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Uncertainty Guided Policy for Active Robotic 3D
Reconstruction using Neural Radiance Fields

Soomin Lee*, Le Chen*, Jiahao Wang, Alexander Liniger, Suryansh Kumar', Fisher Yu

Abstract—In this paper, we tackle the problem of active robotic
3D reconstruction of an object. In particular, we study how a
mobile robot with an arm-held camera can select a favorable
number of views to recover an object’s 3D shape efficiently.
Contrary to the existing solution to this problem, we leverage
the popular neural radiance fields-based object representation,
which has recently shown impressive results for various computer
vision tasks. However, it is not straightforward to directly reason
about an object’s explicit 3D geometric details using such a
representation, making the next-best-view selection problem for
dense 3D reconstruction challenging. This paper introduces a
ray-based volumetric uncertainty estimator, which computes the
entropy of the weight distribution of the color samples along
each ray of the object’s implicit neural representation. We show
that it is possible to infer the uncertainty of the underlying
3D geometry given a novel view with the proposed estimator.
We then present a next-best-view selection policy guided by the
ray-based volumetric uncertainty in neural radiance fields-based
representations. Encouraging experimental results on synthetic
and real-world data suggest that the approach presented in this
paper can enable a new research direction of using an implicit
3D object representation for the next-best-view problem in robot
vision applications, distinguishing our approach from the existing
approaches that rely on explicit 3D geometric modeling.

Index Terms—Active 3D reconstruction, robot vision, neural
radiance fields, next-best-view selection, uncertainty estimation.

I. INTRODUCTION

Active vision-based robotic 3D reconstruction of an object
using images or RGB-D sensors is a vital problem for robot
vision and perception [I1][2][3]. The primary task of active
vision in robotic systems is to skillfully operate the camera
pose to capture as much information about the scene as
possible. One practical approach to achieve this is by using a
robot that can place its visual sensor such that the information
gained for a given task is maximized [4][5]. That requires
the robotic system to make planning decisions based on its
state and current perceptual information of the environment
without access to unseen information. This paper tackles the
active robot vision problem popularly known as next-best-
view determination for object dense 3D reconstruction using
multi-view images. A typical active robotic 3D reconstruction
method generally consists of three essential steps: (i) Given
the object’s current information, proposals for the next pos-
sible view candidates are defined. (ii) The best next view
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Fig. 1: Overview. We develop a robotic system that actively estimates the next-
best-view for dense 3D reconstruction of an object leveraging the uncertainty
modeling in implicit neural representation. For object representation, our work
uses neural radiance fields [1 1] for its simplicity and notable performance on
3D shape representation.

candidate is selected based on a specified criterion. (iii) The
robot maneuvers to the corresponding pose to obtain new 3D
information about the object. These steps continue until no
acceptable information gain is observed (see Fig. 1). Since
the robot has no access to the actual candidate views in step
(i), it has to evaluate the unvisited view candidates, making
the decision challenging and critical in this pipeline. Thus, the
solution of this step is one of the main differentiating factors
among existing methods [2][6][7]1[8][9][10].

Available approaches that estimate the information gain
for this problem work on explicit 3D representations such
as pointcloud, voxel, etc., which are obtained via structure-
from-motion (SfM) or a calibrated RGB-D sensor. However,
it is well-studied that SfM has limitations, and its suitability
for achieving dense 3D reconstruction for robotic applications
remains challenging [12][13][14]. Consequently, methods that
rely on the fusion of depth maps coming from an active RGB-
D sensor became popular [15][16][17]. Still, such methods are
limited by the depth sensor acquisition range, depth sensor
noise, and perceived depth accuracy, which is affected by
the object’s surface details and material type. Hence, both
SfM and RGB-D fusion methods have inherent drawbacks in
dense 3D reconstruction, limiting their application in active



3D reconstruction.

Recent advances in shape representation based on neural
radiance fields, particularly NeRF [! 1], have shown promising
results for several computer vision tasks. Using well-posed
multi-view images, NeRF can provide an object’s dense 3D re-
construction with favorable accuracy, overcoming the inherent
limitations with SfM [13][14][18] and depth fusion methods
[15][17]. Accordingly, we leverage the NeRF representation
for the active robotic 3D reconstruction task. Contrary to the
available methods that rely on explicit 3D representations, we
explore the possibility of implicit neural shape representation
to solve this problem. Nevertheless, due to the implicit nature
of NeRF, the estimation of the information gain becomes
even more challenging. We show that by computing the
entropy of the weight distribution in the NeRF representation,
we can reason about the information gain. We demonstrate
with examples that such an approach is possible and can be
effective.

Contributions. To summarize, our key contributions are:

o We introduce a new method of using implicit neural shape
representation for the active robotic 3D reconstruction
task.

o We show that entropy of the weight distribution of the
color samples can be a suitable proxy for the uncertainty
of the underlying 3D geometry, and we present an uncer-
tainty guided policy using NeRF representation for next-
best-view selection.

We provide extensive evaluation and comparison results
on synthetic benchmark datasets to show the strength of our
approach. Our experiments confirm the transferability of the
proposed approach to real scenarios with superior results
compared to the competing baselines.

II. RELATED WORK

Active robotic 3D reconstruction. Available methods for
solving this task generally rely on explicit 3D representations
of the object. Isler et al.[2] addresses information gain formu-
lation in volumetric representations and compares the proposed
metric with different methods in [3]. Although the metric can
be effective, it is a combination of several hand-crafted factors.
Several other methods use point cloud for object representa-
tion, which is another widely used explicit 3D representation.
Wu et al.[10] uses Poisson fields to get a confidence map
of the current estimate to decide the part of an object that
needs further scanning. The method focuses on the quality and
accuracy of the recovered 3D surface, compromising on run-
time instead. Wu et al.replace the Poisson fields-based analysis
with point completion network [19] to find incomplete parts
of a scan, boosting up the speed but limiting their attention to
plant phenotyping [9].

In terms of robotic platforms that enable active 3D recon-
struction, [2] has the most similar setting as ours. They use a
wheeled mobile robot to move around an object and scan it
with a camera. [9] and [10] both demonstrate their ideas on
a robot but with a fixed base, using a scanner and an RGB-D
sensor with multiple robot arms, respectively.

Neural 3D shape representations. Neural implicit shape
representation via multi-layer perceptron (MLP) has recently
gained popularity as an effective representation for 3D shapes
[11][20][21]. Neural implicit representations are independent
of spatial resolution as geometry can be represented continu-
ously without discretization and has a lower memory footprint.
Earlier works for such a representation optimize a network
to regress either the Signed Distance Function (SDF) or the
occupancy function that takes 3D coordinates as an input
[22][23]. Although these methods can successfully represent
3D shapes, they require 3D supervision, restricting their use
to problems where the 3D geometry is unknown.

To our knowledge, this paper is an early attempt to build an
active robotic 3D acquisition system based on a neural implicit
representation of an object. While it is not yet common to
adopt neural representations in robotics applications due to
time constraints, a recent work [24] succeeded in using a
neural representation to represent scenes in a real-time system.
Furthermore, they demonstrated for the first time that a multi-
layer perceptron could serve as the scene representation for an
RGB-D SLAM system.

Volume and surface rendering for 3D reconstruction.
In the past, SfM, multi-view stereo, and depth-map fusion-
based methods were widely used for active 3D acquisition
tasks [2][13][14][15][25]. However, as alluded to above, these
classical approaches have limitations in the dense 3D recon-
struction of an object.

Recently, neural volume and surface rendering methods
have shown excellent 3D object reconstruction results. For
instance, DVR [26] introduced a differentiable volumetric
rendering formulation for multi-view 3D reconstruction using
image data only. On the contrary, IDR [27] introduced a
surface reconstruction approach leveraging a neural renderer
that approximates the light reflected from the surface. Other
recent approaches leverages implicit neural surfaces repre-
sentation together with volume rendering idea for better 3D
reconstruction [28][29][30]. Nevertheless, among all, NeRF
[11] turns out to be one of the most popular and widely used
volume rendering approaches for object dense 3D acquisition
and novel view-synthesis tasks.

NeRF is a simple yet effective volume rendering approach.
It represents the continuous static scene as 5D neural radiance
fields, parameterized by multi-layer perceptron (MLP). It
demonstrated that regressing density and light fields via an
MLP could yield photo-realistic rendering. Due to its remark-
able ability to capture complex geometric details, it gathered
significant interest from the community. NeRF led to several
recent follow-up works that try to reduce the training time
[31][32], handling unknown or noisy camera poses [33][34],
adding depth supervision [35],or adding a notion of uncertainty
[36] [37]. Since NeRF is simple, powerful, and forms the
basis of all recent neural rendering works mentioned above,
we choose NeRF methodology for this paper. Consequently,
the idea presented in this paper can generalize to various other
representations that stem from NeRF.



III. METHOD

Our work puts forward a policy formulation that selects the
best candidate views for improving the 3D reconstruction in
an active robot setting. Our approach infers the uncertainty
from a proposed pose by synthesizing the novel view from
NeRF-based shape representation. The rest of the section is
organized as follows: Sec. III-A provides an overview of NeRF
formulation [ 1]. Next, Sec. III-B introduces our approach to
model uncertainty. Lastly, Sec. III-C, describes our formulation
for the uncertainty guided policy.

A. Preliminaries

NeRF [1 1] models the continuous radiance fields of a static
scene using a multilayer perceptron (MLP). It takes a set
of images and encodes the scene as a volume density (o)
and color ¢ = (r,g,b). NeRF renders each pixel of an image
in a following way: Given a 3D point (x,y,z) in the scene
space and the ray direction parameterized by (0,¢) emitted
from the camera’s center of projection o, NeRF learns an
implicit function that approximates the scene ¢ and ¢ via an
MLP((x,y,z, 6,¢);®) =(0,c), where O is the parameter of an
MLP network. Using ¢ and ¢ per scene point, we can render
images from novel views via volume rendering [38].

Consider a ray r emanating from a camera position o € R
in direction d € R? where ||d|| = 1. Volume rendering approx-
imates light radiance by integrating the radiance along the
ray r(z) =o+td,s > 0. Specifically, the expected color C(r) is
computed using

cw= [T70) o) 0. dr, (D

where T (¢) indicates the accumulated transmittance along the
ray r and is defined as

(1) :exp(—/OtO'(r(s)) ds). @)

It can be interpreted as the probability that a light particle
traverses the segment [0,r(¢)] without being bounced off. It’s
complement probability, denoted as the opacity O, is defined
as O(t) =1-T(t). The opacity O is a monotonic increasing
function with O(0) =0,0(c0) = 1. Thus, the opacity function
O can be regarded as a cumulative distribution function, and
its derivative as a probability density function (PDF) [30]

w(t)= 2 () =T(1) o)) ®

The integrals in Eq.(1) and Eq.(2) can be estimated numeri-
cally using quadrature approximation [39] as,

N
C(r) =X T (1-exp(-0i%)) ¢ “)
i=1
where, T; = exp (- Z;;ll 0;0;) and ; =t —; is the distance
between adjacent samples. C(r) in Eq.(4) can be viewed as a
weighted sum of color samples c;, and can be written as

N
C(r) = Zwici, where, w; =T;(1-exp(-0;6;)) 5)

i=1
The weight term w; in Eq.(5) is a discrete approximation of
the continuous weight expression in Eq.(3), and can be derived

using the approximation 6;5; ~ (1-exp (-0;6;)). Furthermore,
if we define p; = exp(-0;0;), the discretized weight can be
expressed as follows:

i-1
wi=(1-p)[p; (6)
j=1

B. Ray-Based Volumetric Uncertainty

As mentioned earlier, the neural radiance field representa-
tion has several advantages over other shape representations.
At the same time, it can provide dense 3D reconstruction
using multiview images only. Yet, due to the implicit nature of
the representation, it is not straightforward to directly operate
on the explicit 3D shape and evaluate the 3D shape that the
current network will yield. Moreover, the reasoning about the
correctness of the object’s volume density pivot around the
multiview RGB color rendering values, making the inference
about the 3D shape rather challenging.

We address such a challenge in potential next view selection
by analyzing the distribution of weight, w(z) in Eq.(3), along
the rays of each pixel. Assuming we are looking for a solid sur-
face, an ideal model should have a concentrated weight around
the surface and nowhere else. This is also theoretically moti-
vated since the weight term can be regarded as the derivative of
the opacity, as shown in Eq.(3). Thus, the weight distribution
will have one clear peak if the network correctly learns about
the surface. [30] showed that the weight distribution indeed
gets closer to a step function at the surface during training.
We use the same observation to determine regions where NeRF
has not yet learned a sufficiently good 3D representation. We
argue that the regions with non-concentrated weights are where
the 3D geometry can be improved.

To confirm our hypothesis, we study distributions of weight
w(t) along rays as shown in Fig.(2). The first distribution
shows a ray that intersects with a relatively accurate part, and
has a clear peak. The second distribution shows a ray that
intersects with a noisy part, which has a noisy peak, but it is
still concentrated. Finally, the third distribution shows a ray
that intersects with an incomplete part, and the distribution
has multiple peaks and is spread out. These results coincide
well with our hypothesis. In summary, by examining how
concentrated the weight distribution is, we can infer how
certain the network is about the ray.

Specifically, we quantify the degree of how concentrated a
distribution is with entropy. Given a discrete random variable
X, the entropy of X is defined as:

n
H(X) == > P(xi)log P(xi), (7)
i=1
where P(x;) denotes the probability of the event X = x;.
Entropy fits our purpose because evaluating whether a dis-
tribution has one sharp peak is in consonance with evaluating
the uncertainty of a random variable the distribution yields. A
uniform probability distribution yields the maximum entropy,
while the entropy becomes zero when the outcome is always
determined. Note that the weight w(z) can be viewed as a PDF,
as discussed earlier, so the definition of entropy can indeed be
applied to the weight distributions.
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Fig. 2: Key observation for the proposed ray-based volumetric uncer-
tainty. The weight w(t), opacity O(¢), and sampled positions along rays are
visualized. We can infer the uncertainty of the underlying reconstruction of the
object by analyzing the weight distribution. (a) Accurate part: concentrated
weight distribution with a clear peak. (b) Noisy part: concentrated weight
distribution with a noisy peak. (c) Incomplete part: spread out distribution
with multiple peaks.

Fig.(3) shows whether the uncertain regions align well with
the inaccurate recovery of a 3D mesh. We collect 60 images
along a single horizontal circular trajectory around a toy loader
using our robotic system and we train a model using those
images. Then a 3D mesh is extracted from the model, which
contains inaccurate regions due to insufficient coverage of
the object in the training data. One can confirm that the
parts with high entropy match well with those not precisely
reconstructed, such as high-frequency regions.

Our proposed uncertainty estimation has several advantages:
First of all, the idea can be directly generalized to different
works that are based on neural rendering. Estimating the
weight distribution along each ray is one of the processes that
commonly exist in every work that leverages neural rendering.
Next, it is simple and easily applicable because it does not
require any additional training or changes in the network.
Finally, it provides a metric that can be evaluated on the
combined effects of different sources of uncertainty, such
as deficiency of data or geometric complexity. Accordingly,
we can avoid reasoning about different criteria we need to
consider, eliminating the need to use heuristics as in [2].

Several recent works proposed methods to identify the
uncertainty in NeRF [36][37]. NeRF-W [36] models static and
transient elements separately in order to handle uncontrolled
images, and the notion of uncertainty mainly serves as an
attenuation factor for the transient elements rather than the
uncertainty of 3D reconstructions of static scenes. S-NeRF
[37] learns to encode the posterior distribution over all the
possible radiance fields modeling the scene and obtains the
uncertainty estimates by sampling, following a Bayesian ap-
proach. However, both of them require models to be modified,
while our method can be directly plugged into other works that
are based on neural rendering.

Note: The proposed approach, however, is restricted to non-
transparent objects with solid surfaces. Volume rendering-
based models such as NeRF can model transparency. Yet, it is
not straightforward to recover the 3D surface of the transparent
glass. The extraction of 3D geometry usually relies on the
Marching Cube [40] algorithm, which can easily remove low
volume density regions together with noise. Hence, our work
is suitable for non-transparent objects.

Fig. 3: Correlation between 3D mesh and entropy map. Less precise parts
in the 3D mesh (left) coincide with higher entropy parts in the object-masked
entropy map (right). Brighter pixels indicate higher entropy values.

C. Uncertainty Guided Policy

For efficient active robotic 3D reconstruction, the fun-
damental task is to decide which views to scan next. As
highlighted in the introduction, the challenge comes from
having no access to the view at the decision time, i.e., step
(ii). Our proposed ray-based volumetric uncertainty estimation
approach allows us to infer the importance of adding a novel
view image via its uncertainty estimate to address such a
challenge. Thus, by design, it is straightforward to convert the
ray-based volumetric uncertainty estimator into a policy by
considering the mean entropy of a candidate view as a proxy
to the information gain this view can bring.

When we select images based on the proposed implicit
volumetric uncertainty, we take the mean of the entropy
values across all pixels to be the representative value for
an image. We find the mean values sufficient for our task
of view selection; however, one can potentially reason about
local uncertainties using the information since we compute the
uncertainty measure for each pixel.

In this work, we investigate a coarse-to-fine reconstruction
approach, where we start with a coarse set of images and select
views to improve the initial reconstruction. Consequently,
we introduce region clustering, as shown in Fig.(4), which
consists of a region where the initial views are selected and
several additional regions where further views can be selected.
After a coarse reconstruction using the initial views, each
iteration selects the view with the highest mean entropy of
each sector, and the robot collects the corresponding view.
These views are then added to the dataset, based on which
the model is refined. Without region clustering, the overall
acquisition process will be much longer to cover the object
geometry from different viewpoints, as we will get only one
view every iteration. Alternatively, selecting the top-k most
uncertain viewpoints without updating the model may result
in choosing a group of similar viewpoints. However, this is
not optimal since only a subset of them may be sufficient to
reduce the uncertainty in the region, and using similar views
could lead to overfitting. On the other hand, splitting the view
selection space into regions is a simple yet effective step that
helps select diverse views, which can potentially be used to
incorporate a prior based on domain knowledge. We discuss
other selection policies in Sec. IV-D.

IV. EXPERIMENT

We evaluate our uncertainty guided policy on both synthetic
and real-world data covering several types of objects. For
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Fig. 4: Region clustering. The view space defined on a hemisphere is divided
into several sections to locally determine additional training samples. The
middle part indicates the circular trajectory where the initial poses are sampled
from, and thus is excluded when clustering camera poses for additional
training.

clarity, experimental setup and results on synthetic and real-
world dataset are described separately in Sec. [V-A and Sec.
IV-B, respectively.

Implementation Details. We define the view space to be a
hemisphere surrounding the object and acquire images of the
object from five circles with different radii on the hemisphere
(see Fig.(4)). Thirty candidate poses are defined for each
of the five horizontal circles on the hemisphere, resulting
in 150 camera poses. Then as an initialization, we train a
NeRF model using images only from the middle circle. We
use six images for initialization (coarse reconstruction) in
experiments with synthetic data, while we use 15 images for
real-world experiments. We use this setup as a few images
are enough to get a high-quality 3D mesh for synthetic data.
Still, significantly more images are required for real objects,
showing the importance of both synthetic and real-world
experiments. Then we divide the hemisphere into 12 sections,
as shown in Fig.(4) for region clustering. The hemisphere is
divided into the upper and lower half with respect to the middle
circle that contains the initial training images, and each half
is further divided into six groups according to their azimuthal
angles. Therefore, in total, we have 12 sections and one middle
circle, and we select 12 additional images , one from each
section in each iteration.

For training a NeRF model, we use the official code
provided by the authors [11]. We use 64 samples for the
‘coarse’ network and 128 samples for the ‘fine’ network.
When evaluating the entropy of the weight distributions, we
downsample the images with a factor of 4 to speed up the
process. After selecting additional images, we initialize the
network with the model from the initialization step and refine
the model further with the updated training set.

Evaluation Metric. For 3D reconstruction evaluation, we use
the popular F-score metric [41]. The F-score is the harmonic
mean of precision and recall at a certain threshold d. The
precision quantifies the accuracy of the reconstruction, and it
can be maximized by producing a very sparse set of precisely
localized landmarks for instance. The recall quantifies the
completeness of the reconstruction, and it can be maximized
by densely covering the space with points.

Hardware. We use LoCoBot, a low-cost mobile manipulator
hardware platform to perform active robotic 3D reconstruction

LoCoBot

AprilTags

Fig. 5: Experimental setup for real-world object reconstruction. The toy
loader is placed in the middle of 4 AprilTags [43] for localization. The gripper
of LoCoBot [42] is replaced with a camera.

[42]. Tt has a wheeled mobile base with two degrees of freedom
(DoF), a manipulator with 5 DoF, and a camera attached to
the top. Initially, the robot had a gripper at the end of the
manipulator, but it was replaced with another camera to allow
the robot to perform exact 3D reconstruction. Note that we
do not use depth information from the RGB-D sensor. The
adjusted hardware and the experimental setup are shown in
Fig.(5). Using the camera on top, we localize the robot with
respect to AprilTags [43] to control the robot and to position
the camera on the arm to acquire well-posed images.

A. 3D Reconstruction of Synthetic Objects

(a) Datasets. For this experiment, we use the NeRF Blender
dataset [11]. We select four objects, namely Lego, Chair,
Drums, and Ficus to generate dataset for our robotic setup.
Note that the transparent surfaces of the Drums model are
removed to satisfy our assumption. We render 150 images
according to our experimental setup mentioned before.

(b) Baselines. For each object, we report the results of the
initial model trained with 6 images from the middle circle and
the model trained with all 150 images from the hemisphere.
We also present 5 different next-best-view selection policies
as baselines. (i) Random policy: a pose is selected randomly
within each section. (ii) Heuristic policy: the middle pose
of each of the 12 sections is selected. (iii) Similarity policy:
within each section, a pose with the lowest image similarity
to the initial training data is selected. Using the initial NeRF
model, we synthesize candidate views and compute the cosine
similarity between the feature vector of the synthesized views
and the initial training images. The feature vector is obtained
with ResNet-18 [44] pre-trained on ImageNet [45]. (iv) Simi-
larity (GT) policy: a pose is selected in the same way as (iii),
but the ground truth images are used for feature extraction
instead of the synthesized views. While the baselines (i)-(iv)
all are based on NeRF, we additionally compare our approach
with a volumetric active 3D reconstruction method, denoted
as (v) Volumetric Information (VI) policy [2]. Note that this
method uses stereo images as input. (vi) Pure Random: to-
gether with the aforementioned policies, we also present a pure
random baseline where images are randomly chosen over the
entire view space rather than within each section.

(c) Results. We run each baseline view selection policy based
on the initial model trained with 6 images to select one image
within each section. It means that after one iteration, we have



TABLE I: F-score of synthetic object reconstruction. With access to the ground truth meshes, we show a quantitative comparison against the baselines for
the reconstructed geometry on 4 different synthetic objects. Our method performs the best among all the selection policies. We also report the results of the
mesh reconstructed with all 150 images for reference. Bold numbers are only considering policies. The computation time for the next-best-view selection
using each policy: Random and Heuristic- less than a second, Similarity (GT)- 15 sec., VI[2]- 13.8 sec., Similarity and Ours- approx. 5 min.

Policy
Object Initialization Pure Random Random Heuristic Similarity Similarity (GT) VI [2] Ours All Images
Lego 0.3549 0.3682 0.3909 0.3959 0.3873 0.3710 0.1824 0.4101 0.4374
Chair 0.1285 0.1696 0.1831 0.1615 0.1772 0.1836 0.0959 0.1858 0.2142
Drums 0.2778 0.2229 0.2766 0.2700 0.2732 0.2687 0.1548 0.2853 0.3793
Ficus 0.1788 0.2557 0.2622 0.2666 0.2676 0.2630 0.1735 0.2705 0.3781
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Fig. 6: Comparisons on 3D meshes for Ficus. We show a qualitative comparison against the baselines for the reconstructed geometry on Ficus, which has
high frequency details. Our method captures the fine geometry well compared to the other policies. Note that the VI [2] method yields voxel representations.

12 additional images to refine the reconstruction. We report
the reconstruction results after one iteration of different view
selection policies in Table I. From Table I, we can see that for
all the synthetic objects we have tested on, our uncertainty
guided policy obtains the highest F-score against all the
baselines. Note that all NeRF-based baseline policies, except
for the pure random baseline (i.e., (vi)), are relatively similar
since they all get 18 views as an input which are reasonably
well distributed. Further, our method achieves improvement up
to 30% compared to the pure random baseline. On the whole,
these statistical results demonstrate that our policy selects the
best view from each region on the hemisphere.

Additionally, the visual similarity policy study shows that
the ray rendering uncertainty is more informative than the
visual features. Moreover, VI [2] baseline by far achieves the
lowest quality reconstruction. This affirms the suitability of
our choice of using implicit neural implicit volumetric rep-
resentation and modern continuous view-synthesis approaches
like NeRF to solve this problem. Fig.(6) shows the qualitative
results compared to the defined baselines. Clearly, the recon-
structions from our method better capture the fine geometric
details and coherent overall global shape.

B. 3D Reconstruction of Real-World Objects

(a) Datasets. We use our robotic system to acquire images
of real-world objects. For this experiment, we used the toy
loader shown in Fig.7a as the target object and acquired images
at 640 x 480 resolution. We compute the camera poses using
COLMAP [13][25]. Similar to the synthetic data experiment,
we define 150 candidate camera poses. The robot takes about
1.2 minutes to collect 15 images from the middle circle to
initialize the coarse 3D shape representation. It takes another
1 minute to collect 12 more images for refinement using the
proposed uncertainty guided policy.

(b) Baselines. We reconstruct the toy loader under two
baseline settings: (I) COLMAP and screened Poisson surface
reconstruction [46], (II) a reconstruction algorithm provided
by Open3D [16][47] that uses RGB-D image sequences. For
baseline (I), we use all 150 images for reconstruction. When
we use the same 27 images that are used for our method,
the structure-from-motion pipeline fails because the images
contain large rotational changes in their views. For baseline
(II), an RGB-D image sequence is required and hence an
RGB-D image sequence consisting of 2000 images is used.
(c) Results. The resulting 3D meshes are shown in Fig.(7).
Conceivably, 3D geometry recovered using our method has
the highest quality with fewer images. It can be observed
the COLMAP fails to reconstruct the fine surface geometric
details (Baseline (I)), whereas the RGB-D method provides
overly smooth surface reconstruction (Baseline (II)). On the
contrary, our method can reconstruct the fine surface details
while maintaining the global shape structure. Such results
validate our idea of uncertainty guided policy for active 3D
data acquisition using neural rendering principle.

C. Discussion on Runtime

The average initial training time of the NeRF [11] is around
15 hours when trained on a single NVIDIA GPU (TITAN Xp).
Although current experiments cost a significant amount of time
to train NeRF models, our uncertainty estimation is general
and can be adopted in various NeRF-based approaches. To this
end, we performed additional experiments using TensoRF [32],
a NeRF-based model that achieves fast training. The training
time is about 8.2 minutes on a single NVIDIA 2080 GPU,
and the F-scores from different policies when evaluated on
Lego are: Initialization (0.3272); Random (0.4895), Heuristic
(0.4234), Similarity (0.4163), GT similarity (0.4598), Ours
(0.5078); All Image (0.6281). Thus, our policy is model



(a) Ground Truth (b) COLMAP [13]

(c) Open3D (TSDF-Fusion [15]) (d) Ours

Fig. 7: Reconstruction results of a toy loader using classical methods and our approach with real-world data. The toy loader is reconstructed using
COLMAP [13], [25] with 150 images, the reconstruction system provided by Open3D [16], [47] with 2000 images, and our approach with 27 images (15 for

initialization, 12 for refinement).
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Fig. 8: Ablation study on view selection policies. The left plot shows the
selected poses using each policy, seen from above the hemisphere. Without
the region clustering we proposed in Sec. I1I-C, selected poses have similar
viewpoints with each other, resulting in less information gain and thus less
precise reconstruction.

agnostic, and the proposed idea can be switched to an al-
ternative NeRF-based model depending on the application. In
addition, we report the computation time for the next-best-
view selection using each policy: Random and Heuristic -
less than a second, Similarity (GT) - 15 sec., VI [2] - 13.8
sec., Similarity and Ours - approximately 5 min. Further, a
faster inference time can be achieved with TensoRF [32],
reducing the uncertainty computation time from 5 minutes to
2.8 minutes.

D. Ablation Study

(a) View Selection Policy. As discussed in Sec. III-C, we use
region clustering to avoid selecting the next views concentrated
in a certain region. We show the proposed policy is an effective
approach by comparing the reconstruction result to (i) when
we select the most uncertain views without considering other
factors such as the locality (+ symbol in Fig.(8)), and (ii)
when we consider the average spherical distances between
each pair of chosen poses (x symbol in Fig.(8)). Fig.(8) shows
the chosen next views for each policy and the resulting 3D
meshes. If we use policy (i), all 12 selected views are next to
each other and none of them contains the side or the rear view
of the object. Therefore, the rear part of the reconstruction
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Fig. 9: Iterative reconstruction result. After 4 iterations using our uncer-
tainty guided policy, the model is trained using only 54 images, but the mesh
quality of the model is comparable to when all 150 images are used.

is particularly noisy. When policy (ii) is used, the selected
views are more distributed than in the former case but the
rear part of the object is not yet precisely reconstructed. On the
contrary, when using our uncertainty guided policy (* symbol
in Fig.(8)), denoted as region clustering, we recover 3D mesh
with better quality.

(b) Iterative Reconstruction. When we run our active robotic
3D reconstruction pipeline, we show that we can achieve a
comparable level of 3D reconstruction quality without using
the whole image set. Fig.(9) shows the resulting 3D meshes
of Chair at different iterations. After one iteration, the noise
floating behind the chair is filtered; however, the rear part of
the backrest is still noisy, and the subtle convex shape of the
seat and the front part of the backrest is not captured. After
four iterations, these fine details are well represented, resulting
in a mesh similar to the one we can get by using 150 images
with only 54 images. In addition, we observed a decrease in the
average of the mean entropy values over all pixels after each
iteration: 1.748, 0.837, 0.797, 0.791, 0.790, which complies
with our intuition. Therefore, we can efficiently reconstruct an
object by actively choosing the camera poses with our policy.

V. CONCLUSION

This paper leveraged neural radiance fields-based implicit
representations to tackle active robotic 3D reconstruction of
an object. First, we introduced the ray-based volumetric un-
certainty estimator, which provides a suitable proxy for the
uncertainty of the underlying 3D geometry by computing the
entropy of the weight distribution of color samples along rays.
The proposed uncertainty estimation is applicable and can be
generalized to other recently improved neural rendering-based
approaches. Then, based on the estimator, we proposed an
uncertainty-guided policy for the robotic system to determine
the next best view for effective 3D reconstruction of an object.



Experiments on synthetic and real-world examples show that
our policy selects informative views for the object’s better
active 3D reconstruction.

Indeed, the optimization and rendering time of classical
NeRF can be argued. Nevertheless, as tested using TensoRF
[32] implementation, our method is general and can be further
improved using advanced neural rendering methods with faster
implementations. We believe our proposed method opens up
a new research direction of using an implicit 3D object
representation for the next-best-view selection problem in
robot vision applications.
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