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BoW3D: Bag of Words for Real-Time Loop Closing
in 3D LiDAR SLAM

Yunge Cui'?*#, Xieyuanli Chen’, Yinlong Zhang>>*, Jiahua Dong>**, Qingxiao Wu'?3#, Feng Zhu'->341

Abstract—Loop closing is a fundamental part of simultane-
ous localization and mapping (SLAM) for autonomous mobile
systems. In the field of visual SLAM, bag of words (BoW) has
achieved great success in loop closure. The BoW features for
loop searching can also be used in the subsequent 6-DoF loop
correction. However, for 3D LiDAR SLAM, the state-of-the-art
methods may fail to effectively recognize the loop in real time,
and usually cannot correct the full 6-DoF loop pose. To address
this limitation, we present a novel Bag of Words for real-time
loop closing in 3D LiDAR SLAM, called BoW3D. Our method
not only efficiently recognizes the revisited loop places, but also
corrects the full 6-DoF loop pose in real time. BoW3D builds
the bag of words based on the 3D LiDAR feature LinK3D,
which is efficient, pose-invariant and can be used for accurate
point-to-point matching. We furthermore embed our proposed
method into 3D LiDAR odometry system to evaluate loop closing
performance. We test our method on public dataset, and compare
it against other state-of-the-art algorithms. BoW3D shows better
performance in terms of ', max and extended precision scores on
most scenarios. It is noticeable that Bow3D takes an average of
48 ms to recognize and correct the loops on KITTI 00 (includes
4K+ 64-ray LiDAR scans), when executed on a notebook with an
Intel Core i7 @2.2 GHz processor. We release the implementation
of our method here: https://github.com/YungeCui/BoW3D.

Index Terms—bag of words, LinK3D feature, place recognition,
loop correction, real-time.

I. INTRODUCTION

NE of the basic requirements for long-term simultaneous

localization and mapping (SLAM) is the fast and robust
loop closing. After a long-term operation, standard frame-to-
frame point registration algorithms may fail to align the current
observation to the revisited places due to the large drift in the
pose estimation. When the revisited places can be robustly
recognized, loop closure can provide correct data association
to eliminate the drifts resulting in more globally consistent
estimation. The same methods used for loop detection can be
also used for robot relocalization in presence of the tracking
failure case. The basic technique for place recognition is to
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build a database from the images (for visual SLAM) or point
clouds (for LiDAR SLAM) collected online by the robot
so that the most similar one can be retrieved when a new
sensor observation is acquired. In presence of the same scene
detected, a loop closure will be performed. Admittedly, the
distance-based association can also be used for loop closing
with drift in a certain range. However, when applied to long-
term large-scale cases, the pose drift accumulates to a large
extent that distance-based association fails to find correct
correspondences between the current sensor frame and the
historical ones. Therefore, a fast and robust loop closing
module is essential for SLAM system.

In the field of visual SLAM, many algorithms [I]-[&]
use image retrieval techniques. They typically match images
by comparing their 2D features via bag-of-words (BoW)
[9]. BoW achieves very efficient image retrieval, and have
promoted the progress of visual SLAM. Unfortunately, in
the field of 3D LiDAR SLAM, the irregularity, sparsity and
disorder of LiDAR point cloud raise challenges to 3D feature
extraction and representation [10], [I1]. Building the BoW
for 3D features, applying it to real-time loop closing, and
correcting the full 6-DoF loop pose in 3D LiDAR SLAM,
are still unsolved.

In this paper, we propose a novel loop closing method
that builds the bag of words for 3D features extracted from
LiDAR point clouds. We use LinK3D [10] as the 3D feature
and build the BoW for 3D LiDAR point clouds named
BoW3D. To achieve fast retrieval, the hash table is used as
the basic structure of the database. The proposed retrieval
and update algorithms can be performed online. After finding
the candidate frame, we calculate the full 6-DoF loop pose
using the accurate point-to-point LinK3D matching results
with RANSAC [12] and SVD [13]. Moreover, we compare our
BoW3D with state-of-the-art methods on public dataset, and
embed it to the LiDAR odometry A-LOAM [14] to evaluate
its performance in practice. The experimental results show
that our method achieves significant improvements, and has
superior real-time performance.

To summarize, our main contributions are as follows:

« We propose a novel BoW-based method using 3D LiDAR
features for the loop closing of LiDAR SLAM. It builds
the database of LinK3D features, and effectively recog-
nize the revisited places in real time.

« The proposed BoW3D can also be used to correct the
full 6-DoF loop pose in real time, which provides accu-
rate loop closing constraints for subsequent pose graph
optimization in online operation.
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The workflow of our system mainly consists of three modules: (i) Feature Extraction; (ii) Odometry and Mapping of A-LOAM; (iii) Loop Closing.

We embed our BoW3D to the loop closing thread, which closes the loops and obtaines the globally consistent SLAM results.

« The proposed method has been embedded to the LiDAR
odometry system in practice. Experimental results show
that our method can significantly eliminate the drifts and
improve the accuracy of 3D LiDAR SLAM.

II. RELATED WORK

Loop closing usually contains two steps. It first finds similar
places in the database compared to the current observation,
also called place recognition. Then, it estimates the loop pose
and corrects the pose estimation by pose graph optimization.
Many different sensor modalities have been used for finding
loops, including camera images and 3D LiDAR points.

In recent years, a variety of image-based methods [1], [4],
[5], [15]-[17] have been proposed. A great example is FAB-
MAP [18], which uses a tree structure to learn the offline
words’ covisibility probability. However, as relying on SURF
[19], it spends a lot of time on feature extraction. DBoW2
[4], used for the first time bag of binary words based on
BRIEF descriptors [20] with the very efficient FAST feature
detector [2 1], greatly improving the efficiency of loop retrieval.
Due to its high efficiency, DBoW2 has been successfully used
for loop closing and relocalization in several famous visual
SLAM systems [5]-[8], [22], [23]. It is worth noting that, the
retrieved feature points based on DBoW?2 can also be used for
subsequent loop correction and optimization after integrating
in long-term visual SLAM. There are three main reasons for
the success of applying BoW to visual SLAM: (i) There are
many 2D features that have been successfully used in vision
tasks, such as SIFT [24], SURF [19], BRIEF [20] and ORB
[25]. (ii)) Camera SLAM usually extracts 2D features, and
requires to detect the loop or perform relocalization. As a
consequence, bag of words is quite suitable for camera SLAM.
(iii) Bag of words compresses the image information into a
more compact form. Moreover, it builds a tree to speed up the
retrieving process of words. Both of these ensure the efficiency
of the algorithm in place recognition of camera SLAM.

For methods using 3D point cloud, Steder et al. [26]
propose a place recognition method operating on range images
generated from 3D LiDAR data, which uses a combination
of bag-of-words and NARF-feature-based [27]. M2DP [28]
projects a point cloud to multiple 2D planes and generates a
density signature for points in each of the planes. The singular
value decomposition (SVD) components of the signature are
then used to compute a global descriptor. Scan contex [29]

converts the point cloud scan into a visible space, and uses
the similarity score to calculate the distance between two scan
contexts. However, this method can only provide relative 1-
DoF yaw angle estimation of loop LiDAR pair and fails to
correct the full 6-DoF pose of loops. PointNetVLAD [30]
leverages PointNet [31] and NetVLAD [15] to generate global
descriptors. Then it proposes a “lazy triplet and quadruplet”
loss function to tackle the retrieval task. ISC [32] proposes
a global descriptor based on the geometry and intensity
informations, then uses a two-stage hierarchical intensity scan
context to detect loops. LiDAR-Iris [33] generates the LiDAR-
Iris image representation to detect potential loops. SGPR [34]
uses a semantic graph representation for the point cloud scenes
by reserving the semantic and topological information of the
raw point cloud. OverlapNet [35] adopts a siamese network
to estimate an overlap of range image generated from LiDAR
scans, and provides a relative yaw angle estimate of matching
LiDAR pair. SSC [36] uses global semantic scan context
to detect loops. OverlapTransformer [37] uses a lightweight
neural network expoiting the range image representation of
point cloud to achieve fast retrieval. Overall, most existing
methods are either too time-consuming to detect loops in real
time for online 3D LiDAR SLAM or can not provide a 6-DoF
pose estimation required for LiDAR loop closing.

III. BACKGROUND REVIEW
A. Review of LinK3D Features

In this work, the proposed BoW3D is based on the LinK3D
[10] feature. LinK3D consists of three parts: keypoint extrac-
tion, descriptor generation and feature matching. As shown in
Fig. 2, the core idea of LinK3D descriptor is to represent the
current keypoint using the neighborhood information, which
is inspired by the 2D image features SIFT [24] and ORB [25].
The LinK3D descriptor is represented by a 180-dimension
vector. Each dimension of the descriptor corresponds to a
sector area. The first dimension corresponds to the sector area
where the closest keypoint located, and the others correspond
to the areas arranged in a counterclockwise order. LinK3D
is lightweight and takes an average of 32 ms to extract
features from the point cloud collected by a 64-ray laser
beam, when executed on a notebook with an Intel Core i7
@2.2 GHz processor. What’s more, LinK3D can be used to
achieve accurate point-to-point matching, which enables it to
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Fig. 2. The core idea of LinK3D and the matching result of two LiDAR scans
based on LinK3D. The green lines are the valid matches. The descriptor of
current keypoint is represented with its neighbor keypoints and described as
a multi-dimensional vector. Each dimension of the descriptor corresponds to
a sector area. The first dimension corresponds to the sector area where the
closest keypoint of current keypoint located, and the others correspond to the
areas arranged in a counterclockwise order. If there are keypoints in a sector
area, the closest keypoint in the sector area is searched and used to represent
the corresponding dimension of the descriptor.

be applied to fast 3D registration. For more details about
LinK3D, please refer to its original paper [10].

B. Review of Bag of Words

In the field of 2D image, bag of words (BoW) [4] is
used to recognize the revisited place by retrieving the 2D
features (such as SIFT [24], ORB [25], etc.). In particular,
the database of BoW for binary ORB feature has successfully
applied to real-time place recognition task. BoW creates a
visual vocabulary as a tree structure, in an offline step over
a set of descriptors extracted from a training image dataset.
When processing a new image, the vocabulary converts the
extracted features of the image into a low-dimensional vector,
containing the term frequency and inverse document frequency
(tf-idf) [9] score. The tf-idf score is computed by:

. Ny N
tf-idf = Tlagn—, Q)

where the n,,; represents the number of word w in image I;,
n; represents the total number of words in I;, N is the total
number of images seen so far, and n,, represents the number of
images containing word w. The idea of idf is that the less times
a word appears in all images, the higher the final score will
be, which indicates that the word has a higher discrimination.
The higher of the total tf-idf score, the more frequent of the
word in the image. If the score of a word is high enough, the
similarity between the word and the words in the database is
computed. If there are similar words in the database, then the
invert index is used to search the corresponding images.

IV. METHODOLOGY

In this section, we introduce the proposed loop closing
system based on our BoW3D. To verify the performance of
BoW3D in practice, the loop closure system is embedded to
the state-of-the-art A-LOAM® [14]. As shown in Fig. 1, the
proposed system mainly consists of three parts. It first extracts
the LinK3D features in the raw point clouds. Then it uses the

6https:// github.com/HKUST-Aerial-Robotics/A-LOAM

odometry and the mapping algorithms of A-LOAM to estimate
the robot poses. The third part uses the proposed BoW3D to
detect loop closures and corrects the loop poses. If a loop is
detected and optimized, the loop closing will give feedback
to the mapping algorithm and update the local map, which
provides more accurate estimation for subsequent steps.

A. BoW3D Algorithm

In this section, we introduce the proposed BoW3D al-
gorithm. As introduced in Section III-A, each dimension
of LinK3D descriptor represents a specific keypoint in the
corresponding area, which makes LinK3D descriptor quite
discriminative. As a result, our method needs no further con-
version for features by building a tree-structured vocabulary in
an offline step. Therefore, our BoW3D does not require to load
additional vocabulary file, which is more convenient for users.
The structure of the database in memory is shown in Fig. 3,
the hash table is used to build a one-to-one mapping between
the word and the places where the word has appeared. The
computational cost of hash table is O(1) theoretically, which
makes it be suitable for efficient retrieval. As shown in Fig. 3,
the word in the vocabulary of BoW3D is constructed by two
parts: One is the non-zero dimension of LinK3D; The other
is the corresponding dimension where the word located. The
place (point cloud frame) also consists of two parts: One is
the frame Id; The other is the descriptor ID in the frame.

1) Retrieval Algorithm: For the words of a LinK3D de-
scriptor, we retrieve the words and count the frequency of
each place (point cloud frame) appeared. If the highest one
is greater than the frequency threshold Thy, this place is
considered as a candidate place. In addition, for fast retrieval,
the inverse document frequency (idf) is used to avoid retrieving
the word appeared in multiple places. More specifically, for
the words appears obviously more often than other words,
they are less discriminative and reduce the retrieval efficiency.
Therefore, we define a ratio factor that is similar to idf to
measure the difference between the number of places in current
set and the average in all sets. We use it to determine whether
we should reserve the place set of current word when count
the number of places. The ratio is defined as follows:

ratio = Ny [(—), )

N
ny
where Ny, is the number of places in current set. nﬁ represents
the quantity average of one place set, n, is the number of
words in vocabulary and N is the total number of places seen
so far. If the ratio of a place set is greater than threshold
Th,, the place set will not be used for counting. The retrieval
algorithm is shown in Algorithm 1.

2) Loop Correction: Loop correction is used to provide
constraint for the pose graph optimization in backend. The
observation constraint of the loop is firstly calculated based on
the matching result of LinK3D, then RANSAC [12] is used
to remove the mismatches. We follow the approach in [13] to
calculate the loop pose T}, which is the estimation between
the loop frame / and the current frame c.
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Fig. 3. The data structure of BoW3D. The hash table is used for the retrieval.
The word of BoW3D consists of the non-zero value (Dim-value) in the
descriptor and the corresponding dimension (Dim-ID). Each word corresponds
to a place set, in which the word has appeared. The place also consists of
two parts, one is frame ID, the other is the descriptor ID in the frame.

Given the point set {S}. of current frame and the matching
point set {S}, of loop frame, we compute the loop by mini-
mizing the following cost function:

2D s}~ (Ruest + 1) I,

i=1

rl,C(Rl,L‘v tl,c) = (3)
where s € {S}; and s. € {S}, are the corresponding matching
points. R;. and ¢;, are the rotation and the translation of T},
transformation respectively. Ty, is defined as follows:

tl c

i

Rl,c
,—Tl,c = “4)
of 1
We first calculate the centroid s; and s, from {S'}; and {S}..
Let .§} and &’ be the coordinates of the corresponding point
s, and s;, which removes the centriod s; and s. respectively.
Then we calculate the matrix:

W Z al AlT (5)
Find the SVD decomposition of W,
w=UxV". (©6)

If W is full rank, we will get the solution of R;, and ¢,
by:

R, =VU’,
- Rl,csc.

This allows us to correct the loop pose. Moreover, the loop
pose is also used for the geometry verification of candidate
loop frame, and we set distance threshold Thy;, to verify
wether the candidate loop is valid.

3) Update Algorithm: We propose an update algorithm to
add new words and places to the database. To improve the ef-
ficiency of update and retrieval, we only add a certain number
of features to the database. The descriptors are selected based
on the distance between their corresponding keypoints and the
LiDAR centers. Specifically, only a certain number of closer
features are added to the database. Similarly, when retrieve the
loops, a certain number of closer features are used to retrieve.
The update algorithm is shown in Algorithm 2.

)

tie =58

Algorithm 1: Retrieval Algorithm

Input Des (LinK3D descriptor of a frame)
Output: Candidate Loop Frame ID

1 Define:

2 Taby: the hash table used to count how many times of
each place occurs

3 MaxFreqPlace: the place with the maximum
frequency in Tab,

4 Main Loop:

5 for a Word in Des do

6 if the Word is in Vocabulary then

7 PlaceS et = GetPlaceSet(Word) in Database;

8 ratio = ComputeRatio(PlaceS et);

9 if ratio > Th, then

10 ‘ continue next cycle;

11 else

12 for a Place in PlaceS et do

13 if the Place appear in Tab;, then

14 The corresponding frequency in

Tabh + 1;

15 else

16 ‘ Push the Place into Taby;

17 end

18 end

19 end

20 else

21 ‘ continue next cycle;

22 end

23 end

24 MaxFreqPlace = GetPlaceWithMaxFrequency(7T aby,);

25 if the maximum frequency > Thy then

26 Candidate Loop Frame ID = Frame ID in
maxFregPlace ;

27 return Candidate Loop Frame ID;

28 else

29 ‘ return -1;

30 end

Algorithm 2: Update Algorithm
Input: Des (LinK3D descriptor of a frame)

1 Main Loop:
2 for a Word in Des do

3 if the Word is in Vocabulary then

4 PlaceS et = GetPlaceSet(Word) in Database;

5 PlaceS et.insert((Framel D, DesID));

6 else

7 PlaceS et = DefineNewSet((Framel D, DesID));
8 Database.insertNewWordSet(Word, PlaceS et);
9 end

10 end

B. Loop Optimization

After correcting the loop pose, the pose graph for the loop
frames is built for subsequent loop optimization. The vertexs
of pose graph are the global poses to be optimized. The
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edges (connections between the vertexs) of pose graph are
the observation constraints, which consist of the relative poses
between the sequential frames, and the corrected loop poses.
We define the residual between frame i and j as:

rij(Twi» Ti) = (T T, T, )" (8)

The pose graph is optimized by minimizing the following
cost function:

: 2 2
min$ > gl + > Wl ps ©)

(@i.)es (6. ))eL

where S is the set of all sequential edges and L is the set
of all loop closure edges. We use the Levenberg-Marquadt
method implemented in the graph optimizer g2o [38] to solve
the optimization.

After poses have been optimized, we update the local map
of mapping thread. Specifically, the points in local map are
updated based on the optimized global poses, which are more
accurate. This can ensure the global consistency of subsequent
estimations.

V. EXPERIMENTS

To comprehensively evaluate the performance of our algo-
rithm, we perform experimental evaluation from four aspects:
(i) Evaluate place recognition performance; (ii) Evaluate the
performance of our method when integrated in 3D LiDAR
SLAM; (iii) Test the hyperparameters and analyze the robust-
ness of our method; (iv) Test the runtime for each part of the
system. We perform experimental verification on KITTI [39]
dataset which contains data from different street environments
ranging from inner cities to suburb areas. The point clouds
in KITTI were collected by a Velodyne HDL-64E S2 at the
sensor rate of 10 Hz. There are 11 sequences (i.e., from 00 to
10) with ground truth poses, which are used to determine the
number of true loops. Furthermore according to [40], some
ground truth poses in KITTI involve large errors, and we do
also find that the ground truth pose of sequence 02 and 08
involve large errors in experiment. Therefore, we use the more
consistent poses refined by ICP to determine if there is a loop
closure in sequence 02 and 08. Similar to SGPR [34], two
point cloud scenes are regarded as a true positive loop pair
if the Euclidean distance between them is less than 3 m and
the time difference is greater than 30 s. These sequences (00,
02, 05, 06, 07 and 08) with loop closures are selected for the
evaluation. We set Thy;; = 3 in our experiments. Experiments
are performed on a notebook with an Intel Core i7 @2.2 GHz
processor and 16 GB RAM.

A. Place Recognition Performance

In this section, we compare our method with the state-of-
the-art LiDAR loop closure detection and place recognition

methods, including M2DP [28], Scan context [29], Point-
NetVLAD [30], Intensity Scan Context (ISC) [32], LiDAR Iris
[33], SGPR [34], OverlapNet [35] and SSC [36]. Following

the evaluation metrics introduced in [36], we compute the

(a) The recognized loop with an angle 45 approximately between scan 113 (red)
and scan 1564 (purple) on KITTI 00

(b) The recognized loop with reverse direction between scan 236 (red) and scan
1643 (purple) on KITTI 08

Fig. 4. The recognition results based on our place recognition system and
the matching results based on LinK3D on loops with different directions. The
green lines are the valid matches.

maximum value of F; score and Extended Precision [41] (EP)
of our method, and adopt the results about F; score and EP
presented in [36] for comparison methods. In addition, we also
show whether these methods can be used to correct the full
6-DoF loop pose. The F score is defined as follows:
Fi=2x m,
P+R
where P and R are the precision and recall, respectively. F}
represents the harmonic mean of precision and recall, which
treats precision and recall as equally important and is used to
evaluate the overall performance of classification. We use the
maximum F score of each method for the comparison.
The Extended Precision is defined as follows:

(10)

Y

where Pgo represents the precision at minimum recall, and
Rpioo represents the max recall at 100% precision. EP is
specifically designed to validate the place recognition perfor-
mance. The comparison results are shown in Table 1.

As shown in Table I, our BoW3D surpasses other methods
in F; max score and EP on most sequences. Especially on
sequence 08 with only reverse loops, our method can still
retrieve most loops and also achieve high precision. This
indicates that our method is robust to the change of view angle,
and Fig. 4 shows the situations. In addition, the comparison
methods cannot be used to correct the full 6-DoF loop pose,
which limits subsequent loop optimization in 3D LiDAR

1
EP = E(PRO + Rp100),
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Fig. 5. Comparisons between the trajectories of A-LOAM and the trajectories with our place recognition system on KITTI. We can see that our place
recognition system can effectively recognize the revisited place and correct the loop pose.

TABLE I
THE COMPARISON RESULTS ABOUT F'| MAX SCORES, EXTENDED PRECISION (F'| MAX SCORES / EXTENDED PRECISION) AND WHETHER THESE METHODS CAN BE USED TO CORRECT THE
FULL 6-DoF LoOP POSE. THE BEST SCORES ARE MARKED IN BOLD AND THE SECOND BEST SCORES ARE UNDERLINED.

Method | 00 02 05 | 06 07 08 | loop correction
M2DP [28] 0.708/0.616 | 0.717/0.603 | 0.602/0.611 | 0.787/0.681 | 0.560/0.586 | 0.073/0.500 -
PointNetVLAD [30] | 0.779/0.641 | 0.727/0.691 | 0.541/0.536 | 0.852/0.767 | 0.631/0.591 | 0.037/0.500 -
ISC [32] 0.657/0.627 | 0.705/0.613 | 0.771/0.727 | 0.842/0.816 | 0.636/0.638 | 0.408/0.543 -
LiDAR Iris [33] 0.668/0.626 | 0.762/0.666 | 0.768/0.747 | 0.913/0.791 | 0.629/0.651 | 0.478/0.562 -
SGPR [34] 0.820/0.500 | 0.751/0.500 | 0.751/0.531 | 0.655/0.500 | 0.868/0.721 | 0.750/0.520 -
Scan contex [29] 0.750/0.609 | 0.782/0.632 | 0.895/0.797 | 0.968/0.924 | 0.662/0.554 | 0.607/0.569 1-DoF
OverlapNet [35] 0.869/0.555 | 0.827/0.639 | 0.924/0.796 | 0.930/0.744 | 0.818/0.586 | 0.374/0.500 1-DoF
SSC-RN [36] 0.939/0.826 | 0.890/0.745 | 0.941/0.900 | 0.986/0.973 | 0.870/0.773 | 0.881/0.732 3-DoF
BoW3D (ours) ‘ 0.977/0.981 ‘ 0.578/0.704 ‘ 0.965/0.969 ‘ 0.985/0.985 ‘ 0.906/0.929 ‘ 0.900/0.866 ‘ 6-DoF

SLAM. Our method performs well while also can be used
to correct the full 6-DoF loop pose. The reasons why our
method outperforms the baseline methods are as follows: (i)
Our BoW3D is based on the LinK3D descriptors, and LinK3D
is pose invariant. This allows our method quickly recognize
the loops, even if the loops are reverse. (ii) As shown in Fig. 4,
our system forms the constraints based on the accurate point-
to-point matching results, and this ensures that the effective
loop correction can be performed.

B. Performance on LiDAR-based SLAM

In this experiment, we evaluate the performance of the loop
closing system used in 3D LiDAR-based SLAM. To verify the
accuracy of loop correction, we refer to the validation metrics

defined in [40]: (i) Euclidean distance for translation; (ii) ®
for rotation. ® is defined as follows:

R - R
®=2 arcsin(u),

V8

where ||R — R||r is the Frobenius norm of the chordal distance
[42] between estimation and ground truth rotation matrix.

To verify the accuracy of the whole trajectories, the root
mean square error (RMS E) is used for the evaluation. RMS E
is defined as follows:

12)

1< n
RMSE = (— " rans(Q; P)I")?, (13)
mn i=1
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Fig. 6. The results of Fy score and runtime with different Th, and Thy
settings on KITTI 00.

where Q; is the ground truth pose and P; is the estimated pose.
The loop correction accuracy and the trajectory comparison
results between our SLAM system and A-LOAM are shown
in Table II and Fig. 5, respectively.

From the comparison results in Fig. 5, we can see that
the loop closing system can effectively correct the cumulative
errors, and the pose estimations with loop closing are better
than the original ones. We show the quantitative decrease
of RMSE after using our loop closing compared to the
original SLAM pose estimation results in Table II. The results
demonstrate that the proposed loop closing can effectively
reduce the drifts of 3D LiDAR SLAM system.

TABLE 11
THE RESULTS OF ANGULAR, TRANSLATION ERRORS AND THE VARIATION OF RMSE BASED
ON THE GROUND TRUTH WHEN BOW3D USED TO LOOP CORRECTION AND OPTIMIZATION.

Error | 00 02 05 06 07 08
Angular Err (°) | 0.685 1.130 0.598 0.289 0.532 1.480
Transl. Err (m) | 0.764 0.162 0.238 0.060 0.138  0.037
RMSE (m) (}) ‘ 1.069 3.173 0958 0.542 0.153  3.945

C. Hyperparameters Setup and Robustness Analyzation

In this section, we provide more studies on parameter set-
tings about Th, and Thy in Algorithm 1 through experiment,
which is important to the performance of BoW3D. For a wide
test, we set eight parameters about Th,, and it starts from 2.5
to 4.25 with an interval of 0.25. Thy starts from 4 to 10 with
an interval of 1. The F; score and the average detection time
of BoW3D are used to measure the performance of different
parameter settings. The results are shown in Fig. 6.

Robustness Analyzation. We can see from Fig. 6 that as
Th, increases, the required runtime also increases and the
same as the F| scores. When we set Th, larger than 3, the F;
scores not change much on most sequences and the runtime
still increases. When we set Thy less than 5, although the F;

800 -
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S
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&
S
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100 = = === mmmmnr - ;
/
0 I T .

Odometry Mapping  PGO l§0W3D
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Fig. 7. The average runtime for each part of the system to process one point
cloud frame on KITTI 00.

is higher, the algorithm also requires much more time to detect
the true places. If we set Thy larger than 8, this will reduce the
robustness of our algorithm because of the low F; score. To
make our algorithm robustly work, and trade off the runtime
and accuracy, we set the Th, as 4 and the Thy as 5.

D. System Runtime

In this experiment, we evaluate the average runtime of
each module in the SLAM system after integrating our loop
closing for processing one LiDAR scan. KITTI 00 is used
for the evaluation, which includes 4K+ LiDAR scans. We
set the Th, = 4, Thy = 5. Moreover, we set the number
of closer features as 5 when add them to the database, and
set it as 3 when retrieve from the database. The runtime of
each module is shown in Fig. 7. Note that each module of
the system operates separately in different threads. Although
the runtime of mapping thread and pose graph optimization
(PGO) are more than 100 ms, they can be performed online
due to their low frequency. In particular, BoW3D takes overall
less than 100 ms to process one frame, which ensures the real-
time performance of the system when BoW3D applied to 3D
LiDAR SLAM.

VI. CoNCLUSION

In this paper, we propose a novel 3D-feature-based bag of
words algorithm for place recognition. The proposed BoW3D
exploits the LinK3D features to build the bag of words. It
consists of three parts, i.e. place retrieval, loop correction and
database update. The hash table is used as the overall structure
of the database in BoW3D, which enables to retrieve effi-
ciently. Compared with the state-of-the-art methods, BoW3D
not only achieves competitive results, but also corrects the
full 6-DoF relative loop pose in real time. Compared with
deep-learning-based methods, our method does not require
pre-training and GPU resources. In addition, we also embed
the proposed BoW3D to LiDAR odometry system to verify
its performance in practice. Compared with original odometry
algorithm, the 3D LiDAR SLAM system with BoW3D has
lower drifts when there are loops. It would be interesting to
overcome the shortcomings of current 3D LiDAR odometry
systems without loop closing thread, and we will also extend
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our method to relocalization, local optimization and mapping
in 3D LiDAR SLAM, to improve the efficiency, accuracy and
robustness of current 3D LiDAR SLAM system.
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