0.883 0.962 0.982 -
FSRE-Depth [20] M+Sem GT 0.105 0.722 4.547 0.182 0.886 0.964 0.984 25.2M

CADepth [21] M GT 0.105 0.769 4.535 0.181 0.892 0.964 0.983 58.3M
VADepth (Ours) w/o Las M GT 0.104 0.774 4.552 0.181 0.892 0.965 0.983 18.8M

DNet [16] M Cam. Height 0.118 0.925 4.918 0.199 0.862 0.953 0.979 14.3M
Packnet-sfm [22] M+v None 0.111 0.829 4.788 0.199 0.864 0.954 0.980 128M

Wagstaff et al. [23] M None 0.123 0.996 5.253 0.213 0.840 0.947 0.978 -
Monodepth2 [24] with Las M None 0.112 0.875 4.905 0.199 0.863 0.955 0.980 14.3M
VADepth (Ours) with Las M None 0.109 0.785 4.624 0.190 0.875 0.960 0.982 18.8M

All models are tested with the resolution of 192× 640 unless otherwise specified, for the maximum depth of 80m. † means the newer results
from github with the resolution of 128×416. The best scores for each category are in bold. In the “Train” column, we list the supervision for
each method with M — Self-supervised monocular supervision, Sem — Semantic supervision, v — velocity supervision. In the “Scale Factor”
column, “GT” refers to determining a per-image scale factor using the ground truth depth for median scaling based scale recovery, “Cam.
Height” indicates leveraging the known camera height w.r.t the ground surface to recover scaled depth, while “None” means test without any
post-processing.

δ is set to 0.01, which is used to judge whether the points are
coplanar or not.

D. Absolute Scale Loss

After co-planar points detection on the ground surface, we
construct an absolute scale loss term using the camera height.
To form a scale constraint, we need to compute the camera
height from the estimated depth results:

Hcam(u, v) = Pt(u, v)ne, (12)

where ne = n
||n||1 is the normalized vector of n. Using the

estimated heights Hcam and the ground truth height hgt, we
define the absolute scale loss as follows:

Las =
1

||Mp||1
||Mp ◦ (Hcam − hgt)||1, (13)

where ◦ is Hadamard product operator. Combining Las with
Lbaseline, we have the final objective function:

L =
1

S

S−1∑
i=0

µLph + λsmLsm + λasLas. (14)

In our setting, λsm, λas and S are set to 0.001, 0.01 and 4,
respectively.

IV. EXPERIMENTAL RESULTS

A. Implementation details

We use a single Nvidia GeForce RTX 2080 Ti to implement
our models in Pytorch. In our setting, we use the VADepth
network as our depth network with an input/output resolution
of 192 × 640 . For pose estimation, we use a modified
ResNet18 [25] to predict a single 6-DoF ego-motion of two
adjacent frames following [24]. The pose network adopts
the same input resolution as the depth network. Both the

encoder of the depth network and the encoder of the pose
network are initialized with weights pretrained on ImageNet
[47]. The depth network and pose network are jointly trained
with Adam optimizer for 20 epochs. The learning rate is set
to 5.0 × 10−5 for the first 15 epochs and then drops by half
for the remaining epochs. The source code and models are
available at https://github.com/xjixzz/vadepth-net.

B. Evaluation on KITTI

KITTI dataset [28] is the commonly used dataset for au-
tonomous driving. We use the Eigen split [6] of KITTI Stereo
dataset to evaluate our method with the metrics proposed in
[6]. Following [13], we also remove the static frames before
training, which results in 39810 monocular triplets for training,
4424 images for validation and 697 images for test. The
resolution of these images is approximately 375 × 1242. All
images are required to resize to 192 × 640 for training and
evaluation. At test time, the depth network only outputs the
depth map with the resolution of 192 × 640, which is then
resized to the full resolution of the original RGB image for
evaluation.

To evaluate the performance of our depth network, we first
train VADepth network only with the baseline loss function.
We report the results of applying median scaling at the top
of Table I, where we can see that our model achieves the
best scores in the metrics of Abs Rel, RMSE log, δ1, and δ2,
and ranks second or third in the remaining metrics. Among
these methods, CADepth [21] achieves close performance to
VADepth but requires much more parameters, due to the
underutilization of visual attention, especially ignoring the
channel and spatial interdependencies of low-level features.

Besides, we also combine our absolute scale loss to train our
model so that the depth network can directly output metrically
accurate depth without post-processing that rely on the ground

https://github.com/xjixzz/vadepth-net
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RGB Ours Monodepth2 FSRE-Depth CADepth-Net

Fig. 3. Quantitative results on the Eigen split of KITTI dataset. Compared to other methods [20], [21], [24], our model not only outputs smoother depth in
patterned planar regions, but also preserves better details for small objects. White boxes highlight the difference. Best viewed in color and zoom in.

TABLE II
GENERALIZATION PERFORMANCE ON SEASONDEPTH

SeasonDepth test
Method Train Resolution KITTI Eigen test Average Variance(10−2) Relative Range

AbsRel ↓ a1 ↑ AbsRel ↓ a1 ↑ AbsRel ↓ a1 ↓ AbsRel ↓ 1− a1 ↓
Eigen et al. [6]‡ D - 0.203 0.702 1.093 0.340 0.346 0.0170 0.206 0.0746

VNL(ResNext101) [8]‡ D - 0.072 0.938 0.306 0.527 0.126 0.166 0.400 0.290
BTS(DenseNet161) [9]‡ D - 0.060 0.955 0.676 0.209 0.545 0.0650 0.405 0.129

SfMLearner [13]‡ M 128× 416 0.181 0.733 0.360 0.495 0.0801 0.0628 0.269 0.182
Monodepth2 [24] M 192× 640 0.115 0.877 0.266 0.611 0.0410 0.0457 0.266 0.202
FSRE-Depth [20] M 192× 640 0.105 0.886 0.256 0.624 0.0288 0.0283 0.227 0.158
CADepth-Net [21] M 192× 640 0.105 0.892 0.257 0.625 0.0447 0.0725 0.265 0.278
VADepth (Ours) M 192× 640 0.104 0.892 0.230 0.667 0.0158 0.0215 0.205 0.179

In the Train Column, D refers to ground truth depth supervision and M refers to self-supervised monocular supervision. ↓ means the lower the
better while ↑ means the higher the better. Methods marked with ‡ indicate that the corresponding test results are taken from [29].

truth depth maps. As listed at the bottom of Table I, we
compare our methods with existing self-supervised absolute
depth estimation methods that do not rely on the ground
truth depth. Among these methods, our method achieves the
best results on all metrics without requiring extra pretrained
road segmentation network [23] or velocity supervision [22]
at training time, or post-processing [16] at test time.

The qualitative results are presented in Fig. 3. Compared
with [20], [21], [24], our model predicts smoother and more
accurate depth for patterned surfaces (e.g. the traffic sign
in row 1, the banner in row 3, and the bus in row 5),
which validates the effectiveness of our model to suppress
unnecessary information. Meanwhile, our model also works
well for thin things, such as the thin poles in row 2 and the
traffic sign in row 4, which reflects the ability to highlight the
important details. Taken together, these results illustrate that
incorporating the attention mechanism throughout the whole
depth network can help to improve the ability of the model
to automatically distinguish important contextual information
from redundant information for better depth estimation.

C. Generalization performance

SeasonDepth dataset [29] is an MDE dataset that contains
the same multi-traverse routes under 12 different environmen-

tal conditions. The test set of SeasonDepth contains 17225
RGB images and corresponding ground truth depth maps with
the resolution of 768 × 1024. We use the model trained on
KITTI to evaluate the generalization ability of our method
on the test set of SeasonDepth without fine-tuning. Results in
Table II show that our model generalizes better than existing
supervised methods and self-supervised monocular training
methods, which proves that our model is more capable of
learning transferable feature representation.

We also provide the quantitative comparison in Fig. 4.
The inferior results of CADepth [21] and FSRE [20] suggest
that applying channel attention in the decoder is not enough
to obtain high-level features that are robust to lighting and
weather changes. Despite extreme light conditions or challeng-
ing weather conditions, the output of our model still correctly
reflects the scene structure. This further verifies that robust
low-level feature representations extracted from our encoder
and SAM are also important for forming robust high-level
features.

D. Ablation Study
To verify the effectiveness of each component in our

method, we perform an ablation study on the KITTI dataset.
Ablations of the VADepth network are reported in Table

III, where all models are trained with the loss in (14). We use
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RGB Ours FSRE-Depth CADepth-Net

Fig. 4. Quantitative results on the test set of SeasonDepth dataset. Our method
generates depth maps that are more consistent with the scene structure in
challenging environments.

TABLE III
ABLATION STUDY OF OUR NETWORK STRUCTURE

VAN DAM VAB The lower the better
SAM CAM AbsRel SqRel RMSE RMSE log

0.112 0.875 4.905 0.199
X 0.111 0.876 4.762 0.195
X X 0.108 0.815 4.686 0.191
X X X 0.110 0.821 4.681 0.193
X X X 0.106 0.789 4.672 0.190
X X X 0.109 0.798 4.631 0.192
X X X X 0.109 0.785 4.624 0.190

Monodepth2 [24] as the baseline, which adopts a ResNet18-
based encoder-decoder without any attention mechanisms. The
model of row 2 is composed of a VAN [44] based encoder
and a convolutional decoder similar to [24], which performs
better than the baseline. Adding either DAM or VAB leads to
improvements on all metrics. Combining DAM with SAM or
CAM can further improve the performance. Incorporating all
modules together results in the best overall performance.

We also ablate the absolute scale loss Las using different
network architectures. It can be seen from Table IV that adding
Las with proper αu and αv leads to the similar performance
or even better performance compared to the baseline loss
when ground truth depth maps are used for median scaling
at test time. However, when testing without median scaling,
the model trained without absolute scale loss performs poorly.
When trained with absolute scale loss, both network architec-
tures achieve good performance without any post-processing.
These results indicate that the scale-aware depth network can
be obtained with the camera height-based scale constraints.
Besides, we also list the results of selecting different values
for αu and αv , which determine the size of the rectangular area
defined in (9), in the lower part of Table IV. Selecting a too
large or too small rectangle degrades performance. Thus, we
empirically select αu and αv as 0.075 and 0.875, respectively.

TABLE IV
ABLATION STUDY ON ABSOLUTE SCALE LOSS

Scale Las The lower the better
δ1 ↑Factor αu αv AbsRel SqRel RMSE RMSElog

Monodepth2

GT w/o Las 0.115 0.903 4.863 0.193 0.877
0.075 0.875 0.112 0.864 4.804 0.190 0.878

None w/o Las 0.968 15.094 19.176 3.459 0.000
0.075 0.875 0.112 0.875 4.905 0.199 0.863

VADepth

GT w/o Las 0.104 0.774 4.552 0.181 0.892
0.075 0.875 0.105 0.757 4.501 0.180 0.891

None

w/o Las 0.966 15.045 19.147 3.398 0.000
0.025 0.950 0.127 0.932 4.920 0.207 0.850
0.050 0.900 0.110 0.870 4.719 0.191 0.876
0.050 0.875 0.110 0.792 4.654 0.192 0.872
0.075 0.900 0.109 0.877 4.702 0.190 0.879
0.075 0.875 0.109 0.785 4.624 0.190 0.875
0.075 0.850 0.109 0.827 4.709 0.192 0.875
0.100 0.875 0.109 0.825 4.680 0.190 0.876
0.100 0.800 0.109 0.818 4.674 0.192 0.875
0.200 0.600 0.126 0.863 4.858 0.209 0.850

RGB VADepth w/o Las 

Monodepth2CADepth-Net Monodepth2 with Las

VADepth with Las 

Fig. 5. Quantitative results for ablation study of absolute scale loss on the
KITTI dataset. The green box in the RGB image is the rectangular region
defined by (9). Using the absolute scale loss, the predicted results at the
white solid line are smoother and more accurate.

Moreover, we find that absolute scale loss helps alleviate
the impact of lane lines on depth estimation. As shown in
Fig. 5, although these networks can not predict smooth depth
at the solid white line unless absolute scale loss is used,
both VADepth and Monodepth2 [24] trained with the absolute
scale loss output more accurate depths at the lane line, which
suggests that adopting supervision of camera height can lead
to smooth depth estimates of the ground surface, in addition
to absolute scaled depth. This further demonstrates that our
network can effectively learn the geometric knowledge of
autonomous driving scenarios with the proposed loss.

V. CONCLUSION
In this work, we presented a novel deep learning architecture

for self-supervised monocular depth estimation and proposed
an absolute scale loss to supervise the scale of estimated depth
maps. Experimental results show that our method achieves
state-of-the-art performance with or without median scaling
on the KITTI dataset and generalizes well on the unseen
changing environments. In the future, we plan to further
improve the generalization capacity and interpretability of the
depth estimation network by visualizing the attention map
and using the results of semantic segmentation to guide the
network to strengthen the responses of different channels
to specific semantic information or improve the distinction
between important features and noises.



8

REFERENCES

[1] D. Park, R. Ambrus, V. Guizilini, J. Li, and A. Gaidon, “Is pseudo-
lidar needed for monocular 3d object detection?” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., October 2021, pp. 3142–3152.

[2] M. Schön, M. Buchholz, and K. Dietmayer, “Mgnet: Monocular geo-
metric scene understanding for autonomous driving,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2021, pp. 15 804–15 815.

[3] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, “J-mod 2:
Joint monocular obstacle detection and depth estimation,” IEEE Robot.
Autom. Lett., vol. 3, no. 3, pp. 1490–1497, 2018.

[4] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in Proc. Int. Conf. 3D Vis., 2017, pp. 11–20.

[5] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge Univ. Press, 2003.

[6] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” Proc. Adv. Neural Inf.
Process. Syst., vol. 27, pp. 2366–2374, 2014.

[7] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in Proc.
IEEE Int. Conf. Comput. Vis., December 2015, pp. 2650–2658.

[8] W. Yin, Y. Liu, C. Shen, and Y. Yan, “Enforcing geometric constraints
of virtual normal for depth prediction,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 5684–5693.

[9] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small:
Multi-scale local planar guidance for monocular depth estimation,” arXiv
preprint arXiv:1907.10326, 2019.

[10] R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 740–756.

[11] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 270–279.

[12] R. Peng, R. Wang, Y. Lai, L. Tang, and Y. Cai, “Excavating the
potential capacity of self-supervised monocular depth estimation,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 15 560–15 569.

[13] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 1851–1858.

[14] Z. Yang, P. Wang, W. Xu, L. Zhao, and R. Nevatia, “Unsupervised
learning of geometry from videos with edge-aware depth-normal con-
sistency,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 7493–7500.

[15] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “Lego: Learning
edge with geometry all at once by watching videos,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 225–234.

[16] F. Xue, G. Zhuo, Z. Huang, W. Fu, Z. Wu, and M. H. Ang, “Toward
hierarchical self-supervised monocular absolute depth estimation for
autonomous driving applications,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2020, pp. 2330–2337.

[17] L. Wang, Y. Wang, L. Wang, Y. Zhan, Y. Wang, and H. Lu, “Can
scale-consistent monocular depth be learned in a self-supervised scale-
invariant manner?” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 12 727–12 736.
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