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Hardware-accelerated Mars Sample Localization via
deep transfer learning from photorealistic
simulations
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Abstract—The goal of the Mars Sample Return campaign is to
collect soil samples from the surface of Mars and return them to
Earth for further study. The samples will be acquired and stored
in metal tubes by the Perseverance rover and deposited on the
Martian surface. As part of this campaign, it is expected that the
Sample Fetch Rover will be in charge of localizing and gathering
up to 35 sample tubes over 150 Martian sols. Autonomous
capabilities are critical for the success of the overall campaign
and for the Sample Fetch Rover in particular. This work proposes
a novel system architecture for the autonomous detection and
pose estimation of the sample tubes. For the detection stage, a
Deep Neural Network and transfer learning from a synthetic
dataset are proposed. The dataset is created from photorealistic
3D simulations of Martian scenarios. Additionally, the sample
tubes poses are estimated using Computer Vision techniques
such as contour detection and line fitting on the detected area.
Finally, laboratory tests of the Sample Localization procedure
are performed using the ExoMars Testing Rover on a Mars-like
testbed. These tests validate the proposed approach in different
hardware architectures, providing promising results related to
the sample detection and pose estimation.

Index Terms—Space Robotics and Automation, Deep Learning
for Visual Perception, RGB-D Perception, Hardware-Software
Integration in Robotics, Transfer Learning.

I. INTRODUCTION

HE Mars Sample Return (MSR) campaign consists of

several missions whose main objective is the collection
of Martian geological samples for their analysis on Earth.
Mars 2020 is part of this campaign, where the Perseverance
rover will be in charge of encapsulating scientifically relevant
samples into tubes. The rover is expected to collect about 35
samples, which will be placed on the Martian surface [I]].
Each sample tube location will be tagged in orbital images
along with on-site images taken by the Perseverance rover at
the moment of sample acquisition. Retrieval of the cached
sample tubes will be performed by the Sample Fetch Rover
(SFR) in the Sample Retrieval Lander (SRL) mission. This
rover is scheduled to traverse up to 20 km during the first 150
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Fig. 1. Picture of ExoTeR taken at the Planetary Utilisation Testbed.
The rover is equipped with a manipulator, a gripper and two stereo cameras:
LocCam and NavCam. The sample tube is located on sandy terrain in front
of it.

sols (Martian days) [2]]. A high degree of autonomous driving
capabilities is necessary to satisfy these requirements. The SFR
will be solar powered, thus presenting energy constraints which
limit possible solutions. In addition, the SFR would need to
rely on visual localization techniques as tagged orbital sample
tubes positions would not be precise enough.

Autonomous sample tube localization with onboard cameras
helps to improve the overall SFR mission. Studies have pro-
posed to estimate the pose of the tubes using Computer Vision
(CV) techniques [4], and semantic image segmentation
(6], [7]. Deep Neural Networks (DNNs) have been proven
to be more effective than humans in tasks such as image
classification [§]]. In fact, machine learning techniques have
already been applied in Mars missions [9]] for the elaboration of
landing hazard maps, taking into account the density of rocks
of the landing area. However, the implementation of DNNs in
space-related projects poses several challenges.

The first challenge is the need of training datasets with
a high volume of images to accurately detect a specific
target. This is usually solved by creating large datasets of
the target in a wide range of scenarios, i.e., sample tubes
on different surfaces and illumination conditions. However,
taking images of the target in real conditions is rather complex
when it is located in an unreachable environment such as the
Martian surface. There are studies that tackle this issue creating
datasets based on special testbeds that try to replicate some
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of the characteristics presented in the real environment [10].
Another approach is to use deep transfer learning techniques
to take advantage of the characteristics learnt from a specific
domain dataset, adapting the pre-trained parameters into a
new application. DNNs have demonstrated promising results in
domains with insufficient training data [11], [[12]. Furthermore,
synthetic image generation has been used to create space-
related datasets that allowed training a DNN for possible
adverse conditions [[13]]-[15].

The second challenge is related to the computational de-
mands of DNNs. High-end computers with powerful CPUs
and GPUs are traditionally adopted to execute this kind of
neural networks. However, space-grade CPUs are usually more
limited in performance than CPUs for terrestrial applications.
Furthermore, DNNs consume considerable electrical power,
a critical resource for solar powered robotic systems such
as rovers. An alternative is to complement these resource-
constrained embedded processors with FPGA-based DNN ac-
celerators and/or custom, energy efficient Application Specific
Integrated Circuits (ASICs) [16]]. It is important to choose the
appropriate DNN architecture for the hardware in which it will
be implemented [17]. Topologies with a reduced number of
layers and interconnections can facilitate the implementation
on hardware.

In this system paper, we propose a novel architecture
to solve the Mars Sample Localization problem, allowing
a rover to autonomously detect and estimate the pose of
sample tubes on the Martian surface. As a result, we address
several challenges, which are inherently related to the proposed
architecture. The first one, associated to the use of DNN to
detect the samples on images, whose main drawback is the lack
of training datasets with a high volume of real images. It has
been solved by using deep transfer learning techniques, based
on synthetic images generated on a photorealistic simulator.
The second challenge is focused on the implementation of the
sample pose estimation once it has been detected, based on the
use of stereo-cameras and trying to minimize computational
resources. For this purpose, we have used monochrome images
since the ESA space qualified cameras onboard the future SRF
and Rosalind Franklin rovers are provided with this limitation.
Finally, the proposed solutions were tested on the Planetary
Utilisation Testbed, using the ExoMars Testing Rover (Ex-
oTeR) at the European Space Agency (ESA) (depicted in
Fig. [T). This allow us to create a dataset with both synthetic
and real images, which were used to demonstrate the proposed
solutions, deployed on different hardware configurations to
analyse their performance.

II. SAMPLE LOCALIZATION

Rovers are usually equipped with two stereo cameras. The
first one, commonly called NavCam, is located on the rover
mast and it is used for navigation purposes. The second
camera, named LocCam, is located on the rover front and
it is used for self localization by means of Visual Odometry
methods. In addition, the LocCam is able to detect obstacles
in front of the rover [18|.

The proposed Sample Localization system is divided into
two main modules, which can be observed in Fig. E} detection
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Fig. 2. Architecture overview of the proposed Mars Sample Localization
system.

DNN training

and pose estimation. In the detection module, images from
both NavCam and LocCam are regularly sent to a hardware-
accelerated DNN for the detection of the sample tubes. More-
over, the modularity of the proposed system makes it possible
to choose between different DNNs and hardware-accelerators
architectures, e.g.: FPGA-based neural networks. This network
has been previously trained with both synthetic and real data
to increase its accuracy in unknown environments such as the
Martian surface. It is worth mentioning that only one sample
tube model has been considered, reducing therefore the DNN
size and the inference time. Once a detection is confirmed,
the network provides a bounding box of the area in which
the sample tube is located which is then cropped and sent to
the pose estimation module. Next, the aforementioned module
provides an estimation of the sample tube 3D coordinates
(position and orientation) on the terrain using the disparity
images computed from both stereo cameras. For this purpose,
CV techniques such as contour detection and line fitting are
implemented using the detection bounding box image area.

A. Detection

A DNN is used to accomplish the detection task. Thus, the
first step of this section is to train the network with images
of the target to be detected. For this purpose, YOLOv3-tiny
network architecture, a less dense version of YOLOvV3 [19],
has been implemented. Its Backbone is based on the Darknet
architecture, which is, in turn, inspired by the concept of
Feature Pyramid Network (FPN) [20]. It can be inferred from
Fig. 3] Starting from the left, an image of the sample tube
is introduced into the network, which creates features maps
of decreasing resolution using the FPN architecture. Later on,
the Feature Divider is made up of two branches: the upper
branch, focused on extracting a fine-grained feature map, and
the lower branch, centered on obtaining the overall feature
map. This is done by concatenating the outputs of different
sections of the FPN. Finally, in the Decoding Head (DH),
preliminary detections are performed for both feature maps
(YOLO blocks) and fused into a final detection in the form of
a bounding box of the object of interest, which will be used
for pose estimation.

The main difference of YOLOv3-tiny over other classical
network architectures is that it does not present a dense
classifier network as its Decoding Head. Instead, inside the
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Fig. 3. Architecture of the YOLOv3-tiny network. It is composed by 23 layers and divided in three sectors from left to right: the Feature Pyramid Network,
the Feature Divider and the Decoding Head. The FPN receives an image and process it to extracts its features. The FD combines feature maps of different
level of detail and send them to the DH. Finally, the DH calculates the bounding box of the target along its likelihood. A legend of all the characteristic
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Fig. 4. Transfer learning technique applied to enhance the YOLOvV3-tiny
network detection capabilities. First, the network is trained with synthetically
generated images. Later, the pre-trained first layers of the network are
transferred to a second network, which will be trained with real images to
perform the intended task.

YOLO block, images are divided into regions of pre-calculated
weighted bounding boxes and computed probabilities of each
detection are used to choose a final bounding box. This
characteristic makes the neural network faster and less dense,
hence, a network more suitable for real-time applications on
embedded devices.

Ultimately, a DNN performance is highly dependant on
the volume of training data. Therefore, DNNs trained with
large datasets usually produce better detection results that
networks trained with less images. However, for the sample
tube detection problem, it is rather difficult to produce a large
enough dataset with real life images replicating all the possible

scenarios of a Martian environment. To solve it, a synthetic
dataset is generated that contains artificial images of the
sample tube. These images recreate a Martian scenario using a
photorealistic simulator based on Unreal Engine. They depict
the sample tube in a wide range of layouts and illumination
conditions, providing images as close to reality as possible.
Additionally, the synthetic dataset is complemented with real
life images of the sample tube on a Mars-like tesbed.

Deep transfer learning is applied for training the YOLOvV3-
tiny network to take full advantage of the features of the
synthetic dataset. The employed method is divided into two
steps, showed at Fig. [ First, a full YOLOV3-tiny model is
completely trained with synthetic images of the sample tube
(upper part of Fig. ). Once trained, its FPN Backbone has its
layers frozen and is transferred to a second model. Like this,
the previously learned feature maps (trained with a large and
diverse synthetic dataset) are adapted to a new model. This
second model would be the one implemented on the rover
(lower part of Fig. [@). This second network is trained with
real images: the Feature Divider and Decoding Head sectors
are trained while the FPN Backbone keeps frozen. Hence, the
network specializes for real life detections, though keeping the
flexibility achieved on the first model trained with the synthetic
dataset. In this case, a three-channel image is introduced into
the network by stacking the one-channel grayscale image
and performing zero-padding while rescaling the image to
the network resolution. Finally, thanks to its reduced size,
the YOLOv3-tiny model is easily ported to an embedded
hardware accelerator, following a process of quantization and
compression of all its layers.
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Fig. 5. Diagram of the algorithms employed to estimate the sample tube pose
using CV techniques. On the left, a binary mask is produced when the sample
tube is detected. On the right, the sample tube pose is calculated using the
binary mask.

B. Pose estimation

In this module, the sample tube area image obtained from
the detection module is used to estimate the sample tube pose
in the world space coordinates. The sample tube pose can
be estimated at any time of the Sample Localization process
thanks to the 3D information provided by the stereo-cameras.
However, this module acquires relevance when the sample tube
has been detected in front of the LocCam and is reachable by
the rover manipulator. Then, the algorithm can provide the
required accuracy for the rover to compute the manipulator
trajectory to effectively pick up the sample tube.

The pose estimation module process is divided into two
steps (see Fig. 5). In the first one (left side of figure), the
cropped area determined by the bounding box is employed to
calculate the binary mask of the sample tube. The computa-
tional load is lowered, as only a reduced portion of the image is
processed. First, a soft Gaussian blur is performed to reduce
image imperfections, followed by applying a Sobel filter to
obtain the polygonal intensity gradients of the sample tube
edges. The resultant image histogram is equalized to enhance
the acquired gradients. Finally, an adaptive mean threshold
filter is applied to produce the required binary mask.

In the algorithm depicted on the right side of Fig. [3
the sample tube centroid and its previous binary mask are
employed to obtain the final sample tube pose. First, all the
mask contours are computed along their moments. A first
screening is performed to choose those contours which enclose
the centroid. Afterwards, a second screening takes place,
focused on locating the contour whose distance is minimal
to the centroid. The resulting contour is chosen as the one
belonging to the sample tube. Once the sample tube contour
is found, the algorithm proceeds to find its orientation: a least-
squares fitting is performed on all the image points enclosed by
the contour. Like this, the slope that represent the sample tube
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orientation is obtained. To correct possible errors introduced in
the generation of the contour, a line is created using the slope
and the sample tube detection centroid. Ultimately, the sample
tube end points are calculated as a result of the intersection
between the contour and the line. These points can be mapped
to real world coordinates with the help of the disparity maps
provided by the stereo cameras. Thus, the Pinhole Camera
Model is employed to establish a relationship between the 2D
points of the disparity maps and the real world 3D coordinates,
which is finally output by the module.

ITII. EXPERIMENTAL RESULTS

To validate the proposed Sample Localization system, a
dataset with real and artificial images was generated. It was
later used to evaluate the sample detection and pose estima-
tion through the proposed DNN and CV techniques. Finally,
the system was deployed on the ExoTeR testbed rover to
demonstrate its ability to retrieve sample tubes in a laboratory
scenario.

A. Mars sample localization dataset

The objective of this dataset was to provide enough virtual
and real images to validate the proposed system. Two envi-
ronments were used for the training dataset generation. On
the one hand, synthetic images were generated using Unreal
Engine 4, a videogame engine with a focus on visual realism. A
Martian environment was recreated, depicting the sample tube
in different illumination conditions. Additionally, UnrealCV
plugin was used to take in-game images. A picture of
the sample tube in a Martian scenario is shown in Fig. [6p.
On the other hand, real images of the sample tube were taken
at the Planetary Utilisation Testbed (PUTB) located at ESA.
It consists on a 9 m? square Mars-like tesbed filled with
different terrains and rocks. For this purpose, the ExoTeR [3]
rover was used, depicted in Fig. [I] The rover contains an
Intel Core i7-7600 processor 2.80 GHz and 16GB of RAM
and is equipped with two Bumblebee2 stereo vision cameras:
LocCam and NavCam. The cameras produce grayscale images
with a resolution of 1024 x 768 pixels per image sensor and a
focal length of 3.8 mm (66° HFOV). An image of the sample
tube on the terrain from the NavCam point of view is depicted
in Fig. [6a.

The global dataset has been published in Zenod(ﬂ It has
been divided into three datasets of images. The first one related
to the generation of images for training purposes, which is
composed of 602 synthetic and 52 real images. The second
dataset include 316 and 84 real images taken by the NavCam
and LocCam respectively and processed to show only the
sample tube bounding box. These images also include the
sample tube centroid (obtained from the DNN), and were used
to validate the sample pose estimation module. Finally, the
third dataset includes 2178 images that were taken during the
laboratory tests with the ExoTeR rover performing two sample
retrieval tasks.

Uhttp://doi.org/10.5281/zenodo.6542933
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(b)

Fig. 6. Figure (a) shows the sample tube on sandy terrain in the ESA’s PUTB. Rocks of several sizes are observed on the background. Picture (b) depicts the
sample tube in an Unreal Engine 4 simulation. Rocks and obstacles produce shadows depending on a virtual sun position.

B. DNN Implementation

The YOLOV3-tiny DNN model was trained using its frame-
work based on Darknet architecture. The source code was
published under MIT open source licenseﬁ In order to emulate
a low availability of real images, the approach presented in
Section [[I-A] was trained using the corresponding dataset,
which was composed of much more synthetic images than real
ones.

The provided trained model was later implemented into
the Google’s Coral USB accelerator to perform the sample
tube detection. This hardware-accelerator is composed of an
edge Tensor Processing Unit (edge TPU), which is an ASIC
specialized in the inference of neural networks. Furthermore,
it provides an excellent compromise between performance and
electrical consumption [22]]. The TPU was connected to an
ARM Cortex-A72 processor (1.5 GHz and 4 GB of RAM) as
a CPU that could be available in further space missions [23].
Some operational transformations were applied to the network
to embed it into the hardware-accelerator. Firstly, a process
of quantization was followed in which the default 32-bit data
of the network tensor was transformed to a 8-bit fixed-point
representation. Secondly, some mathematical operations were
changed to equivalent ones supported by the TPU. For exam-
ple, the leaky Rectified Linear Unit (ReLU) activation layers
were replaced by standard ReLu layers. Furthermore, it was
necessary to take into account that the YOLOv3-tiny model
works with squared images of 416 x 416 pixels of resolution
as inputs. Thus, larger images, as the ones obtained from
the cameras, were scaled, keeping the aspect ratio using an
operation of zero-padding. This, together with the quantization
process, helped to reduce computation costs. The trained model
was also implemented on a general purpose computer with
an Intel Core i7 CPU (2.60 GHz and 16 GB of RAM) and a
NVIDIA GeForce RTX 2070 GPU to compare its performance
over the hardware accelerator. A comparison between different
hardware configurations of both YOLOv3 and YOLOV3-tiny
networks was carried out to evaluate the inference of the
proposed Sample Localization approach. For this purpose, the
laboratory test dataset was used and the obtained results are

Zhttps://github.com/spaceuma/MarsSampleLocalization
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Fig. 7. Charts with the errors obtained in the estimation of sample tubes
orientation in LocCam (blue bars) and Navcam (orange bars) images. Errors
of 90° are considered the maximum possible, since the estimated orientation
would be perpendicular to that of the samples.

shown in Table [l Overall, the proposed YOLOV3-tiny model
provides faster inference times than the standalone YOLOv3
version. The fastest time were achieved using the Intel Core i7
+ GPU configuration. This was expected, as GPUs are devices
traditionally used to run neural networks due to their high
performance through high power consumption. Second best
inference times were obtained by the Intel Core i7 + TPU
configuration, closely followed by the ARM + TPU setup.
The slowest times were produced when the DNN was running
on a CPU. Based on the obtained information, the inference
time of the YOLOV3-tiny model on an ARM CPU + TPU
was 84 times faster than without TPU, providing lower power
consumption and size.

C. Sample pose estimation

The sample pose estimation module was validated using the
second dataset, where sample tubes images with its centroid
were generated. Results of the orientation estimation can be
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TABLE I
INFERENCE TIMES (MS) OF YOLOV3-TINY AND YOLOV3 ON DIFFERENT
PLATFORMS
Device YOLOV3-tiny YOLOvV3
Intel Core i7 140.20 1292.72
Intel Core i7 + GPU 5.12 18.79
Intel Core i7 + TPU 21.03 152.04
ARM Cortex-A72 2808.62 52787.52
ARM Cortex-A72 + TPU 33.46 222.54

seen in Fig. []] For the LocCam, the algorithm presented
an average error of 3.23 4 3.38° while for the NavCam, it
presented an average error of 10.75 £ 16.47°. According to
the chart, all the LocCam estimations had an error less than
20°, with most of the estimations (78.87 %) having an error
less than 5°. This is considered acceptable since the pose
estimation is required when the rover is just in front of the
sample tube, i.e., using LocCam images. It is assumed the
manipulator gripper is able to pick up a sample tube with an
orientation error lower than 30°. In the NavCam case, most
of the estimations (51.68 %) had an error of less than 5° but
presented greater errors due to the distance of the sample tube.
However, it does not pose a problem since the NavCam is
not used to estimate the sample orientation and command the
manipulator. As for the computation times employed for the
CPUs to provide an estimation of the sample tube pose, the
Intel Core i7 lasted 1.94 ms while the ARM Cortex-A72 took
14.12 ms.

D. ExoTeR laboratory tests

Two laboratory tests were carried out using the ExoTeR
rover on the PUTB. The objective was to validate the proposed
system and demonstrate it is suitable to perform sample tube
retrievals. For this purpose, the rover had to reach a sample
tube located on the terrain to pick it up with its manipulator.
At the beginning of the tests, the sample tube position was
provided outside the rover field of view, and approximate co-
ordinates were given to the Guidance, Navigation and Control
(GNC) subsystem of the rover. This stage simulated the orbital
coordinates that would be provided during the SFR mission.
It is worth highlighting the rover was not provided with any
external ground truth device, e.g., Vicons, GNSS. Instead,
a visual odometry algorithm was used [24]. Once the rover
started moving, the rover goal trajectory was automatically
corrected with the sample coordinates derived from the Sample
Localization system. Once it was reachable, the sample tube
pose was computed to finally place the rover with the right
orientation to pick up the sample. The trajectories followed by
ExoTeR are represented in Fig.[8] A video of these two exper-
iments was recorded and publishe(ﬂ Images from both stereo
cameras (NavCam and LocCam) were continuously fed to the
neural network for the sample tube detection. This redundancy
contributed to the robustness of the process, as each image
provided a different point of view of the scene. This approach
was possible due to the low latency of the inference, which was
done by the use of the onboard CPU+TPU configuration. In the

3https://youtu.be/8_ymP6bg6-c
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— First lab test

—— Second lab test

Fig. 8. Trajectories followed by ExoTeR in the PUTB on both laboratory tests
to reach the sample tube. In both of them, the rover starts from a position in
which the sample tube is not visible.

(b)

Fig. 9. Detection bounding box (green rectangle) and confidence score along
pose estimation (red arrow) of lab test 1 (a) and lab test 2 (b) images obtained
with the LocCam.

final step, the sample tube world coordinates and orientation
were obtained using the LocCam disparity map. An example of
this step can be seen in Fig. [§] where sample tubes are detected
along their pose. Additionally, Fig. |[I0] shows the obtained
Digital Elevation Map (DEM) in which the sample tube is
present.

These two lab tests provided information about the detection
using the pre-trained model with synthetic and real training
images. During the tests, the system was able to detect the
sample tube up to 5 m of distance from the rover using the
Navcam. According to the cameras FoV and this maximum
distance, it can be assumed the rover will be able to detect
samples with a localization error up to 1.5 m. Table [[I] shows
the obtained performance in both YOLOV3 and YOLOv3-
tiny models deployed on a PC and the TPU, where a score
confidence threshold of 0.75 was used to consider the sample
was detected. Both networks were trained for 2000 iterations,
choosing the weights with best detection rate on the validation
set. No comparison between the detection rate of YOLOvV3-
tiny and YOLOv3 will be made as different parameters can be
tested to increase it and the objective of the experiment is to
verify the quality of the hardware acceleration and the transfer
learning procedure. In addition, the detections of the networks
trained with only real images are also presented. As can be
observed in the YOLOv3-tiny network data, the pretrained
model produced an increment of true positives of 56 % and
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Fig. 10. DEM generated from LocCam stereo images using the Pinhole
Camera Model. This map corresponds to the final step of laboratory test 1.
The sample tube is located inside the red box.

26 % respectively on both laboratory tests over the real version.
The network robustness to false positives was enhanced thanks
to the transfer learning approach, achieving no false positives
in any of the pretrained models. Comparing the YOLOvV3-
tiny TPU implementation with its PC counterpart, there is no
significant decrease of the detection rate. As for the standalone
YOLOvV3 model, a significant degradation on its detection
rate is observed. This is mainly due to its high number of
layers, that needs to be ported to the hardware-accelerator,
losing accuracy in the process, considering YOLOv3-tiny more
suitable to be deployed on the TPU.

TABLE II
LABORATORY TESTS DETECTION METRICS OF YOLOV3-TINY AND
YOLOV3 IMPLEMENTED IN THE TPU AND A PC

Lab test 1 Lab test 2
Real Pretrained Real  Pretrained

YOLOvV3- True Positives 209 323 774 978

tiny False Negatives 595 482 494 318
(TPU) False Positives 0 0 3 0

YOLOV3- True Positives 277 363 933 960

tiny False Negatives 536 440 467 445
(PC) False Positives 0 0 4 0
True Positives 5 15 5 3

}T?,%?ﬁ False Negatives 795 785 1255 1257
False Positives 0 0 0 0

True Positives 144 149 480 768

é%(m False Negatives 658 653 1025 575
False Positives 0 0 0 0

IV. CONCLUSIONS

This paper proposes a system architecture to detect the pose
of a sample that would be picked up by a robot. It has been
used to perform an experiment using a rover testbed from ESA
equipped with a manipulator. Obtained results demonstrate
the use of a hardware accelerator could improve the required
processing time to detect a sample tube, as well as it reduces
the CPU load. Moreover, the use of synthetic images improved
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the detection of sample tubes without requiring large datasets
of real images. Finally, the use of CV to compute the sample
tube position and orientation has been demonstrated to be ac-
curate and fast enough for the performed grasping operations,
reducing the DNN architecture complexity. Additionally, this
architecture can be extrapolated to other robotic platforms,
such as drones as recently announced by NASA, with few
improvements: the use of different point of views, i.e. ground
vs aerial images, could be solved by increasing the training
dataset with this kind of images; and the use of RGB cameras
could improve the detection since they can provide more
feature information to the DNN. Future work will be focused
on the enhancement of the independent subsystems as well as
to perform experiments of the system on sample fetching aerial
robots. For the detection subsystem, studies will be centered on
the implementation of different topologies of neural networks
on different hardware accelerators, such as other DNN devices
or FPGAs as a more space-representative hardware. On the
other hand, the pose estimation subsystem will be improved
by incorporating 3D information to analyse its performance
with different objects, i.e. not only sample tubes, comparing it
to the proposed approach in this paper.
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