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Abstract— Robot mobility is critical for mission success,
especially in soft or deformable terrains, where the complex
wheel-soil interaction mechanics often leads to excessive wheel
slip and sinkage, causing the eventual mission failure. To
improve the success rate, online mobility prediction using
vision, infrared imaging, or model-based stochastic methods
have been used in the literature. This paper proposes an
on-board mobility prediction approach using an articulated
wheeled bevameter that consists of a force-controlled arm and
an instrumented bevameter (with force and vision sensors) as
its end-effector. The proposed bevameter, which emulates the
traditional terramechanics tests such as pressure-sinkage and
shear experiments, can measure contact parameters ahead of
the rover’s body in real-time, and predict the slip and sinkage
of supporting wheels over the probed region. Based on the
predicted mobility, the rover can select a safer path in order to
avoid dangerous regions such as those covered with quicksand.
Compared to the literature, our proposed method can avoid
the complicated terramechanics modeling and time-consuming
stochastic prediction; it can also mitigate the inaccuracy issues
arising in non-contact vision-based methods. We also conduct
multiple experiments to validate the proposed approach.

I. INTRODUCTION

Over the past several years, the working scene of au-
tonomous robots has extended from indoor to off-road field
environments and even on other planets. Compared to the
on-road environment, field environments are challenging for
ground robots to navigate over because the terrain and
obstacle types are complex and diverse, and a series of char-
acteristics such as the roughness and slope of the ground will
also cause difficulties. In most unstructured terrains, robots
can use lidar and cameras to finish the perception tasks,
but soft terrains contain a variety of materials and complex
terramecanical properties, which brings huge difficulties to
the robot’s mobility, especially for wheeled robots [1]. In
order to achieve autonomous operations such as resource
exploration and planetary exploration, robots need to have
more intelligent environmental perception and understanding
capabilities to predict quickly and accurately mobility.

Soft terrain has fluid-solid duality and complex terrami-
canical properties [2]. Therefore, the robot will often face
excessive and abnormal slippage and sinkage on soft terrain.
When the slip ratio is too large, the robot will be unable
to move and dig pits on the spot, resulting in an extremely
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Fig. 1: Illustration of our pipeline for the mobility prediction
over soft terrain using our proposed wheeled bevameter. The
robot can only detect the geometry and color information of
the unknown terrain using the on-board vision sensor. How-
ever, it cannot tell the physical properties of the terrain, i.e.,
it cannot differentiate the soft loose soil from the firm soil
without making physical contact. Hence, the robot is unable
to choose the safer path. To solve this problem, the robot
uses the wheeled bevameter to probe the unknown region by
measuring the sinkage and slippage of the bevameter wheel
using the F/T sensor and camera. The robot can then predict
the physical properties of the terrain and the mobility of the
supporting wheels of the probed region, thereby selecting a
safer path with low sinkage and slippage.

large increase in sinkage and even damage to the robot [3].
As a result, we should focus on key factors like sinkage
and slip ratio about soft soil to predict and analyze the
traversability accurately. Predicting the sinkage and slip ratio
without danger is an important capability on soft terrain in
a field environment.

The perception methods of unstructured terrain are cur-
rently not perfect, robots can only simply avoid obstacles
and classify terrain, which is not enough for the off-road
robots. Proprioceptive-based methods based use IMU (Iner-
tial measurement unit), force sensor, or other proprioceptive
sensors can only know the type of terrain where the robot
is touching, and the robot may be already in danger when
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it finds anomalies. Remote measurement using sensors like
lidar and camera may classify terrains wrongly with similar
geometrical characteristics. Additionally, surfaces with the
same material may have totally different results as the
size of granule or moisture. Although the hybrid method
can obtain higher measurement accuracy, it can not predict
parameters about traversability such as the sinkage and slip
ratio. Meanwhile, the data we get from indoor experiments
can’t give exact information about the wild environment. And
the traditional soil-wheel interaction model has larger errors
for robots with small wheels.

We propose wheeled bevameter as a solution to the prob-
lems above. We adopt a force-control mechanical arm with a
wheel to actively explore the area in front of the rover. And
use computer vision and tactile to measure sinkage of the
wheel and slip ratio to predict the traversability of the sandy
region.

This paper has two main contributions as follow:
1. A robust and accurate method of vision-based wheel-

soil contact parameters estimation.
2. Building unique articulated wheeled bevameter to pre-

dict sinakge and slip ratio of unknown terrain, analyze mo-
bility and choose a safer path without complex model-based
calculation and traveling on the unknown and dangerous
terrain.

Subsequently, we describe the related work in Sec. II
and introduce our hardware in Sec. III. Then we describe
our methods of estimating contact surface in Sec. IV. and
predicting sinkage and slip ratio in Sec. V. We apply those
to our robot and do traversability analysis in Sec. VI. Finally,
we conclude the work in Sec. VII.

II. RELATED WORK

A. Terrain Perception

To gather terrain information, there are three perception
methods: proprioceptive-based methods, exteroceptive-based
methods, and hybrid methods. Indoor tests, such as the
single-wheel testbed experiment, can also yield terrame-
canics parameters, which can be used for soft terrain naviga-
tion. All the methods above aim to get a lot of information
about surrounding terrain to predict the traversability of
robots or choose the best path to travel.

Proprioceptive-based methods primarily use vibration or
accelerometer signals collected by IMU and tactile sensors to
classify the terrain to predict traversability and choose safer
terrain. Early proprioceptive-based measurement originated
from planet rover. Ref.[6], [7] classify the terrain type via
vibration and acceleration data from IMU. [9] process the
accelerate signal and compare the effect of six different
SVM (Support Vector Machine) in advance. [10] and [8]
tried to classify the ground using audio sensors, but it could
not be used in a space or noisy environment. [13] combine
motor current signal with IMU signals of the legged robot
to classify ground, and [14] tried to combined force sensors
with IMU signal. In addition, [50] measure the wheel-terrain
contact angle for robot on rough terrain using a laser scan-
ning sensor. Because these methods require the robot to tour

the region in order to make predictions, their applications are
constrained to safe and predictable environments and do not
work well in unknown and hazardous environments.

Lidar and camera can measure the ground remotely and are
widely used in terrain perception these years. [49],[48],[47]
classify the terrain type according to geometry, texture and
color information based on classification algorithm. With
the development of deep learning, semantic segmentation
are used gradually to identify ground and estimate some
terramechanics parameters. ([19],[23],[20],[21]). But there
are comparatively fewer off-road datasets than urban environ-
ments, so this method may not be used widely now. However,
exteroceptive-based methods light, rain and fog will affect
our perception accuracy of exteroceptive-based methods.

Given the complimentary outputs of different perception
methods, there are also hybrid methods that take advan-
tage of the strengths of each perception method to pre-
dict traversability. [12],[18],[17],[15] combined many signals
such as IMU, camera, audio sensors and adopted self-training
approach to reduce the label cost and improve accuracy of
classification.

To estimate sinkage and slip ratio in the past, we had
to integrate terramechanics parameters with a sophisticated
model. The gathering of terramechanics parameters, on
the other hand, necessitates enormous amounts of experi-
mental data and bulky experimental equipment. Numerous
studies have attempted to set up the single-wheel plat-
form and improve the model based on Wong’s wheel-soil
interaction model[29]. for example,[26],[27],[28],[25],[24].
[31],[33] proposed some methods for analyzing model pa-
rameters more quickly. Single-wheel testbed, however, is too
huge to be mounted on robots and cannot be used for real-
time prediction.

B. Traversability Analysis

The goal of parameters estimation and terrain classification
is to predict traversability and ensure the safe execution
of tasks. [22] based on stochastic response surface method
and uncertainty to analyze. [37] predicted the traversability
combine slope, roughness and step height with dynamics
model of legged robot, and created a traversability map. [34]
predicted the traversability over unknown terrain based on
collision, step, slippage, and tip over. However, these studies
did not consider the sinkage and slippage of soft ground.

Based on the researches above, we design an unique and
active detection tool to explore terrain ahead actively. We
may obtain the sinkage and slip ratio information to estimate
traversability and choose the safer path without having to
calculate complex mechanic models.

III. SYSTEM SETUP

To validate the mobility prediction approach outlined in
Fig.1, we build an experiment platform consisting of a robot
base with independent suspension, an articulated wheeled
bevameter, and a sand box as the test field, as shown in
Fig.2. The articulated wheeled bevameter can be further
divided into a robot arm (capable of force control) and an



instrumented bevameter as its end-effector. The F/T sensor
and camera installed on the bevameter can measure the
contact forces, sinkage, slippage, and wheel-soil interaction
details. Hence, the robot can use the bevameter to explore
the unknown terrain ahead, without risking of moving the
supporting wheels into the unexplored risky regions such as
those covered with quicksand where the robot can easily get
trapped in. Moreover, our mobility prediction method does
not require complicated terramechanics modeling, thereby
ensuring prediction accuracy by eliminating errors caused
by terrain parameter estimation and wheel-soil interaction
modeling, which can be found in other methods such as [22].

A. Rover Base with Independent Suspension

Fig. 2: The robot platform has a 4WD-4WS configuration
with active suspension. The robot is equipped with an
articulated force-controlled arm with a wheeled bevameter
(has F/T and vision sensors) as its end-effector to explore
the unknown terrain in front of the robot, in order to better
predict the mobility of robot driving wheels over the probed
region.

As shown in Fig. 2, our four-wheel-drive and four-wheel
steering (4WD-4WS) rover base has individual articulated
suspension to adjust the robot pose. The rover base is about
60cm long, 45cm wide and its height can be adjusted in
the range of 35 − 45cm. The rover base is equipped with
IMU (inertial measurement unit) and stereo vision camera
(body camera in Fig. 2) so that it can monitor its status such
as velocity and position while perceiving its surrounding
environment. Other vision system such as RGB-D cameras
can also be installed on the rover base to capture unstructured
terrain information for SLAM and navigation purposes. For
experimental validation purposes, We install F/T sensors
(model: SRI M3813D) on each driving wheel to compare the
forces acting on the driving wheel to those of the bevameter
wheel. The robot can be operated at autonomous mode or
teleoperated through a joystick or a computer.

B. Articulated Wheeled Bevameter

As shown in Fig. 2, one innovation of our paper is
that we use articulated wheeled bevameter, which can be
further divided into an articulated arm and an instrumented
bevameter as the arm’s end-effector, to explore the physical

properties of the unknown region and predict the mobility of
robot driving wheels over the probed area.

As shown in Fig. 2, the arm has three joints, namely:
the arm base consisting of a servo and a linear stage, the
shoulder joint driven by two servos connected in parallel, and
the elbow joint. The arm can also have other configurations.
For example, we can add a waist joint to increase the arm’s
workspace. The end-effector of the arm is an instrumented
wheeled bevameter consisting of a wheel, a servo used
to drive the wheel, and a 6-axis F/T sensor (model: SRI
M3813D). For rapid prototyping purposes, we use aluminum
extrusion profiles, 3D-printed parts, and 5 high quality Dy-
namixel XH servos capable of torque control to build the
articulated wheeled bevameter. Its entire weight is 2.5kg.
We have achieved hybrid position and force control using
these servo motors and the F/T sensor. During experiments,
we can vary the vertical loading forces of the bevameter
wheel, and its traveling speed and slip ratios, and measure
the traction forces and driving torques, thereby executing
standard terramechanics tests such as the pressure-sinkage
and shear experiments to estimate the terrain properties, as
explained in Sec.V.

We mount a camera (Intel D435i) on the arm and an
Apriltag on the side surface of the wheel to robustly detect
multiple wheel-soil contact parameters such as sinkage and
contact angles, as well as recording experiment details,
as shown in Sec.IV. The recorded wheel-soil interaction
process can be used in terramechanics modeling or parameter
analysis. We develop algorithms that are robust against
complex background, view-point and illumination changes
for vision-based contact geometry estimation, as illustrated
in Sec.IV. The camera’s position is quite important. There
might be occlusion problems if the camera directly points to
the wheel’s side surface, i.e., the camera’s optical axis aligns
with the wheel’s rotation axis. After many tests, we place the
camera diagonally above the wheel to get a better view. Note
that the camera placement in Fig.2 is mainly for feasibility
test. We can freely adjust the camera position because our
algorithm is robust against view-point variations thanks to
the built-in self-calibration function. We can even use space-
saving foldable designs for practical considerations during
the actual deployment.

In our setup, we prefer to use a bevameter wheel that
is the same as the driving wheel in every perspective such
as geometry and wheel surface patterns. One advantage of
this is that we can directly calculate the forces, sinkage and
slippage of the driving wheel, without going through the
complicated terramechanics modeling process. This helps to
eliminate terrain parameter estimation error and terramechan-
ics modeling error, both of which can significantly affect
the prediction accuracy [22]. We can also use a down-
scaled bevameter wheel (to save some space) and estimate
the sinkage and slippage of the driving wheel using simple
calculations. This has been experimentally validated.



C. Other Applications of the Wheeled Bevameter

Besides probing the unknown terrain properties, our pro-
posed wheeled bevameter can be used to restructure or
modify the surrounding soils for improved mobility [1].
It can also be reconfigured into a stationary testbench for
wheel-soil interaction studies, as shown in Fig. 3. Using this
equipment, we can conduct traditional terramechanics tests
such as the pressure-sinkage and shear experiments, as shown
in Sec. V.

Fig. 3: The proposed articulated wheeled bevameter can
be reconfigured into a stationary testbench for wheel-soil
interaction studies.

D. Soils Investigated in This Study

Granular terrain is a typical medium covered on the
planetary surface, especially Mars and Moon surfaces. This
terrain is generally composed of gravel, dust, and other
materials. To simulate the mechanical properties of the real
exploration environment, we can complete experiments with
multiple mediums by changing the kinds of the granular
medium. We change the level and loosen of terrain manually
to ensure the uniformity of the medium in each experiment.

The most common granular medium terrain in nature are
deserts, so we choose the sand in the Tengger Desert as an
experimental medium. This sand’s granularity is not uniform,
and its grit mesh number is between 30 and 60, which can
represent the most real environments with granular terrain.
In order to study the influence of different sandiness and
grit thickness (mesh) on the contact event, we also choose
the other two kinds of sand. One is garment sand with 60
meshes, the other one is quartz sand with 30 meshes. The
derail medium is as shown in Fig.4.

Fig. 4: Three types of granular medium (sand) used for
experiments.

IV. VISION-BASED WHEEL-SOIL CONTACT GEOMETRY
ESTIMATION

In this section, we propose a method of contact parameter
estimation based on vision, and the experimental results
prove that our algorithm has great robustness under different
light conditions and complex backgrounds. Meanwhile, our
algorithm also has a high accuracy and detection rate with
low latency.

Fig. 5: Sinkage definition on soft terrain.

When driving across soft soils, such as sand, loose dirt,
or snow, robots will sink. Multiple factors contribute to
this phenomenon such as load, surface material, granule
size, moisture. Ref.[44] define sinkage on soft terrain as
the Fig.5. In this figure, r is defined to be the radius of
the wheel, w is the rotation speed, θf , and θr denote the
entry contact angle and the exit angle, respectively. Sinkage
is an important parameter in wheel-soil interaction and can
be applied to analyze terramechanics properties parameters
and traversability. So it is important to measure accurately
sinkage when robots move on soft terrain.

In wheel-soil parameter estimation based on vision, the
most important two parts are to distinguish the wheel-soil
surface and locate the center of the wheel. To extract the
boundary of the wheel and the ground, the edge of the
wheel must be detected. Hough transform [45] can be used to
extract rim, but this algorithm relies on parameter adjustment
too much and fail to detect the wheel when part of the
wheel is outside the camera vision. We provide details of the
experimental procedures carried out during this investigation
as Fig. 6.

Fig. 6: Pipeline of contact parameter estimation.

Now we discuss each step in detail:



• Affine transformation: the camera plane is not parallel
to the wheel plane, we need to make a affine transfor-
mation on the original RGB image as formula1 to make
sure four corners of Apriltag in the same plane.

Fn =

[
R T
0 1

]
Fi (1)

R is a 3*3 rotate matrices, T is a 3*1 translate matrix.
Fi, Fn denote initial image and the processed image.

• Saturation extraction: RGB information is greatly af-
fected by brightness. On the contrary, saturation is
independent of brightness, so we can reduce the effect
of the illumination condition to get a better result. We
transform the image from RGB space to HIS space to
get saturation using the following formula.

I =
R+G+B

3

S = 1− min(R,G,B)

I

(2)

• Image binarization: Apply OTSU[41] algorithm to im-
age binarization, then use opening operation algorithm
to delete small parts and fill the holes (noise created by
sand).

• Edge detection: Use Canny operator[42] to detect edge
and Apriltag detection algorithm to locate the center.
According to the center position and radius of the wheel,
we can extract the wheel-soil interaction interface.

• Contact surface extraction: Fit the wheel-soil interac-
tion surface with robust regression[40], then calculate
the wheel sinkage, entrance, and exit angle.

We use a linear measurement unit to verify the accuracy of
this method, and it turns out that our error range is within 5%.
We present a comprehensive set of experiments to validate
our approach. Experiments were performed under different
conditions including non-flat terrains, variable illumination
conditions, and different terrain. It proves that the approach
we propose can detect wheel-soil boundary accurately under
various illumination conditions. This means that our detec-
tion algorithm is less affected by the degree of illumination,
has better robustness and practicability. Meantime, Fig. 7
shows that terrain type and complex background can not
change to effect of detection, this proves that our detection
algorithm has better robustness when rover driving in a
complicated environment.

Fig. 7: Recognition of wheel-soil contact surface under
different light conditions and complex environment, we can
detect the wheel-soil contact surface in

V. WHEELED BEVAMETER EXPERIMENTS

When a rover driving on unstructured terrain, it can
recognize terrain type by using semantic segmentation or
other promote prediction methods, but more concrete pa-
rameters such as sinkage and slip ratio require on-position
measurement. On-position measurement often means greater
danger because the robot may not escape from soft soil.
But sinkage and slip ratio plays a critical role in mobility
prediction. Our wheeled bevameter can measure sinkage and
slip ratio accurately without a robot moving on dangerous
terrain.

A. Predict Sinkage by Pressure-sinkage Experiment

Sinkage is a significant risk for robots navigating on soft
ground. The mission will fail if the sinkage is too bigger, and
the robot may be damaged. Traditional sinkage prediction,
on the other hand, relies solely on empirical data based on
the soil material, which is prone to large mistakes because
sinkage is affected by a variety of factors such as moisture.
But if a robot carrying a wheeled bevameter, it can measure
sinkage accurately without danger.

We use a wheeled bevameter to apply force to soft terrain
in order to determine the connection between normal load
and sinkage. In each experiment, we record the current
signals of each servo, the timestamp, data from all channels
of the F/T sensor, and sinkage. To reduce the inaccuracy
produced by changing the particle spacing, we repeat the
experiment three times and average the sinkage. Meanwhile,
we tested the approach on three granular mediums to verify
its generalization.

Fig. 8: Example of the sinkage-pressure experiment. The
figures on the upper is a screenshot of the experiment under
different pressure, the figure in the lower right corner means
the load varies with respect to time, and the figure in the
lower right means the sinakge varies with respect to load.

The procedure we followed can be briefly described by
following step:

1) Control shoulder joint and elbow joint to exert normal
force to the soil surface. We can acquire the data of



the force sensor at 100Hz frequency and calculate the
normal load by the transform matrix.

2) When the normal load is multiples of 5N from 20N
to 70N , we measure the sinkage, entry angle, and exit
angle with the method in the last section.

3) After every experiment, we loose and flatten the sand
to make the surface in a similar condition.

Fig.8 shows an example that the experiment is carried on a
wheel-soil interaction platform with a vision collect system.
As can be seen from Fig.9, the lines labeled quartz sand,
garnet sand, and desert sand represent the change of wheel
sinkage with a normal load on the quartz sand, garnet sand,
and desert sand, respectively. Under the same load, the wheel
sinkage will change on different soft sand because three
types of deformable terrain have different terramicanical
properties. But it is no doubt that the sinkage will increase as
the load increases. In the experiment where the soft medium
is desert sand, the sinakge changes most significantly with
normal load, followed by garnet sand, and quartz sand is the
least obvious. This is determined by the properties of the
three soft media. Desert sand particles have a small density
and large gaps, while quartz sand has large and small gaps,
while garnet sand is somewhere in between.

Fig. 9: Sinkage of the wheeled bevameter on three soils.

Based on the above data, we can regress a quadratic
function, the expression is as following formula:

sk = afN
2 + bfN + c (3)

fN , sk denote normal force and sinkage, a, b,and c are
respectively coefficients. In practical application, we can
directly carry out the experiment under the load of 70N, and
record sinkage when the load is multiples of 5N, then the
above function can also be obtained. When the robot crosses
a steep slope or the robot’s load changes more frequently, this
model can predict sinkage of the robot. And we can increase
the mobility of the robot by controlling the center of mass of
our robot to change the force of the robot’s wheels. When the
force sensor of the robot body is damaged or malfunctions,
we can also judge status by identifying sinkage of the wheel.

B. Predict Slip Ratio by Shear Experiment
High levels of slip can be observed on some deformable

terrains, which can lead to significant slow down of the
vehicle, inability to reach its predefined goals, or, in the
worst case, getting stuck without the possibility of recovery.
Slip ratio is defined as the difference between theoretical and
practical speed. After normalize it is given by:

s =

{
(rw − v)/rw (if |rw|> |v|: driving)
(v − rw)/v (if |v|> |rw|: braking)

(4)

where w is the rotation speed of the wheel, r is the radius
and v is the rover’s velocity. A positive slip ratio implies
that the rover is traveling slower than commanded, and a
negative slip ratio means the rover is traveling faster than
commanded. When the slip ratio is 1, the rover is completely
stuck in the rough terrain. If the slip ratio is too large, the
robot will dig the soil and make it sink deeper, making
it impossible to get out. At the same time, slippage will
reduce the odometric accuracy, which will lead to inaccurate
positioning and planning. So when the robot is driving on
soft soil, the slip ratio measurement and prediction are very
important.

Fig. 10: Example of the shear experiment, figure in the upper
are some pictures taken during the experiment on garnet
sand, the figures in the lower are drawbar pull and driving
torque varies with time in different slip ratios.

There are many factors that affect the slippage, such
as slope angle and particle density. Ref.[19], [46] mainly
depended on terrain classification or empirical models to
predict slip ratio. Obviously, for that environment without
available dataset, the classification and prediction will be
inaccurate. And sometimes those similar soft surfaces would
have different slip ratios due to various factors. Ref.[43]
verified that slip ratio is closely related to drawbar pull and
driving torque, so we use the wheeled bevameter platform to
find the relationship between them. The steps taken are:

1) Exert 35N normal load on the wheel of wheeled
bevameter because our robot is 14kg in total, and each
wheel will take 35N on average.



2) Many planetary rovers drive at a very slow speed to
make sure security, so we control the linear motion
moves forward along a horizontal direction at 0.01m/s.
Meanwhile, we control the wheel rotation speed to
keep the slip ratio at the value we want in each
experiment.

3) Experiment with different slip ratio changing from 0.1
to 0.8 and after each experiment, we will loose and
flatten the sand to ensure the surface keep similar
condition.

We collect the current signal of servos, timestamp, data
in all channels of the F/T sensor, driving torque, and
drawbar pull (Fig.10). With the slip ratio increasing, the
rutting becomes denser, rotation speed increasing caused this
phenomenon. For each slip ratio, we repeat three times and
get the average to reduce error. After experiments on three
types of soil, we get the Fig.11, the lines labeled quartz
sand, garnet sand, and desert sand represent the change of
drawbar pull or driving torque with respect to slip ratio on
the quartz sand, garnet sand, and desert sand, respectively.
As shown in the two figures, the drawbar pull and driving
torque of the rover will increase with the slip ratio increasing.
And it is obvious that in different soil, the slope of the
curve of drawbar pull with slip ratio is also different, this
is because different sand granule has very big difference
different mechanical properties.

Fig. 11: Drawbar pull and driving ratio varies with respect
to the time of the wheeled bevameter on three soils.

Based on the above data, we can regress a quadratic
function, the expression is as follow formula:

sr = afDP
2 + bfDP + c (5)

where fDP is drawbar pull, sr is slip ratio. a, b, c are
unknown coefficients. In practical application, in order to
save time, we can change the slip ratio multiple times in
every experiment. So we can get a set of slip ratios, drawbar
pull, and driving torque in each experiment, then the above
function can also be obtained. According to the function
model and the force status of the wheels of the robot, we
can predict the slip ratio the robot will produce in the terrain
ahead, whether it is in a high slippage area and whether it
can pass.

VI. FIELD EXPERIMENTS

In this section, field experiments performed on a 1.2 ×
1.5m area of sandy terrain are detailed to validate our

approach. We will confirm that robots using a wheeled
bevameter can predict the sinkage and slip ratio of unknown
terrain within error and choose the safest path.

A. Verification Experiment

Since the weight of the robot is 14kg, we control the
normal load at 35N , which can ensure that the sinkage and
slip ratio measured by the wheeled bevameter are directly
applied to the traversability analysis of the robot, if forces
on the four wheels are not same, we can take the maximum
value as the normal load to ensure safety. For reducing
the gap, we carried out 5 times sinkage and slip ratio
measurements. Each time the data was collected in a different
area to prevent the soil properties from changing due to
the previous measurement, because repeated experiments in
the same area may cause the soil to be compacted, thereby
affecting the accuracy of the measurement.

After detecting the unknown terrain using a wheeled
bevameter, the robot drives on the soft soil at the target speed
and measures its sinkage and slip ratio by a vision system and
IMU. As shown in Fig. 12(a), the predicted sinkage boxplots
represent measured sinkage by wheeled bevameter on the
desert sand and garnet sand under 35N , the robot sinkage
lines represent sinkage of the robot on the garnet sand and
desert sand respectively. In Fig. 12(b), the predicted slip ratio
boxplots represent measured slip ratio by wheeled bevameter
on the desert sand and garnet sand, the robot slip ratio lines
represent slip ratio of the robot on the desert sand and garnet
sand respectively. We can find that the sinkage and slip ratio
in the actual driving is not much different from predicted by
the wheeled bevameter and is always within the predicted
value range. It shows that the wheeled bevameter can achieve
an accurate prediction function.

Fig. 12: The error between the predicted sinkage and slip
ratio and the true value on desert and garnet sand.

B. Path Selection and Mobility Analysis

According to Fig.1 and Fig.12, when the robot moves on
different terrains, sinkage and the slip ratio may vary greatly
depending on the terrain. They are the two parameters that
have the greatest impact on mobility in soft soil mechanics.
So we can classify the soft terrain and choose the safer path
according to them.

We can calculate the traversability score T based on sink-
age and slip ratio information. According to the constraint
of robots such as driving capability, wheel size, we design



threshold values dmax, smax as the max sinkage and slip
ratio that the robots can accept, dmin, smin means means
the safety boundary. The traversability on the soft terrain is:

T =


0 s > smax or d > dmax

1 s < smin and d < dmin

min(1− ω1
s

smax
− ω2

d
dmax

) otherwise
(6)

where the ω1 and ω2 are the wights, which imply the preference
for traversability to the sinkage and slip ratio. In our case, we use
0.5 and 0.5, respectively.

So by evaluating the slip ratio and sinkage on the unknown soft
terrain, the robot can choose a safer path, predict traversability.

VII. CONCLUSIONS

In this paper, we proposed a robust and accurate method to
estimate contact parameters between wheel and soil. We designed
an unique articulated wheeled bevameter, we can get accurate
sinkage and slip ratio while the robot need not travel on the
unknown and dangerous terrain using this instrument, which is
better than the current in-situ perception and remote perception
methods. Moreover, we experimented to verify that the robot could
analyze mobility by comparing sinkage and slip ratio and choose
a safer path. For the future, we will take slip ratio and sinkage
on more terrains into consideration and combine elevation map to
create a travesability map. Last but not least, we can even change
the terrain with a wheeled bevameter to create a more suitable path.
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