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Abstract—Convolutional neural networks trained using man-
ually generated labels are commonly used for semantic or
instance segmentation. In precision agriculture, automated flower
detection methods use supervised models and post-processing
techniques that may not perform consistently as the appear-
ance of the flowers and the data acquisition conditions vary.
We propose a self-supervised learning strategy to enhance the
sensitivity of segmentation models to different flower species
using automatically generated pseudo-labels. We employ a data
augmentation and refinement approach to improve the accuracy
of the model predictions. The augmented semantic predictions
are then converted to panoptic pseudo-labels to iteratively train
a multi-task model. The self-supervised model predictions can
be refined with existing post-processing approaches to further
improve their accuracy. An evaluation on a multi-species fruit
tree flower dataset demonstrates that our method outperforms
state-of-the-art models without computationally expensive post-
processing steps, providing a new baseline for flower detection
applications.

Index Terms—Semantic Scene Understanding, Object Detec-
tion, Segmentation and Categorization, Incremental Learning,
Agricultural Automation.

I. INTRODUCTION

Computer vision algorithms are becoming increasingly pop-
ular in agricultural applications. Detecting and counting flow-
ers is an important crop management activity to optimize
fruit production [I]. Automatic bloom intensity estimation
methods have the potential to reduce workloads in large
production fields. Many machine vision approaches have been
proposed to address the challenges of estimating crop yield.
Most recent flower detection and counting methods based on
deep learning models require a large amount of manually
labeled training data to achieve acceptable performance [2]-
[4]. Although weakly supervised approaches [5] can simplify
the training of convolutional neural networks (CNNs), they
are not particularly effective to adapt large-scale, pre-trained
models to unseen object categories.
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Data augmentation [0], [7] is a de facto standard technique
to reduce the dependence on manual annotations when training
deep neural networks. But in agricultural visual data, the
appearance of objects of interest and the scene conditions
vary significantly from one field to another. Besides, since
agricultural production environments usually require images
to be acquired from moving vehicles [2], [4], [8], the sun
conditions and dense background clutter make this task chal-
lenging in terms of model generalization. Hence, we still
need to generate enough manual labels for various species of
crops to generalize the prediction models across species with
significantly different appearance and backgrounds potentially
comprised of semantically distinct elements.

Although deep CNNs can perform reasonably accurate
pixel-level semantic predictions [2], [9], false alarms due
to similarities between flowers, fruits at different stages of
maturation, and background objects limit potential opportu-
nities for the application of computer vision algorithms to
agricultural automation tasks. Instance [10] and panoptic [11]
segmentation models might be able to better identify individual
flowers or clusters of flowers and thus improve detection
performance.

To address the above challenges, inspired by the works
presented in [2], [1 1], [12], we propose a novel self-supervised
panoptic segmentation approach that leverages a small number
of annotations for supervised learning (SL) and then adjusts
the model to challenging unlabeled datasets. In summary, the
main contributions of this work are:

« A robust self-supervised flower segmentation method that
addresses typical agricultural visual data challenges in
fruit tree orchards.

« A novel panoptic pseudo-label generation technique for
automatically updating the model for unlabeled datasets
that contain severe clutter and illumination challenges.

o A robust sliding-window-based training and testing ap-
proach that does not require additional post processing
to refine the network predictions.

« Extensive evaluations on multiple-species datasets, which
demonstrate superior generalized performance over state-
of-the-art techniques.

« Upon acceptance of this paper, our augmented datasets,
code, and models will be made publicly available.

II. RELATED WORK

In agricultural automation, several supervised [I13]-[15]
and weakly supervised [16] deep learning models have been



Labeled Image

Augmented Overlapping Patches

Supervised Learning (SL)
=» Pseudo-labels generation and model update (SSL)

Fig. 1.

 Pretrained Panoptic |

f7(Dy)

Panoptic I
Model A_ugmented Predlc'ions
Initialization (SL) {Yo, Yo, }
fwo
7" D)

Model (SSL)

Semantic
- Refinement

Panoptic Pseudo Labels Remapping

Proposed self-supervised learning framework for multi-species flower segmentation. Labeled images are used to initialize the model for flower

segmentation. The overlapping sliding window patches of the unlabeled input images are rotated multiple times to generate the augmented semantic predictions
from a previously initialized panoptic segmentation model. The remapping step transforms the score maps to the input coordinate system and then the normalized
predictions are used to generate the panoptic pseudo-labels using a semantic refinement procedure to update the pre-trained model.

employed to address the challenges of detecting flowers [2],
[31, [17], [18], fruits [4], [19], [20], or entire plants [21].
Applications of these methods range from robotic harvesting
to estimating fruit load and optimizing fruit production by
counting flowers in the early blooming season. Although some
of these approaches leverage data augmentation techniques to
generate automatic labels [12], [22], [23], none of these meth-
ods addresses model generalization ability for significantly
different test datasets. In the context of object detection and
segmentation, recent methods attempt to accommodate data
distribution shifts through the following techniques: a) super-
vised learning, b) semi-supervised learning, c) self-supervised
learning, and d) multi-task panoptic segmentation models.

a) Supervised Methods: These methods usually employ
basic image transformations [10], [13] or sophisticated data
augmentation techniques [24], [25] to improve model gen-
eralization. In addition to data augmentation during training,
some methods incorporate post-processing algorithms at test
time [26], [27] or include specialized input/output units that
are easier to fine-tune to new datasets [28], [29]. While these
techniques reduce the dependency on annotations for different
datasets, they do not eliminate it. Model performance is still
largely dependent on the amount of training data available.

b) Semi-supervised Methods: Using labeled data to boot-
strap a model whose predictions are then employed to fine-tune
the initial model (or to train a student model) is a popular ap-
proach to develop methods for multiple object detection [30],
as well as instance [10], [12] and semantic [9] segmentation.
This strategy is effective when labeled and unlabeled data
have similar appearance and sufficient labeled data is available

to bootstrap a deep model. When the characteristics of the
labeled and unlabeled data differ significantly, as is the case
among different flower species, more sophisticated supervision
mechanisms are needed [31], [32].

c) Self-supervised Methods: When no labeled data is
available, self-supervision strategies can be used to automat-
ically generate pseudo-labels from the unlabeled data [33],
[34]. In these scenarios, the initial model is trained to solve
a surrogate task that presumably has a similar representation
structure as the target task [35]. Using unsupervised learn-
ing techniques to align latent feature representations is a
widely used approach [31]. Self-supervision strategies that use
model prediction uncertainties to guide the learning process,
while arguably more interpretable and predictable, are less
commonly explored. Our approach uses a multi-inference
data augmentation mechanism in conjunction with the region
growing refinement (RGR) algorithm [26] to generate robust
and accurate pseudo-labels in an iterative manner. These
pseudo-labels allow our model to continuously improve its
performance on previously unseen datasets.

d) Panoptic Methods: Multi-task learning is commonly
used to improve model performance across different tasks [36].
As long as the tasks are similar, the model tends to generalize
better to unseen data [37]. The recently introduced panoptic
segmentation approach jointly learns the closely related tasks
of instance and semantic segmentation and currently represents
the state of the art in instance and semantic segmentation
[38], [39]. However, training such models requires a significant
number of manual labels containing instance and semantic in-
formation. Our approach makes it possible to apply a panoptic
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Fig. 2. Illustration of the steps of our panoptic pseudo-label generation method. a) semantic prediction for a single augmented patch, b) normalized average
scoremap obtained using Eq. 4, ¢) instance bounding boxes, and d) instance segmentation masks and semantic labels generated during SSL iterations.

model to significantly different datasets without resorting to
manual labels. To our knowledge no self-supervised panoptic
segmentation method has been proposed so far.

III. SELF-SUPERVISED PANOPTIC SEGMENTATION

Our proposed self-supervised learning (SSL) technique for
panoptic segmentation shown in Fig. 1 comprises three main
components: i) labeled and unlabeled data augmentation, ii)
panoptic model initialization using the labeled dataset, and
iii) panoptic pseudo-label generation from unlabelled data to
update the model. As shown in Alg. I, we use images from the
training set and their corresponding labels to train our initial
model using an SL strategy. Our SSL approach then updates
the initial model iteratively in a fully self-supervised manner
using the pseudo-labels generated by the model at a previous
iteration.

A. Data Augmentation

Our method is based on the panoptic segmentation model
proposed in [1 1] pre-trained on the COCO [40] and COCO-
stuff [41] datasets. To fine-tune the model for flower segmen-
tation, we augment the training set introduced in [2] using a

Algorithm 1 Self-supervised Learning Algorithm
Input: Set of high resolution labeled images I, their corre-
sponding segmentation labels I, and the set of unlabelled
images [ l
Output: Self-supervised model f"V~ for unlabeled data I '
1: Generate the augmented training set D; using I and I
according to Eq. 1
2: Train the initial model f"°(D;) using D,
3: Generate the augmented unlabelled image patches Yy,
4: for r < 1 to maxlIter do
5 Generate the augmented predictions ?9”. using Eq. 3
6:  Compute the normalized score map O; using Eq. 4
7:  Compute the binary semantic mask S; from O; using
RGR
8: ngerate the augmented binary semantic masks Sy, .
Apply connected component analysis to Sp,; to find the

. l
instance masks mé )

¥ and bounding boxes b((,l)]

10:  Construct the set of pseudo-labels 5791.]. using Eq. 5

11:  Construct the set D, = {Yp,,, Yy, }

12: Update the self-supervised model f"-1(D,,) using D,,
13: end for

sliding window (SW) technique. That is, we extract from the
input image I and its corresponding semantic label I, both
of size M x N pixels, overlapping patches of size m x n =
|M/K| x |N/k| pixels with a stride of p x ¢ = [7/2] x [1/2],
where K is the window size factor. Let (X;, X;) = SW; ([, f)
be the ¢-th image patch and its corresponding semantic label.
We augment X; and X; by applying J different rotations at
randomly selected angles {6, }3’:0. For the sake of sampling
efficiency, rather than directly sampling from the interval
[0,27], we employ a stratified sampling strategy. That is,
we partition the circle into five sectors centered at (7/2) - k,
k = 0,1,...,4 and sample each sector uniformly. This
strategy increases sample diversity, ultimately reducing the
variance of the pseudo-labels generated using our method.
Thus, the set of labeled image patches and corresponding
manual labels used to train the supervised model is given by

D, = {(Xgij,f(eij)} - {jo (SWi(I,f))}, 1)

where Ry, (-, ) rotates its two arguments by an angle 6;.

We employ the same data augmentation procedure for each
unlabeled image of the test sets to generate the unlabeled aug-
mented samples Yy, . from the corresponding image patches Y.
In the SSL approach, we use the SL model to predict the initial
augmented pseudo-labels Yy, used to fine-tune the model for
unseen datasets. The procedure for pseudo-label generation is
described in detail in Section III-B. Thus the unlabeled dataset
for each flower species is

D, = {(Ygij : %U)} . 2)

At test time, we simply apply the sliding window operation
to generate the normalized semantic score maps and combine
the predictions corresponding to the overlapping portions of
each window using majority voting. We observed that the
benefit of test-time data augmentation is negligible after a few
SSL training iterations. Hence, we do not perform rotation
augmentation at inference time, which ensures that the com-
putational time of the model remains unchanged.

B. Pseudo-label Generation

Data distribution shifts degrade the accuracy of segmenta-
tion models. Strong data augmentation is an effective strategy
to mitigate this problem [42]. Thus, to improve the sensitivity
of our model to different flower species, we apply the data
augmentation procedure described above to Y; and use the
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Fig. 3. Comparisons between the pseudo-labels generated using a fixed threshold Tseg (top row) and the RGR-based semantic refinement (bottom row).
a) AppleA, b) AppleB, c) Peach, d) Pear. The segmentation masks in the images at the bottom row better reflect flower boundaries and the corresponding

bounding boxes better distinguish nearby flower instances.

previously computed network weights W(,._1) to generate the
augmented predictions at the r-th SSL iteration according to

Yo, = [V (Ys,). (3)

To remap the semantic predictions back to the original im-
age coordinate frame, we apply the reverse rotation operator
R_p,(-) with bi-linear interpolation to the augmented predic-
tions Yy,,. We then normalize the scores using a softmax
function and use the average normalized score map O; as our
final prediction, i.e.,

1 _
0; = j;a (B-o,(Yo,,)) » @

where o(-) represents the softmax function applied element-
wise to the individual logits for the classes C €
{background, flower}. As Figs. 2 (a) and (b) illustrate, O; =
contains a significantly higher number of flowers segmented
with high confidence than a single augmented patch ?gij.

C. Semantic Prediction Refinement

Instead of applying a hard threshold to generate panoptic
pseudo-labels from O;, we employ RGR, a robust segmenta-
tion refinement method [26]. RGR uses a Monte Carlo strategy
to perform an appearance-based refinement of low-confidence
regions in O; using the corresponding image patch Y;, which
allows it to generate an improved binary segmentation mask.
RGR uses three key elements to determine the boundaries
of an object of interest: 1) the confidence of the model
predictions, 2) appearance similarities among pixels, and 3)
distances among pixels. That is, every pixel in an image is
associated with a nearby pixel of similar appearance whose
semantic class has been predicted with high confidence. As
Fig. 3 illustrates, RGR improves the boundary adherence of
the pseudo-labels and better distinguishes flower instances.

Let S; be the semantic binary mask obtained from O; using
RGR. As in the pseudo-label generation step, we apply J
rotations to .S; to generate augmented semantic binary masks,
So,. Ry, (S;). We then perform connected component

ij
analysis to obtain the corresponding instance masks méli)j

bounding boxes béli)j for the [ = 1,..., L distinct elements of
Sp,;- The augmented panoptic pseudo-labels are given by

S OO L
Vo, = {04 m§)). S0, } - 5)

Figs. 2 (c¢) and (d) show that this approach generates high-
quality bounding boxes and instance masks.

D. Multi-task Loss

In both the SL and SSL models, the instance bounding
boxes b( )_ and segmentation masks mé) from the augmented
labels are used to train the ROI-heads for the flower class. The
augmented semantic masks Sp,; are used to train the semantic
segmentation head for the background and flower classes. For
panoptic segmentation learning, we consider background as
a stuff class and flower as a thing class [43] to jointly update
the model using the following multi-task loss function

LW)=ALe+Ly+ L)+ (1 —N)Ls, 6)

where L. is the classification loss, £, is the bounding-box
loss, L, is the mask loss, and L, is the segmentation loss, as
defined in [11]. By further training the initial SL. model on the
unlabeled datasets using the proposed SSL approach where the
augmented panoptic labels are robust to prediction uncertainty
and intrinsically incorporate rotation invariance, it is possible
to iteratively improve the performance of the model.

IV. EXPERIMENTS

We compare the performance of our method against the
state-of-the-art algorithms presented in [2], [3] using the
evaluation metrics and procedures described in [2]. To quantify
the benefit of employing RGR as part of our pseudo-label
generation strategy, we evaluate two different techniques to
generate the pseudo-labels. First, we evaluate an approach
in which we apply a hard threshold 7., to the predicted
scoremaps. For a fair comparison, we determine 7., based on
the maximum F} score obtained by the model on the training
set at a previous iteration (see Fig. 5). We call this model SSL.
The model in which we employ RGR to refine the scoremaps



without hard thresholding is deemed SSL+RGR. We also
assess the performance improvements obtained by applying
RGR as a post-processing mechanism in conjunction with our
SSL model. We refer to that approach as SSL+RGR (pp),
where pp stands for post-processing. As a baseline, we also
assess the performance of the SIL model trained only on the
AppleA dataset applied to the other datasets.

A. Datasets

We evaluate our method on the multi-species flower dataset
first introduced in [2], which comprises four subsets: i) Ap-
pleA (train/test), ii) AppleB, iii) Peach, and iv) Pear. We train
our SL model using the AppleA training set, which consists
of 100 images with a resolution of M x N = 5184 x 3456 [2].
After applying J rotation augmentation steps, the number of
training patches Xy, for each input image is J x (2K — 1)2
sincei=1,2,...,2K —-1)x (2K —-1)and j =1,2,...,J.
Hence, for K = 4 and J = 20, there are 98,000 training
patches in the AppleA dataset. These patches are used to train
our initial panoptic flower segmentation model.

We consider a randomly selected subset comprising 70% of
the 30 images from the AppleA test set as unlabeled images I '
to fine-tune the SL model using the automatically generated
panoptic pseudo-labels. Similarly, 70% of the images from
the AppleB, Peach, and Pear datasets (18, 24, and 18 images,
respectively), all of which have a resolution of 2704 x 1520,
are considered unlabeled images used to update the SL model
iteratively. The remaining images in each dataset are used
solely for performance evaluation. Given the relatively small
size of the test sets, we evaluate our methods using five-fold
cross-validation.

Fig. 4. Examples of improved annotations in the AppleA training set. The
cropped sections shows (a) incorrect contours containing background pixels,
and (b) improved labels.

The datasets introduced in [2] provide pixel-level, high-
resolution annotations of individual flowers. However, as Fig.
4 shows, the annotations have imperfections that can only
be observed when closely inspected. Despite being small,
these inaccuracies comprise a non-negligible portion of the
image pixels, especially considering that only a fraction of
the pixels correspond to flowers. To resolve this issue, we
use the MATLAB® image labeler tool to manually correct
inaccurate labels and to label additional smaller but clearly
visible unannotated flowers. Fig. 4 shows some examples of
the annotations before and after the corrections.

B. Training Details

The vast majority of image pixels in the datasets correspond
to background pixels. Hence, to provide the model sufficient

samples containing flower pixels, we train the network for
20,000 iterations using stochastic gradient descent with a
batch size of 512 samples and a base learning rate of 25e—4,
which is divided by 10 at 10%, 25%, and 50% of the training
period. We freeze the ResNet-101 backbone [44] during train-
ing. To emphasize semantic learning, we use A = 0.8 in Eq.
6. We have empirically observed that setting RGR’s average
spacing between samples to 100 pixels provides an adequate
balance between the accuracy of the refined scoremap and
the computation required to produce it. We use the values
reported in [2] for the remaining parameters, namely, the
number of iterations is 10, the scoremap threshold is 0.5,
the high-confidence foreground threshold is 0.8, and the high-
confidence background threshold is 0.01.

V. RESULTS AND DISCUSSION

TABLE I
EVALUATION OF FLOWER SEGMENTATION PERFORMANCE USING OUR SSL
PANOPTIC MODEL. THE BEST RESULTS ARE SHOWN IN BOLDFACE AND
THE SECOND-BEST ARE UNDERLINED. WE REPORT THE AVERAGE VALUE
OF THE EVALUATION MEASURES AND THEIR STANDARD DEVIATIONS
ACROSS FIVE RUNS.

Dataset Method ToU F1 Rcll Prcn
DeepLab+RGR [2] 71.4 83.3 87.7 79.4
DeepLab+SCL [3] 81.1 89.6 91.9 87.3

AppleA SL 77.1£0.9 87.0£0.5 86.7+0.6 87.3+0.8
SSL 76.2+0.6 86.1+£0.7 88.2+0.9 84.8+0.9
SSL+RGR 77.940.6 87.5+0.3 87.8+0.6 87.3+0.6
SSL+RGR (pp) 79.6+0.6 88.6+0.3 89.240.6 88.1+0.7
DeepLab+RGR [2] 63.0 77.3 91.2 67.1
DeepLab+SCL [3] 65.3 79.6 72.7 87.4

AppleB SL 75.840.8 86.24+0.5 854+1.1 87.1+0.5
SSL 76.8+0.7 86.8+0.4 87.0+0.7 86.71+0.8
SSL+RGR 78.7+0.4 88.1+0.2 87.9+0.3 88.2+0.7
SSL+RGR (pp) 79.9+0.8 88.9+0.5 86.7t1.0 92.2+0.3
DeepLab+RGR [2] 59.0 74.2 64.8 86.8
DeepLab+SCL [3] 64.3 77.7 70.3 88.2

Peach SL 48.943.5 65.64+3.2 62.6+4.2 68.9+2.6
SSL 67.8+4.1 80.7+29 85.3+2.1 76.7+3.6
SSL+RGR 752+43.2 85.842.1 84.6+1.9 86.9+24
SSL+RGR (pp) 78.3+3.2 87.8+1.7 84.9+2.1 91.1+3.0
DeepLab+RGR [2] 75.4 86.0 79.2 94.1
DeepLab+SCL [3] 74.5 85.4 75.4 97.3

Pear SL 77.3+1.9 872413 85.1+2.4 89.4+0.7
SSL 78.6+1.7 87.9+1.0 87.9+1.6 88.1+0.8
SSL+RGR 82.4+19 904+1.2 894+1.8 91.3+1.4
SSL+RGR (pp) 84.2+2.1 914+1.2 874+1.9 95.840.9

Table I compares the performance of the SL and SSL
models against the algorithms presented in [2], [3]. Although
the SL model trained using our proposed data augmentation
strategy segments flowers using a fixed threshold 7seq, it
performs either on par with or better than the state-of-the-
art models on test sets that are similar to the training set,
even without applying our proposed SSL strategy. However,
for datasets with significantly different characteristics, the SL
model does not perform satisfactorily. The SSL approach
using a hard threshold outperforms the baseline methods on
the AppleB, Peach, and Pear datasets by significant margins
(11.5%, 3.5%, and 4.1% absolute IoU improvement with
respect to [3]). For the AppleA dataset, the SSL method alone
outperforms [2] but is slightly worse than [3]. This is largely
due to the fact that the baseline methods perform dramatically
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Fig. 5. Precision-recall curves for the SSL models with and without RGR
pseudo-label refinement. Solid circles represent points that maximize Fj
scores.

better on the training set, whereas the performance of our
model remains relatively stable across datasets. As discussed
in more detail below, background flowers also contribute to
the performance degradation. When we use RGR to refine
the pseudo-labels, we observe an IoU improvement of up to
7.4% with respect to the SSL method using a fixed threshold.
Performing an additional RGR step at test time leads to an
additional average IoU improvement of approximately 1.9%
but at the cost of substantially higher inference times, as
discussed in the next section. Fig. 5 shows the precision-
recall curves for the proposed SSL methods with and without
pseudo-label refinement using RGR.

The qualitative results in Fig. 6 show that the SSL models
are highly sensitive to flowers in complex regions. For some
datasets, the SSL. methods show slightly lower precision than
[3]. The main reason for the lower precision is the presence of
small, unannotated flowers in the datasets that our model can
detect. This can be observed in Fig. 6 (c) where several small
flowers are present, especially on branches farther from the
camera. Determining which flowers should be annotated is an
application-specific problem that requires further investigation.

A. Parameter Sensitivity and Computation Time Analysis

Table II shows the impact of the sliding window size factor
K and the number of rotation angles J on model performance
and average inference time per input image. This evaluation
is performed on the first SSL iteration of a model initialized
with K = 4 and J = 20. That is, the evaluation reflects the
impact of model parameters on the accuracy of the resulting
pseudo-labels. The top two rows show the test-time impact of
varying K without employing test-time rotations (i.e., J = 1)
for the AppleA and AppleB datasets, respectively. The last
row of the table shows that the IoU and F} measures on
the Peach dataset gradually increase with J when rotation
augmentation is employed at inference time, but so does the
computation time. Inference times were obtained using one
NVIDIA® GeForce® RTX 2080 Ti GPU without any multi-
processing technique. Post-processing times using RGR are

TABLE II
PERFORMANCE IMPACT OF SLIDING WINDOW SIZE AND NUMBER OF
ROTATION ANGLES.

Daaset M xN K J Tou py of Time

(sec.)

4 73.6 84.8 7.2

AppleA 5184 x 3456 8 1 754  86.0 154
16 53.3 69.5 90.0

2 71.6  83.0 1.4

AppleB 2704 x 1520 4 1 76.7  86.8 53
8 57.1  72.6 22.1

1 51.3  67.8 5.5

5 582 73.6 34.7

Peach 2704 x 1520 4 10 603 752 15
20 613 76.0 147.8

approximately 16x higher than those presented in Table II on
our Intel® Xeon® Silver 4112 CPU @2.6GHz. Results for the
remaining datasets are similar and are omitted for brevity. Fig.
7 shows the impact of A in the multi-task loss (Eq. 6) for differ-
ent flower species. Although the performance of our approach
remains relatively stable as we vary A, for most datasets, the
best results are obtained with 0.7 < A < 0.9, especially in
cross-species scenarios, where appearance variation is more
prominent.

VI. CONCLUSIONS

We introduce a self-supervised learning technique to accu-
rately segment multiple tree flower species without significant
manual labeling efforts. To automatically generate instance and
semantic labels for unlabeled datasets, we propose a data aug-
mentation technique associated with a semantic segmentation
refinement strategy that produces accurate pseudo-labels for
self-supervised model training. The proposed SSL technique
makes it possible to train a deep multi-task model effectively
on unlabeled fruit flower datasets. Self-supervised learning
substantially reduces model dependency on computationally
expensive post-processing steps to further refine the model
predictions at inference time. That being said, employing a
post-processing approach with our SSL model can further
improve its prediction accuracy. Our novel SSL method creates
a new baseline for the multi-species flower segmentation task.

In the future, panoptic flower segmentation can be further
improved in a number of ways. First, our proposed framework
resorts primarily to a data augmentation strategy based on
image rotations. Given the characteristics of the problem
under consideration, it stands to reason that additional data
augmentation strategies such as color jittering and image
blurring would further contribute to the generation of accurate
pseudo-labels. In addition, instead of using empirically defined
weights for the instance and semantic segmentation tasks,
task-dependent uncertainty learning strategies [45] may better
capture appearance variations to optimize the task weights.
Finally, pseudo-label pixels or sometimes entire instances may
have low prediction scores. The uncertainty of the pseudo-
labels may be used to weigh the contributions of individ-
ual samples. Uncertainty-weighed loss functions [12] are a
promising technique to accomplish that goal.
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