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Abstract

The existing state-of-the-art point descriptor relies on
structure information only, which omit the texture informa-
tion. However, texture information is crucial for our hu-
mans to distinguish a scene part. Moreover, the current
learning-based point descriptors are all black boxes which
are unclear how the original points contribute to the final
descriptor. In this paper, we propose a new multimodal fu-
sion method to generate a point cloud registration descrip-
tor by considering both structure and texture information.
Specifically, a novel attention-fusion module is designed to
extract the weighted texture information for the descriptor
extraction. In addition, we propose an interpretable mod-
ule to explain the original points in contributing to the fi-
nal descriptor. We use the descriptor element as the loss
to backpropagate to the target layer and consider the gra-
dient as the significance of this point to the final descrip-
tor. This paper moves one step further to explainable deep
learning in the registration task. Comprehensive exper-
iments on 3DMatch, 3DLoMatch and KITTI demonstrate
that the multimodal fusion descriptor achieves state-of-the-
art accuracy and improve the descriptor’s distinctiveness.
We also demonstrate that our interpretable module in ex-
plaining the registration descriptor extraction.

1. Introduction
Point cloud registration is a technique that aims to es-

timate the transformation matrix (rotation and translation)
between two point clouds. This technique played a criti-
cal role in many applications, including robotics and aug-
mented reality [14]. Among the existing registration meth-
ods [1, 5, 11–13], descriptor-based methods [1, 11] are an
important category and achieve the state-of-the-art accuracy
in the large-scale real-world datasets (e.g., 3DMatch [26]).
The distinctiveness of the 3D point descriptor dominates the
performance of these descriptor-based registration methods.

Most of the current 3D descriptors utilize the structure
information to describe the points [1, 5, 12, 20]. However,
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Figure 1. A visual example to show that descriptors of non-
matched points p and q are similar if considering the structure
only (top). However, descriptors are discriminative when consid-
ering structure and texture information (bottom).

repeatable and ambiguous structures widely exist in point
clouds, such as floor, wall, and ceiling are all planes (see
Figure 1 as an example). These repeatable and ambigu-
ous structure information will largely impact the descrip-
tor distinctiveness. Consequently, the correspondences es-
timated by comparing the structure-only point descriptors
contain significant outliers. The existing published litera-
ture [1, 5, 12] has demonstrated this phenomenon that the
feature match recall drops a lot when the inlier threshold
increases to 0.2. Moreover, the current descriptors’ neural
networks are all black boxes. We never know how the struc-
ture information contributes to the final descriptor. Without
knowing the internal mechanism of the descriptor extraction
process, it is difficult to understand the reason for its fail-
ures or success from new testing datasets. This paper aims
to improve the distinctiveness and unfold the black box for
3D point descriptor learning.

To improve the distinctiveness of point descriptors, we
propose a new multimodal fusion method to learn the 3D
point descriptor by fusing the structure information of the
point cloud and the texture information of its correspond-
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ing image. Our motivation lies in our humans usually con-
sidering both texture and structure when we watch a scene
and discriminate two parts—for example, red wall(Ip) and
yellow floor(Iq) (see Figure 1 as an example). Moreover,
the current vision system in the intelligent agents (e.g., au-
tonomous cars and home robotics) usually contains both
point cloud sensors and image sensors. Data acquisition of
both point clouds and images becomes widely affordable.

Specifically, our multimodal fusion method is an encoder
and decoder architecture based on FCGF [5]. Inspired by
the transformer [22], a new cross attention module is devel-
oped to extract the weighted texture information for each
point after the encoder module. Then, we concatenate the
texture and structure information and feed them into the de-
coder module for the final descriptor learning.

Moreover, we move one step further to unfold the black
box for the 3D descriptor learning. We designed an in-
terpretable module, descriptor activation mapping (DAM),
which interprets how the neighbour points are involved in
the descriptor extraction. With the interpretable module,
the descriptor internal generation process is presented to us.
Our interpretable module is inspired by Grad-CAM [21] but
different to Grad-CAM with several critical improvements
and theoretical analysis specifically for the registration task.
The reasons for these improvements lie in two aspects: (1)
the Grad-CAM can be applied to ordinary 3D CNN but fails
to sparse tensor convolution. (2) the Grad-CAM requires
a class label (e.g., dog or cat) to calculate the category-
specified gradient, but the registration task does not contain
such class labels.

Specifically, our DAM introduces a novel method to cal-
culate a heat map that consists of the significance of the
input points contributing to the output in the target layer.
We use the descriptor’s channel value as the loss to back-
propagate the gradient into the target layer, which does not
require class labels. To interpret the multimodal fusion de-
scriptor, we considers the last layer as the target layer and
constructs a heat map based on the gradient addition of all
the descriptor’s channels.

The main contributions of this paper could be summa-
rized as

• A novel multimodal fusion method is proposed to learn
3D point descriptors with texture and structure infor-
mation. Our method will improve the descriptor’s dis-
tinctiveness.

• An interpretable module is proposed to unfold the
black box of the 3D point descriptor neural network.
This module will interpret how the neighbour points in
contributing the final descriptor.

• Comprehensive experiments demonstrate that the pro-
posed multimodal fusion descriptor achieves the state-

of-the-art performance on both indoor and outdoor
datasets.

2. Related works

Our work builds on prior work in several domains: 3D
descriptor and visual explanations.

2.1. 3D descriptor

Before deep learning was prevalent in 3D computer vi-
sion, many handcrafted descriptors were proposed to utilize
the structure information (e.g., edge, face, normal) to de-
scribe the points, such as FPFH [20] and ESF [23]. Several
pieces of literature consider the texture and structure infor-
mation into separate descriptors and combine them into an
optimization process to solve the registration [17, 19]. For
example, ColorICP [19] improved the ICP by adding a 3D
color objective. Recently, [25] designed a hybrid descriptor
by concatenating the spatial coordinates and colour moment
vector.

After deep learning is introduced into the point cloud
registration task, many learning descriptors [3, 5, 26] de-
signed neural networks to learn the descriptor by utilizing
the neighbour structure information of one point cloud. The
recent PREDATOR [12] designs a transformer module for
learning the point descriptor by considering the neighbour
structure information of paired point clouds. Because of in-
formation fusion of paired point clouds, PREDATOR im-
proves the descriptor’s discriminative. SpinNet [1] pro-
jected the point clouds into a spherical space and used
spherical convolution operations to extract the structural in-
formation as the point descriptor. MS-SVConv [11] de-
signed a multi-scale framework to learn the descriptor by
exploring the multi-scale structure information in describ-
ing the points.

However, these descriptors are still facing a challenge in
distinctively representing the 3D points. Although hand-
craft features utilize colour information, the strategies are
straightforward: they use it directly or concatenate it with
spatial coordinates. The recent state-of-the-art descriptor
has not considered the image texture information. How-
ever, the texture information is crucial in improving the de-
scriptor distinctiveness. This paper aims to improve the dis-
tinctiveness of descriptors by integrating both texture and
structure information.

2.2. Visual explanations

Interpretable learning has endured several developments
in 2D image fields. There are mainly two categories in the
area of convolution neural networks. 1) those interpret how
the intermediate layers represent in the real world, and 2)
those try to map back the output in the input space to visu-
alize which parts contribute to the output.



Figure 2. The network architecture of the proposed IMFNet. The input is a point cloud and an image, and the output is a point descriptor.
Inside the attention-fusion module, W is the weight matrix, FI is the point texture feature. Then, the point structure feature (Fpe) and
point texture feature (FI) are concatenated as an input to the decoder module to get the output descriptor. Descriptor activation mapping
(DAM) interprets how the neighbour points in contributing the final descriptor.

One example of the first category is the deep generator
network (DQN) [18]. DQN generates synthetic images for
each neuron and reveals the features learned by each neu-
ron in an interpretable way. [6] proposed a method to build
a saliency map related to the output and explain the relation-
ship between inputs and outputs that the model learned. The
complete review is beyond the scope of this paper. Please
refer the survey [2] for more information.

The proposed interpretable module belong to the second
category. One wide-known example of the second category
is Grad-CAM [21], which flows the gradient back into the
convolutional layers to produce a localization map high-
lighting the important regions in the input for predicting
the output. [24] extends Grad-CAM to 3D-CNN in solving
the Alzheimer’s disease classification. [9] extends the Grad-
CAM to recognize difficult-to-manufacture drilled holes in
a complex CAD geometry.

However, the existing interpretable methods are all fo-
cused on classification tasks. None of them focuses on reg-
istration tasks that are also an important branch of computer
vision. Moreover, the Grad-CAM works on ordinary CNN
but faces difficulty in directly applying to sparse tensor con-
volution. The reason is that the sparse tensor framework has
no direct feature map gradient, which is critical for Grad-
CAM [5]. Nevertheless, sparse tensor convolution has been
widely used in the point cloud registration problem. In this
paper, we aim to build an interpretable method for the reg-
istration problem.

3. Algorithm: IMFNet

The overall architecture of the proposed interpretable
multimodal fusion network (IMFNet) is surprisingly sim-
ple and depicted in Figure 9. It follows the standard UNet

architecture with four main components: the encoder mod-
ule including point encoder and image encoder, attention-
fusion module, decoder module and interpretable descriptor
activation mapping (DAM) module.

IMFNet is implemented in Minkowski Engine [4] and
PyTorch that provides the sparse tensor convolution and
common CNN backbone architecture implementation with
just a few hundred lines. The new attention-fusion module
can be implemented within 50 lines. We hope that the sim-
plicity of our method will attract more researchers to utilize
the multimodal information and develop interpretable learn-
ing algorithms on the registration problem.

3.1. Encoder

The point Encoder follows the FCGF [5] to use four
sparse tensor convolution layers. The input is P ∈ RM1×3

and the output is Fpe ∈ RM4×C4 . The image decoder is a
pre-trained ResNet34. The input is I ∈ RW×H×3 and the
output is the feature of the second stage Fie ∈ RMi×Ci . In
our algorithm, we consider the whole pixels as one dimen-
sionMi = H/8∗W/8, which is similar to point dimension.

3.2. Attention-Fusion

The goal of attention-fusion module is to extract the
texture information for each point to increase the descrip-
tors’ distinctiveness. Inspired by the Transformer [22], our
attention-fusion module follows the cross-attention style.
The input is Fpe ∈ RM4×C4 with rich structural informa-
tion and Fie ∈ RMi×Ci with texture information. M4 is
the number of abstract points of the point encoder, and Mi

is the number of abstract pixels of the image encoder. The
output of attention-fusion is Ffe ∈ RM4×C4 , which fuses
weighted texture information and structure information for
each abstract point.



Specifically, the Fpe and Fie firstly go through a one-
layer MLP. Then, the output of Fpe is considered as the
query array Q ∈ RM4×Ct , the output of Fie is regarded
as key array K ∈ RMi×Ct and value array V ∈ RMi×Ct .
Ct is the MLP output dimension. As shown in Figure 9,
the W ∈ RM4×Mi = softmax(QK

T

√
Ct

) is the weight matrix
that represents the weight of each pixel’ texture informa-
tion that could contribute to describing each point. Then,
the FI ∈ RM4×C4 is the point texture feature that is calcu-
lated with one-layer MLP. Mathematically, the point texture
feature FI could be calculated,

FI =MLP (W ∗ V ) (1)

Finally, we conduct an element-wise addition between
the point texture feature FI and the spatial structure feature
Fpe to fuse multimodal information. Mathematically, the
fused encoder feature (Ffe) is calculated as

F ijfe = F ijpe + FIij ,∀i ∈ [1,M4],∀j ∈ [1, C4] (2)

3.3. Decoder

Following FCGF [5], we use four sparse tensor transpose
convolution to decode the point descriptors. The key differ-
ence is that the input of the decoder module is the fused
feature of texture and structure.

3.4. Descriptor activation mapping (DAM)

We propose a descriptor activation mapping (DAM) to
visually interpret how the neighbour points in contributing
the above final descriptor extraction. The main idea of the
proposed DAM is to utilize the descriptor’s channel value
as the loss to backpropagate into the target layer. The mo-
tivation is to use the gradient to investigate the significance
of input points in generating the descriptor’s channel value.

Lemma 1 The feature map gradient is linearly related to
the kernel gradient.

The lemma proof is attached in the supplement material.
In the Grad-CAM [21], the class activation mapping is

calculated by the addition of feature map gradient at chan-
nel dimension. Our method is based on the sparse tensor
framework, where only kernel gradient is available. It is
not easy to directly calculate the feature map gradient. Ac-
cording to Lemma 1, the feature map gradient has a linear
relation with the kernel gradient. In the proposed DAM, we
introduce a method to calculate the activation mapping for
the 3D point descriptor with only kernel gradient available.

Figure 10 shows the calculation process. Firstly, the
point descriptor F ∈ RM×C is calculated by running a for-
ward step of the descriptor network. Secondly, we consider
the descriptor’s each dimension as a loss, and the loss is

Figure 3. Diagram of the DAM.

backpropagated from the descriptor to the last layer (tar-
get layer). After the backpropagation, we can obtain kernel
gradient of ith descriptor element G ∈ RS×Cin×C in the
sparse tensor framework as

G =
∂di
∂ω

ϕ (3)

where ∂di
∂ω is the gradient of ith descriptor element di re-

lated to kernel parameter ω, which can be obtained from
sparse tensors’ automatic back-propagation operation. S
represents the size of the convolution kernel, Cin represents
the size of the input channel, C represents the size of the
output channel, ϕ represents a marker function, 1 if di > 0,
and -1 otherwise.

Thirdly, the channel weight of ith descriptor element
x ∈ R1×C is calculated by adding up the kernel gradient G
along the convolution kernel dimension S and input channel
dimension Cin.

x =

Cin∑
j=1

S∑
i=1

Gijk,∀k ∈ [1, C], (4)

The channel weight x describes the significance of each
channel on the output feature map of the target layer.

Fourthly, the feature significance map of the target layer
is obtained by multiplying the weights with the feature map.
The feature significance map represents the significance of
each feature channel on the output feature map of the target
layer contributing to the final descriptor value. Then, the
descriptor activation mapping from ith descriptor element
is calculated by summing up the feature significance map
along channel dimension. Mathematically,

dami =
1

C

C∑
i=1

(F ∗ x)i (5)

The dami ∈ RM×1 describes the contribution of input
points to the value of ith descriptor element.



(a) Inlier Distance Threshold (b) Inlier Ratio Threshold

Figure 4. Comparison of IMFNet with other state-of-the-art method on 3DMatch under different inlier distance threshold τ1(a) and different
inlier ratio threshold τ2(b).

Finally, the descriptor activation map is calculated by
summing dami from all the C output descriptor elements.

DAM ∈ RM×1 = Relu(

C∑
i=1

dami) (6)

4. Experiments
The proposed algorithm is trained using the same loss

and parameters of FCGF [5]. Then, following FCGF [5]
and SpinNet [1], we evaluate our IMFNet on the indoor
3DMatch [26] and outdoor KITTI [8] datasets. We also
evaluate on 3DLoMatch [12] that contains low overlap pairs
between 10% − 30%. Regarding the 3DMatch and 3DLo-
Match, we manually inspect and select the images for each
point cloud to construct a dataset of paired images and point
clouds named 3DImageMatch. Our experiments are con-
ducted on this dataset. The dataset construction and training
details are attached in the supplement material.

Ground truth. Given pair of fragments P and Q, fol-
lowing FCGF [5] and SpinNet [1], we randomly select 5000
anchor points from the overlapping region of P, and then ap-
ply the ground truth transformation T = {R,t} to determine
the corresponding point in Q fragment. The descriptor is
evaluated using these ground-truth correspondences.

4.1. Evaluation on 3DMatch

The 3DMatch [26] is a well-known indoor registration
dataset of 62 scenes captured by RGBD sensor. Following
the experimental setting of FCGF and SpinNet, we train the
network and evaluate the descriptor’s performance.

Table 1 shows the feature match recall (FMR) compar-
ison with the current state-of-the-art methods. The results
show that the proposed IMFNet obtains state-of-the-art ac-
curacy. Notably, our IMFNet achieves 91.6% (↑1.7%) in
inlier threshold τ2 = 0.2, which shows that multimodal fu-
sion can reduce the outliers and improve the descriptors’
distinctiveness. Figure 5 visually demonstrates the better
performance than the recent state-of-the-art descriptors.

Method Origin(%) Rotated(%)
τ2(0.05)Std τ2(0.05) Std τ2(0.2) Std

FPFH [20] 35.9 13.4 36.4 13.6 - -
CGF [15] 58.2 14.2 47.8 14.0 3.0 -
3DMatch [26] 59.6 8.8 50.8 - 4.3 -
PPFNet [7] 62.3 10.8 3.1 - 0.3 -
PPF-FoldNet [7] 71.8 10.5 73.1 10.4 25.1 -
PerfectMatch [10] 94.7 2.7 94.9 2.5 72.9 -
FCGF [5] 95.2 2.9 95.3 3.3 67.4 -
D3Feat [3] 95.8 2.9 95.5 3.5 75.8 -
LMVD [16] 97.5 2.8 96.9 - 86.9 6.6
PREDATOR [12] - - 96.7 - 86.2 -
SpinNet [1] 97.6 1.9 97.5 1.5 85.7 -
MS-SVConv [11] - - 98.4 - 89.9 -
Ours 98.5 1.8 98.6 1.5 91.6 4.4

Table 1. Feature match recall (FMR) on 3DMatch.

Evaluation on different error thresholds. Following
the experimental setting of FCGF [5], Figure 11 shows the
accuracy comparison on different error thresholds (τ1 and
τ2). As shown in Figure 11, the proposed IMFNet con-
sistently outperforms all other methods across different er-
ror thresholds. This experiment demonstrates that multi-
modal fusion improves the descriptor’s distinctiveness and
achieves state-of-the-art accuracy among different accuracy
requirements. Looking at Figure 11-(b), it is worth not-
ing that FMR scores of our IMFNet are significantly higher
than those of other methods when a high matching rate (e.g.,
τ2 = 20%) is required.

Method 5000 2500 1000 500 250 Avg

PerfectMatch [10] 94.7 94.2 92.6 90.1 82.9 90.9
FCGF [5] 95.2 95.5 94.6 93.0 89.9 93.6
D3Feat-rand [3] 95.3 95.1 94.2 93.6 90.8 93.8
D3Feat-pred [3] 95.8 95.6 94.6 94.3 93.3 94.7
SpinNet [1] 97.6 97.5 97.3 96.3 94.3 96.6
MS-SVConv [11] 98.4 96.4 95.4 95.0 93.0 95.6
Ours 98.6 98.5 98.2 98.1 97.5 98.2

Table 2. Feature match recall across different number of sampled
points.



Figure 5. Visual comparison on 3DMatch dataset.

Evaluation on a different number of sampled points.
We further evaluated the performance of IMFNet with a dif-
ferent number of sampled points on 3DMatch. Table 2 illus-
trates that the proposed IMFNet achieves state-of-the-art ac-
curacy across the different number of sampled points. Par-
ticularly, our IMFNet achieves > 97% feature match recall
(FMR) across the different number of sampled points and
even 3.2% accuracy improvement on 250 sampling points.
This result demonstrates that the proposed method achieves
high robustness to the number of sampled points.

Computation efficiency comparison. We compared the
single descriptors’ extraction speed with the recent FCGF
[5], PREDATOR [12], SpinNet [1] and MS-SVConv [11]
on the 3DMatch testing dataset. Table 3 shows that our
method obtains comparable efficiency to FCGF and is faster
than the recent PREDATOR, SpinNet and MS-SVConv.
Specifically, the proposed method obtains > 440 times
more speed improvement than SpinNet. This is because
the spherical projection is very slow, while this step is in-
dispensable for spherical convolution. Compared to the
PREDATOR, the proposed IMFNet achieves > 5 times
speed improvements. The reason is that its transformer
module contains both self and cross attention and requires a
pair of point clouds for each point descriptor extraction.

Method All (s) Time (s)
FCGF [5] 25.06 0.06
PREDATOR [12] 762.58 0.47
SpinNet [1] 17155.5 39.62
MS-SVConv [11] 41.23 0.10
Ours 39.98 0.09

Table 3. Running speed comparison on 3DMatch.

4.2. Evaluation on 3DLoMatch.

We also compare the performance on 3DLoMatch [12]
with the recent descriptors FCGF [5], PREDATOR [12],

SpinNet [1] and MS-SVConv [11]. As shown in Table 4,
the proposed IMFNet also achieves the state-of-the-art fea-
ture match recall at the registration dataset with low-overlap
point clouds. Particularly, our method achieves 80.6% (↑
2%) at the τ2 = 0.05 and 49.8% (↑4%) accuracy at the
τ2 = 0.2. Although we achieve best accuracy, this experi-
ment also shows that the low-overlap problem is still a chal-
lenge for correspondence-based registration methods.

Method FMR(%) FMR(%) Feat dim
τ2(0.05) τ2(0.20)

FCGF [5] 54.7 9.3 32
PREDATOR [12] 78.6 - 32
SpinNet [1] 74.8 45.8 32
MS-SVConv [11] 67.9 27.4 32
Ours 80.6 49.8 32

Table 4. Feature match recall (FMR) on 3DLoMatch.

4.3. Evaluation on KITTI

KITTI [8] is well-known outdoor dataset captured by 3D
LiDAR sensor. The first 11 sequences (0-10) of KITTI’s
odometry dataset is always used for point cloud registra-
tion evaluation because they have point cloud sequences
and pose information. Following FCGF [5], we use the
first 6 sequences for training(0-5), 2 sequences for verifi-
cation(6,7), and 3 sequences for testing(8-10). Following
FCGF [5], the same evaluation metrics are utilized to evalu-
ate the relative translational error (RTE), relative rotation
error (RRE), and success rate. We compare the perfor-
mance of our IMFNet with the recent published descriptors
FCGF [5], D3Feat [3], PREDATOR [12] and SpinNet [1].

The KITTI dataset provides both point clouds and im-
ages of the scene. However, the point clouds are 360◦ while
the images only have the front view of their corresponding
point clouds. The proposed IMFNet is trained and tested
using the point cloud and its corresponding image. We con-
ducted the experiments on KITTI data to demonstrate that



Figure 6. Visual comparison on KITTI dataset.

Method RTE(cm) RRE(°) Success(%)Avg std Avg std
FCGF [5] 6.47 6.07 0.23 0.23 98.92
D3Feat [3] 6.90 0.30 0.24 0.06 99.81
PREDATOR [12] 6.80 - 0.27 - 99.80
SpinNet [1] 9.88 0.50 0.47 0.09 99.10
Ours 5.77 0.27 0.37 0.01 99.28

Table 5. Quantitative comparison on KITTI.

the proposed IMFNet can improve the distinctiveness when
only partial texture information is available. The lower RTE
and RRE in Table 5 shows that the proposed IMFNet can
improve the distinctiveness of point descriptors when par-
tial texture information is available. Also, the better suc-
cess rate than FCGF indicates that adding partial texture
information can improve the registration performance. Fig-
ure 6 visually compare the registration results on the KITTI
dataset.

From 3DMatch to KITTI We also performed a cross-
dataset evaluation on the KITTI dataset to test the gener-
alization capability of the proposed IMFNet. We trained
all the methods on 3DMatch and tested them on KITTI
with the same experimental setting (e.g., RANSAC iterates
50K times). As shown in Table 6, our IMFNet obtains bet-
ter performance than the compared methods. We also in-
creased the RANSAC iteration time from 50K to 400K, and
the proposed algorithm achieves 99.46% registration recall.
This experiment shows that multimodal fusion is a promis-
ing way to achieve a high generalization ability in cross do-
mains.

4.4. Ablation Study

During the descriptor extraction, the critical contribu-
tion of the proposed IMFNet is the attention-fusion module.
This section reported several ablation studies we have al-
ready done on this module. The ablation study is performed
on the 3DMatch dataset, and the τ1 = 0.1(m) is set for all

Method RTE(cm) RRE(°) Success(%)Avg std Avg std
FCGF [5] 27.1 5.58 1.61 1.51 24.19
D3Feat [3] 31.6 10.1 1.44 1.35 36.76
SpinNet [1] 15.6 1.89 0.98 0.63 81.44
Ours (50K) 21.9 3.10 1.94 0.30 85.59
Ours(400K) 10.3 0.68 0.70 0.05 99.46

Table 6. The performance from 3DMatch to KITTI.

the ablation studies.
With/without the attention-fusion module. Firstly,

we removed the attention-Fusion module of the proposed
IMFNet and extracted 3D descriptors using only structural
information. After we remove the attention-fusion module,
the architecture is the FCGF [5]. Table 7 shows the fea-
ture match recall (FMR) comparison. This ablation study
demonstrates that the fusion of texture information will sig-
nificantly improve the feature match accuracy with a large
margin. Notably, the attention-fusion module improved
24.2% on feature match recall when the inlier threshold was
set to 0.2. This ablation study demonstrates the importance
of texture information in improving the descriptors’ distinc-
tiveness.

Attention Fusion τ2(0.05) τ2(0.2)
with (w) 98.6 91.6

without (wo) 95.2 67.4

Table 7. Ablation study of w/wo attention-fusion module.

Single/multiple attention-fusion modules. In the pro-
posed IMFNet algorithm, we only use one attention-fusion
module between encoder and decoder. We also added the
attention-fusion module behind each upsampling layer of
the decoder as additional information (three in total). This
architecture could integrate hierarchical fusion between tex-
ture and structure information. The experimental results of



Table 8 show that there is no significant performance in-
crease when we consider three attention-fusion modules.
However, both the GPU memory consumption and compu-
tation time largely increase. The reason is that the features
obtained by the large receptive field in the last encoder layer
contain enough structural information. Texture and struc-
ture fusion on these features is the most appropriate choice.

Position τ2(0.05) τ2(0.2) Memory Time(s)
Single 98.6 91.6 ∼ 4GB 0.09
Three 98.5 91.0 ∼ 6GB 0.17

Table 8. Ablation study of attention-fusion modules.

Attention-fusion module design. Our attention-fusion
contains one cross-attention (CA) layer. Following the con-
cept of Transformer architecture [22], we also considered
adding a certain number of self-attention (SA) layers after
the cross-attention layer. Table 9 shows that the model with
one-layer self-attention achieves the best accuracy. The rea-
son is that the attention-fusion module aims to conduct fea-
ture fusion rather than feature enhancement, and multiple
self-attention layers may confuse the matching relationship
between structure information and texture information.

Layers τ2(0.05) τ2(0.2)
CA + 0 SA 98.6 91.6
CA + 3 SA 97.9 89.1
CA + 6 SA 98.0 90.0

Table 9. Ablation study of different self-attention (SA) and cross-
attention (CA) layers for the attention-fusion module design.

Different setting of query(Q), key(K) and value(V).
We also evaluated the different settings of Q and K for
our attention-fusion module. As shown in Table 10, the
model that takes point cloud features as query K and value
V and image features as query Q achieves relatively poor
feature match recall (FMR). The reason is that the output
of attention-fusion will keep enhanced point feature if we
consider point cloud features as K and V . Therefore, the
attention-fusion module performs a feature enhancement in-
stead of texture and structure fusion. Moreover, the final
output features only retain structural information without
texture information fusion.

Q K,V τ1(0.05) τ2(0.2)
PC Image 98.6 91.6

Image PC 97.7 84.4

Table 10. Ablation study of different QKV options.

Figure 7. Interpretable results to show the point significance in
generating the final descriptor. The heat maps interpret the de-
scriptors of black points inside the red circles.

4.5. Interpretable results and analysis

We conduct experiments to demonstrate the effective-
ness of the proposed interpretable module. Three points P ,
Q1 and Q2 are selected based on descriptor search. P and
Q1 is matched pair, and P and Q2 are non-matched pair.
P is from the one point cloud PC1, and Q1 and Q2 are
from the matched point cloud PC2. The last decoder layer
is selected as the target layer. Then, we run the proposed
interpretable method to interpret the proposed descriptor
IMFNet, and the most related FCGF [5] on these points.

Figure 7 shows that descriptors of the FCGF and IMFNet
have similar heat maps on the matched points (P and Q1).
In contrast, the heat maps of non-matched points (P and
Q2) show a significant difference. These results demon-
strate that the proposed interpretable module can robustly
generate a heat map for descriptors at different point clouds.

Moreover, looking deep into the heat maps, our IMFNet
selects relatively consistent regions to describe the selected
matched points and get the similar descriptors. However,
the heat maps of FCGF have variants in the matched points.
Our better accuracy implies that finding the consistent im-
portant regions for the matched points is an important indi-
cator for the descriptor’s distinctiveness. More interpretable
results can be found in the supplemental materials.

5. Conclusion
In this paper, we propose a simple and effective 3D de-

scriptor by fusing structure and texture information. The
experiments demonstrate that our descriptor achieves state-
of-the-art accuracy and high efficiency on indoor, outdoor
and low-overlap datasets. For the first time, we develop a
method to move a step further in unfolding the black-box
for the 3D registration tasks. The proposed interpretable
module can be used to interpret neighbour points in con-
tributing the descriptor and analyze the descriptor ability.
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In this supplementary material, we provide additional
ablation study on Kitti (Sec. 1), a detailed 3DImageMatch
fabrication process (Sec. 2), data preprocessing (Sec. 3),
and model training details (Sec. 4). We further provide our
detail IMFNet network framework(Sec. 5) and prove the
Lemma 1 (Sec. 6). Finally, we show some registration vi-
sualization(Sec. 7) and interpretable visualizations(Sec. 8).

1. Ablation study on KITTI
To evaluate the generalization ability of the attention-

fusion module, we also conduct ablation studies on the
KITTI dataset by using trained model of 3DMatch.

With/without the attention-fusion module. Table 11
shows that registration recall is improved > 13% if adding
the attention-fusion module. This demonstrates that the
texture information can largely improve the generalization
ability.

Attention Fusion RTE(cm) RRE(°) Success(%)Avg std Avg std
With (w) 21.9 3.10 1.94 0.30 85.59

Without (wo) 24.5 3.79 2.19 0.33 72.07

Table 11. Ablation study of w/wo attention-fusion module on
KITTI dataset.

Single/multiple attention-fusion modules. In table 12,
the single attention-fusion module achieves the better accu-
racy. The reason is that the points obtained by the large re-
ceptive field in the last encoder layer contain enough struc-
tural information. Texture and structure fusion on these
points is the most appropriate choice.

Attention Fusion RTE(cm) RRE(°) Success(%)Avg std Avg std
Single 21.9 3.10 1.94 0.30 85.59
Three 22.5 2.99 1.97 0.33 80.36

Table 12. Ablation study of single/multiple attention-fusion mod-
ules on KITTI dataset.

Image Size deep RTE(cm) RRE(°) Success(%)Avg std Avg std
160×160 1 21.9 3.10 1.94 0.30 85.59
160×160 4 21.7 3.62 1.73 0.23 84.32
160×160 7 22.4 3.07 1.87 0.26 81.98

Table 13. Ablation study of different self-attention (SA) and cross-
attention (CA) layers for the attention-fusion module design on
KITTI dataset.

Attention-fusion module design. Table 13 show
that the one-layer attention-fusion design achieves best

success rate, which demonstrates it best generalization
ability in this design. As discussed in section 4.4 of
the main manuscript, increasing the number of layers
of attention-fusion may confuse the matching relation-
ship between structure information and texture information.

Different setting of query(Q), key(K) and value(V).
Table 14 shows that setting the point cloud as query
achieves the best accuracy. In addition, the generalization
ability of the setting point cloud as key and value matrix
achieves only slightly higher than that of the model without
attention-fusion module. The reason is that the attention-
fusion module performs a feature enhancement when we
setting as key and value, instead of texture and structure
fusion. Therefore, the final output descriptor only retains
structural information without texture information fusion.

Q K,V RTE(cm) RRE(°) Success(%)Avg std Avg std
PC Image 21.9 3.10 1.94 0.30 85.59
Image PC 24.5 4.04 2.15 0.31 73.33

Table 14. Ablation study of different QKV options on KITTI
dataset.

2. 3DImageMatch
We consider that if we want to extract descriptors by

fusing the structural information and texture information of
points, we need to have a dataset of point cloud and image
pairs depicting the same scene. However, there is no such
dataset that contains paired point cloud and image depict-
ing the same scene. In this paper, we construct a dataset
based on 3DMatch, named as 3DImageMatch, that consists
of paired point cloud and image describing the same scene.
Figure 8 shows several examples.

Tranining set. In the 3DMatch training dataset, each
point cloud is generated by fusing 50 depth images. To get
the corresponding image of a point cloud, we need to se-
lect an image from the 50 RGB images corresponding to
the 50 depth images. Since these 50 images contain slight
movement, we manually select the image that has the most
similar content with the image projected by the point cloud
according to the Z axis. Formally,

C =

fx 0 cx
0 fy cy
0 0 1



u = fx
X

Z
+ Cx, v = fy

Y

Z
+ Cy (7)

where C is the intrinsic matrix of camera, (X,Y, Z) are the
coordinates of a 3D point, (u, v) are the coordinates of the



Figure 8. Some visual examples of the 3DImageMatch. The first row shows the point clouds. The second row shows projection results
from point clouds to images. The third column shows the images that corresponding to the point clouds in the first row. It can be seen that
the selected images are almost identical with the projected results.

projection point in pixels, (cx, cy) is a principal point that is
usually at the image center, fx and fy are the focal lengths
of the camera in the X and Y directions, respectively.

Test Set. In 3DMatch’s test set, we find that the point
clouds are generated from depth images as the same as those
in trainning set excepting the following three scenes:

7− scenes− eedkitchen

sun3d− home at− home at scan1 2013 jan 1

Sun3d− home md− home md scan9 2012 sep 30

In the above three scenarios, each point cloud is generated
by fusing the first 50 depth images every 100 depth images
(skip the next 50 depth images).

3. Data preprocessing
3DMatch. To demonstrate the value of texture informa-

tion, our experiments are conducted on 3DImageMatch by
following the same processing of 3DMatch. We used 54
scenarios as training sets, 6 scenarios as validation sets, and
8 scenarios as test sets. We use TSDF volumetric fusion to
synthesize 50 depth images into a point cloud, and apply
certain downsampling on all point clouds.

KITTI. Following the setting of FCGF, we used the
first 10 scenarios for model evaluation and training, among
which 0-5 sequences were used for training, 6 and 7 se-
quences were used for verification, and 8-10 sequences
were used for testing.

4. Details of model training

Since our IMFNet framework is based on FCGF, most
parameters of IMFNet can refer to FCGF. We trained 200
epochs on both 3DMatch and KITTI. All of our models
trained are based on batch size = 2. The ResNet34
model in IMFNet is pre-trained and the image input size
is (120, 160) on 3DMatch and (160, 160) on KITTI. In
attention-fusioon, we set the size of the Ct to be half of
the dimension of the input point cloud ,i.e. M4

2 , and in the
cross-attention calculation, we set only one head. We will
release our code for these details.

5. Detailed network framework

The details of our IMFNet network framework are
shown in Figure 9. In this framework, the MEConv,
MEBN, MEResBlock, MEReLU and MEcat refer to FCGF.



Figure 9. Detailed network framework of the proposed IMFNet.

Figure 10. The details of attention-fusion module. × stands for matrix multiplication. ⊗ means the element multiplication, and ⊕ means
the element addition.

Here, MEConv, MEBN, MEResBlock, MEReLU, MEcat
means MinkowskiConvolution, MinkowskiBatchNorm,
BasicBlockIN, relu activation function in Minkowski
engine, concatenation in Minkowski engine. For the stage
of ImageEncoder, see ResNet34 [?]. The details of the
attention-fusion module is shown in figure 10, which shows
that our attention-fusion module is simple and can be
implemented easily.

6. Proof of Lemma 1

Define the input feature map of a target layer as A ∈
RM×Cin , the output feature map as Z ∈ RM×Cout , the
Kernal as K ∈ RCin×Cout , and the kernal size as [1, 1, 1].
We perform an element-wise addition for the above n3 out-
put feature maps if kernel size is [n, n, n]. In forward prop-



agation:

A×K = Z

Zij =

Cin∑
n=1

AinKnj ,∀i ∈M,∀j ∈ Cout
(8)

where Cin represents the input dimension of the target
layer, Cout represents the output dimension of the target
layer, and M represents the number of elements. Let ε is
the loss that we want to propagate backwards. Then, Kernel
gradient was calculated by backward propagation as:

∂ε

∂Kij
=

∂ε

∂Z

∂Z

∂Kij
(9)

due to the:

Zij =

Cin∑
n=1

AinKnj ,∀i ∈M,∀j ∈ Cout

∂Znj
∂Kij

= Anj ,∀n ∈M
(10)

so:

∂ε

∂Kij
=

∂ε

∂Z1j

∂Z1j

∂Kij
+ ...+

∂ε

∂ZMj

∂ZMj

∂Kij

∂ε

∂Kij
=

M∑
n=1

∂ε

∂Znj
Anj ,∀j ∈ Cout

(11)

The above equation 11 shows that the kernel gradient
∂ε
∂Kij

is only related to the same j column (channel dimen-

sion) of output feature map gradient ∂ε
∂Znj

. Because Anj is
scalar, equation 11 means that kernel gradient is linearly re-
lated to the output feature map gradient in the same channel.
Therefore, the Lemma 1 has been proved.

7. Interpretable visualization
In this section, we show more interpretable results for

both FCGF (figure 11) and our IMFNet (figure 12). Inside
each heat map, the black point region is generated by using
KNN to find the nearest 10 neighbor points around the target
point. Both Figure 11 and Figure 12 illustrate that heat maps
of matched points are similar while different in the non-
matched points. Compared with the heat maps of FCGF
descriptor, our IMFNet shows more consistency.

8. 3DMatch/3DLoMatch visualization
In this section, we generate more visualization exam-

ples for our IMFNet to show its registration ability. Figure
13 shows the visual examples on 3Dmatch, and Figure 14
shows the visual examples on 3DLoMatch.



Figure 11. Interpretable results of FCGF. Points p and q are matched, and p and q’ are non-matched.



Figure 12. Interpretable results of our IMFNet. Points p and q are matched, and p and q’ are non-matched.



Figure 13. Some visualization results of IMFNet on 3DMatch.



Figure 14. Some visualization results of IMFNet on 3DLoMatch.
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