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Hybrid Learning of Time-Series Inverse Dynamics
Models for Locally Isotropic Robot Motion

Tolga-Can Çallar1 and Sven Böttger1

Abstract—Applications of force control and motion planning
often rely on an inverse dynamics model to represent the
high-dimensional dynamic behavior of robots during motion.
The widespread occurrence of low-velocity, small-scale, locally
isotropic motion (LIMO) typically complicates the identification
of appropriate models due to the exaggeration of dynamic
effects and sensory perturbation caused by complex friction and
phenomena of hysteresis, e.g., pertaining to joint elasticity. We
propose a hybrid model learning base architecture combining a
rigid body dynamics model identified by parametric regression
and time-series neural network architectures based on multilayer-
perceptron, LSTM, and Transformer topologies. Further, we in-
troduce a novel joint-wise rotational history encoding, reinforcing
temporal information to effectively model dynamic hysteresis.
The models are evaluated on a KUKA iiwa 14 during algorith-
mically generated locally isotropic movements. Together with the
rotational encoding, the proposed architectures outperform state-
of-the-art baselines by a magnitude of 103 yielding an RMSE
of 0.14 Nm. Leveraging the hybrid structure and time-series
encoding capabilities, our approach allows for accurate torque
estimation, indicating its applicability in critically force-sensitive
applications during motion sequences exceeding the capacity of
conventional inverse dynamics models while retaining trainability
in face of scarce data and explainability due to the employed
physics model prior.

Index Terms—Dynamics, Model Learning for Control, Deep
Learning Methods, Force and Tactile Sensing, Force Control

I. INTRODUCTION

THE availability of an inverse dynamics model (IDM)
that infers the mechanical forces within a robotic system

from its motion constitutes the foundation for a multitude
of applications within the area of force control and motion
planning. With the advent of multi-articulated robots employed
in real-world tasks under uncontrolled conditions, there is an
increased necessity for modeling strategies that are able to ac-
curately and robustly represent the high dimensional dynamics
of mechanically complex robots executing a kinematically and
dynamically wide range of motions.

In real-world manipulation and physical interaction appli-
cations, the executed robot motion is often comprised of
segments of low velocity and local isotropy in the form
of frequent reversals of the joint-wise directions of rotation
within small angular intervals for which we introduce the
umbrella term of Locally Isotropic Motion (LIMO). LIMO
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Fig. 1: Joint torque hysteresis on the KUKA LBR iiwa 14
during locally isotropic motion (LIMO) in the form of a joint-
wise common cyclical linear trajectory. Also, note the presence
of backlash torques at directional reversals.

can be encountered in collaborative, medical, social, or field
robotics, where movements may predominantly manifest as
irregular fine-scale motion sequences for precise compliant
manipulation, e.g. in robotic sonography [1], and reactive
contact control during continuous physical interactions with
an uncontrolled environment and human agents [2]. This is
distinct from locally anisotropic motion, e.g. in pick-and-place
tasks [3] or large amplitude sinusoidal motion [4], where joint-
wise rotation directions remain constant for larger angular
intervals, i.e. saturating deformation states of flexible internal
components and interfaces until, effectively, mechanical rigid-
ity is approached up to a further directional reversal. During
LIMO, an increased dynamic influence of hysteretic effects
pertaining to low-velocity friction [5], joint flexibility, and
backlash can be observed [2], [6]. As shown by the formation
of characteristic joint torque hysteresis loops in Fig. 1, the
sensed torques substantially depend on the rotation history,
which is apparent from non-linearly increasing and saturating
torques during rotation, and torque deflections at rotational
reversals, which is consistent with mechanical hysteresis.

As such, LIMO quickly leads to the summation of multiple
hysteretic torque deviations. In the context of IDMs, this
introduces a non-negligible torque contribution that, albeit
deterministic, results from the system’s dynamic state history
and is therefore difficult to model by conventional, steady-
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state approaches [7]. Together with inherently complex non-
linear dynamics of common robots, this aggravates the IDM
problem for the deployment of robotics in critically force-
sensitive applications where this motion type occurs.

IDM techniques are classically composed as parametric
models [4] derived from the seminal work presented in [8],
which formulates the Newton-Euler equations of motion lin-
early with respect to the inertial link parameters to identify a
model by linear regression from dynamic measurements.

This so-called rigid body dynamics (RBD) model is often
extended to also include basic frictional parameters [9].

For collaborative applications, lumped dynamic models in
the form of momentum observers are proposed, disregarding
dynamics related to acceleration trading faster model pre-
dictions and independence from noisy acceleration measure-
ments for lower prediction accuracy [10]. Although providing
good model explainability and robustness, parametric model
formulations are inherently incomplete in face of a myriad
of dynamic effects exceeding closed-form model definitions,
and thus often unable to be encode temporal information and
yield accurate estimates during challenging motion such as
LIMO. On the other end of the spectrum, black-box tech-
niques are investigated, ranging from non-parametric, Gaus-
sian processes-based methods to artificial neural networks
[11]–[14] employed to learn models directly from data, which
in theory allows for the approximation of any non-linear
dynamic system, although conversely introducing the risk of
model variance and unexplainability. Thus, grey-box model
learning approaches have been proposed, e.g, in form of neural
network and Gaussian Process regression incorporating formu-
lations of Newtonian, Lagrangian and Hamiltonian mechanics,
where physical prior information is either directly embedded
in a data-driven regression method, i.e. as a differentiable
computational graph [11], [15]–[17] or used separately in
an error-learning scheme [3], [11], [18]. However, time-
dependency effects, innate to robot dynamics, have often been
neglected. Advancements in this respect were made by casting
the dynamic modeling problem as a time-series regression task
and using recurrent neural networks for IDMs [7].

The commonality between these previous approaches is
nonetheless that the investigated motion types are mainly
intended for and validated on locally anisotropic motion,
as defined above. To explore methods appropriate for the
modeling of the dynamics of LIMO, we design dedicated
techniques for LIMO modeling and present the following
contributions:
• A hybrid learning base architecture combining a rigid

body dynamics model prior learned by parametric iden-
tification with data-driven model learning using neural
network topologies based on multilayer perceptrons and
time-series networks in form of LSTM and Transformer
topologies. (Sec. III)

• A novel joint rotation history encoding as a model input
feature to reflect torque hysteresis states. (Sec. III-B1)

• A motion generation algorithm to obtain dynamically
versatile training data for LIMO. (Sec. III-C)

• A comparative evaluation of various state-of-the-art IDM
techniques on long-term proprioceptive time-series mea-

surements acquired on the KUKA LBR iiwa 14 during
LIMO and conventional motion. (Sec. IV)

• Our model implementations and LIMO data sets are
shared with the research community in [19].

The rationale behind our proposed methodology is based
on two assumptions: Firstly, as evident from the mentioned
related work on grey-box modeling the hybridization of a
semantically pre-defined parametric model with a universal ap-
proximator should create synergetic effects regarding explain-
ability, prediction robustness, and representation capabilities
to eventually improve the modeling of complex dynamics oc-
curring during challenging motion types as LIMO. Secondly,
leveraging sequence history information on multiple levels,
e.g. using different time-series neural network architectures
and sequence encodings should benefit model accuracy, espe-
cially when dynamic states similar to LIMO are targeted.

Honing in on the outlined dynamic modeling problem,
principal questions addressed by our work revolve around
the infamous bias-variance tradeoff to design the optimal
model architecture: 1) Can rigid body dynamics models suf-
ficiently represent the dynamics of LIMO? 2) Can neural
networks provide higher accuracy while generalizing to out-
of-distribution dynamic states, given resource-intensive data
acquisition in robotics? 3) What is the benefit provided by a
hybrid approach? 4) How important is temporal information
for model accuracy?

After delineating the fundamentals of the IDM problem, we
present the details of our model architectures, feature design,
data generation, and evaluation process.

II. ROBOT DYNAMICS

Considering a serial kinematic structure composed of n = 7
joints, in the case of our reference platform the KUKA iiwa
14, we define the dynamics by a composite model

τ =

D(q,q̇,q̈,?)︷ ︸︸ ︷
H(q)q̈+C(q, q̇)q+g(q)︸ ︷︷ ︸

τRBD

+ε(q, q̇, q̈,?)︸ ︷︷ ︸
τADD

, (1)

expressing the joint torques τ ∈ Rn=7 as a function of the
kinematic state variables of joint positions and their temporal
derivatives, q, q̇, q̈ ∈ Rn, along with an undefined set of
additional variables subsumed under ?. With H(q) ∈ Rn×n as
the symmetric and positive-definite joint-space inertia matrix,
C(q̇, q̈) ∈ Rn×n as the combination of the Coriolis and cen-
tripetal forces and g(q) as the gravity vector, the first terms
grouped under τRBD represent the torques solely governed
by the framework of rigid body dynamics [20]. Due to the
presence of a plethora of effects that exceed those simpli-
fying assumptions, e.g. manifestations of complex friction
dynamics, e.g. Stribeck and LuGre friction [5], and joint
flexibility, the model also includes a collective compensatory
term ε(q, q̇, q̈,?) to accommodate for joint torques τADD
resulting from the entirety of additional phenomena affecting
the true robot dynamics. This also includes perturbations in the
technical perception of the model variables caused by arbitrary
changes of the actual or sensed dynamic state, e.g., deviations
in the measurement of joint positions and computationally
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derived velocities and accelerations, or the sensed joint torques
themselves, i.e. mainly due to joint flexibility, friction or
vibration [2].

We define the IDM problem as the identification of a
dynamic model function F(q, q̇, q̈,?) that approximates the
observable true dynamics D such that the model estimates τest
fulfill

||D(q, q̇, q̈,?)︸ ︷︷ ︸
τ

−F(q, q̇, q̈,?)︸ ︷︷ ︸
τest

|| → 0 (2)

over a maximum range of the dynamic state space, where, in
practical terms, q and τ are observed via position sensors and
strain-gauge sensors located at the output side of each joint of
the KUKA LBR iiwa 14.

III. HYBRID MODEL LEARNING BASE ARCHITECTURE

Exploiting the compositionality of the model formulation in
(1), we propose a hybrid model base architecture FHYB consist-
ing of two sequential elements, beginning with a parametric
rigid body dynamics model FRBD and a downstream neural
network-based model FNN as per Fig. 2 and:

FHYB︸ ︷︷ ︸
τHYB

= FRBD(q, q̇, q̈,k)︸ ︷︷ ︸
τRBD

+FNN(q, q̇, q̈,r,τRBD)︸ ︷︷ ︸
τNN

. (3)

FHYB = τHYB is the sum of the predictions made by both
model components FRBD = τRBD and FNN = τNN, where FNN
itself also depends on the prediction FRBD = τRBD as an
auxiliary input. As such, FHYB constitutes a hybrid between
a physics-based model prior and a data-driven, learned neural
network. The internal structure of the respective components
along with the definition of the utilized input features is the
subject of the following.

A. Upstream Parametric Model Identification

Initially, we apply a parametric identification procedure
based on the Newtonian formulation of mechanics to obtain a
model FRBD by statistical regression of the inertial link param-
eters implicitly embedded in the first terms of (1) pertaining to
the torques τRBD that result from rigid body dynamics (RBD).
For that, we extend the rotational component of the Newton-
Euler equations to include viscous and Coulomb friction
between adjacent links as a simplified actuation friction model
[9], and define the torque τii acting upon the i-th link due to
its own motion as

τii = (g− p̈i)×mici +Iiω̇i +ωi× (Iiωi)+Fv
i ω̇i +Fc

i sign(ω̇i) , (4)

Fig. 2: Directed Graph of the Hybrid Base Architecture within
which the dashed connections are ablated and the neural
network configurations FNN are varied as part of the evaluation
experiments (see Sec. IV).

Fig. 3: (Left) Cartesian path of the end-effector during the exe-
cution of the optimized excitation trajectory. (Right) Excitation
trajectory in configuration space.

where g is the vector of gravitational acceleration, p̈i is the lin-
ear link acceleration and ωi and ω̇i are the angular link velocity
and acceleration vectors. The parameters mi, ci, Ii, Fv

i and
Fc

i , constitute the link mass, center of mass, symmetric inertia
tensor, viscous and Coulomb friction coefficients respectively.
We reformulate the Newton-Euler equations to express the
joint torques linearly in relation to the link parameters as
presented in [8], i.e.

τii =
[
0 [(g− p̈i)×] [·ω̇i]+ [ωi×][·ω̇i] ω̇i sign(ω̇i)

]
×[

mi mici Ixx Ixy Ixz Iyy Iyz Izz Fv
i Fc

i
]︸ ︷︷ ︸

Φi

>
. (5)

With the Recursive Newton-Euler algorithm [20], given
the kinematic structure k, the link torques are transmitted
backward along the kinematic chain to obtain a linear equation
system

τRBD =K(q,q̇, q̈,k) Φ , (6)

yielding τRBD for an observation matrix K constructed from a
measured kinematic state via the link parameters Φ ∈ R12n×1

[8]. Based on this, we construct a stacked version of (6) from
N observations pairs of the kinematic state (qmeas, q̇meas, q̈meas)
and the joint torque observations τmeas to estimate Φ by the
ordinary least squares method from

τmeas =K(qmeas, q̇meas, q̈meas,k) Φ , (7)

where τmeas ∈ RN·n×1, K(qmeas, q̇meas, q̈meas,k) ∈ RN·n×12n

and Φ ∈ RN·12n×1. To optimize identifiability of Φ, the
kinematic observations are made while executing joint-wise
disjunct sinusoidal dynamic excitation trajectories that min-
imize cond(K(qmeas, q̇meas, q̈meas,k)) conversely maximizing
parametric identifiability [4], [21]. The obtained excitation
trajectory (Fig. 3) yields cond(K = 68).

Before constructing (7), the measurements are low-pass
filtered to reduce a) noise amplification from numeric
differentiation of joint position measurements to retrieve
the velocities and accelerations and b) torque vibrations
caused by actuation transmission [2]. By rank reduction of
K(qmeas, q̇meas, q̈meas,k) to Kb with rank(Kb) = 57 via QR-
decomposition [9], the reliably identifiable base parameters
ΦLS

b are determined and solved for by pseudo-inversion of
the full-ranked version of the linear equation system (7). This
yields the model

FRBD =Kb(qmeas, q̇meas, q̈meas,k)Φ
LS
b = τRBD , (8)
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which achieved a joint-wise average MSE of 0.2543 Nm on
the data recorded during the excitation experiment.

B. Learning Downstream Models with Neural Networks

First, we introduce a motion encoding feature definition to
alleviate the encoding of time-dependency information in the
neural network input space. The subsequent sections III-B2 to
III-B5 examine architectural variations of the neural network
component FNN utilized as the second stage of our hybrid
model (3), for which we investigated and adapted several
neural network types and topologies.

1) Rotational History Encoding: Our work focuses on
dynamic sequence-history dependencies, i.e., hysteretic behav-
ior, that occur during LIMO. From a topological perspective,
learning of such sequence models can be accomplished either
through the exploitation of recurrence (Sec. Section III-B3)
or via an attention mechanism (Sec. Section III-B4). Still, the
sequence length over which time-dependencies can be effec-
tively modeled is limited. Conversely, generic feed-forward
networks (Sec. Section III-B2) have no inherent means for
sequence modeling.

Assuming that dynamic time-dependency effects mostly
pertain to mechanical hysteresis during LIMO, we conjecture
a correlation between observable joint torques and the history
of joint positions that is defined by an associated hysteresis
loop (Fig. 1). Hence, sufficient continuous rotation in one
direction transitions the hysteresis into linear saturation, and
contrarily, frequent reversals of motion direction, i.e., during
LIMO, confine the associated dynamic effects to manifest
with pronounced non-linearity inside the hysteresis loop. To
abstractly express the hysteretic state of the joint torques
depending on the history of past rotations, we introduce a
novel rotational history encoding for which we define a feature
vector

r =
[
r1 r2 . . . rn

]
, r j ∈ [−10◦,10◦] (9)

containing the signed total rotation angle of each joint since
the respective last reversal of rotation direction. Before con-
structing r for a time-step, the joint angles buffered since
the last reversal are squashed into the range ||r◦|| < 10◦ to
exclude values redundantly encoding information for states
where effects mechanical hysteresis is assumed to be saturated
(Fig. 1). We hypothesize this auxiliary feature to aid sequence
modeling networks with the extraction of long-term temporal
dependencies within the data, as well as augment the perfor-
mance of non-recurrent architectures by explicitly providing
temporal information. The evaluation of the influence of this
additional feature in the context of the generated data set for
LIMO is presented in III-C.
r is concatenated with the remaining input features of

the kinematic state (qmeas, q̇meas, q̈meas) and the RBD model
predictions τRBD (3), yielding the full input feature space

x= vec(q, q̇, q̈,r,τRBD) ∈ R35 (10)

for FNN in (3) for which the network architecture variants are
discussed next.

2) Multilayer Perceptron (MLP): Related to the topologies
proposed by [3], [13], we construct a multilayer perceptron
MLP j for each robot joint j consisting of
• an input layer with 35 neurons accepting x ∈ R35

• one hidden layer with 100 neurons with ReLu activation,
• an output layer with 1 neuron corresponding to the torque

prediction fMLP j = τ
j

NN for the j-th joint.
The MLPs are arranged in a shared network topology such
that the single-joint predictions are concatenated to fMLP =
τNN =

[
fMLP1(x) . . . fMLPn=7(x)

]
and the respective MLPs

are trained jointly based on this output. For our implementation
for the KUKA LBR iiwa with 7 joints, we abbreviate this
architecture as MLP-7.

3) Long Short-Term Memory (LSTM): Consider the pres-
ence of temporal dependency effects extending over compar-
atively long time horizons in the dynamic system, that cannot
be sufficiently encoded by temporal derivation of positional
measurements or even time encodings. Hence, the model is
extended from a single time-step prediction to the mapping
of a time-series of kinematic states to a single dynamic state
prediction using long short-term memory networks inherently
suited for sequential data [7], i.e.,

fLSTM(x(t1),x(t2), . . . ,x(T )) = τNN(T ) . (11)

Here, T is the length of a sequence of observations
x(t) = vec(τRBD(t),q(t), q̇(t), q̈(t),r(t)) for every time-step
t1, . . . ,T , and τNN(T )∈R7 is the joint torque prediction made
at the last time-step t = T based on the preceding kinematic
observation sequence. We compare two sequence lengths
T = 100 and T = 500, to elucidate whether longer time-
frames improve prediction accuracy, or put differently, whether
dynamic effects with longer temporal dependency significantly
influenced the model. The network is implemented as two
consecutive LSTM cells with forget gates where
• the first LSTM cell has 35 input neurons accepting
x(t) = vec(τRBD(t),q(t), q̇(t), q̈(t),r(t)), and 35 hidden
neurons,

• the second LSTM cell has 35 input neurons and 7 hidden
neurons, corresponding to the individual joint torques.

This network is abbreviated as LSTM-2.
Based on this same topology, we implement the architec-

tures LSTM-FCL 100 and LSTM-FCL 500, where a fully
connected layer with 35 input and 7 output neurons with linear
activation is used instead of the second cell to improve the
regression performance by compensating for the squashing
sigmoid output function of LSTM cells; the sequence lengths
used for training are either T = 100 or T = 500.

4) Transformer: Originally proposed in [22], the Trans-
former network is investigated as a non-recurrent encoder-
decoder topology, having achieved favorable results in
sequence-to-sequence modeling applications. The input is con-
catenated by a sinusoidal encoding and fed through a series
of encoding layers, each containing a multi-head scaled dot-
product attention, normalization, and fully connected sub-
layer. The encoded features are then fed through decoder layers
and are subjected to a joint attention layer accepting both the
encoding and the previous predictions to generate the next
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output. The vanilla implementation of the architecture as pre-
sented in the seminal work is adopted and configured for input
sequence and output dimensions as defined for the LSTM,
yielding the network function fTF(x(t1),x(t2), . . . ,x(T )) =
τNN.

5) Input/Output Normalization: Considering the largely
varying numerical scales of the input features, all architectures
are equipped with integral input and output normalization
layers. Using the training data (see III-C), the mean xi and
standard deviations σ(x j) are computed over all observations
of the input features xi ∈ x in (10) respectively to normalize
each input x j according to

xnorm
i =

xi− xi

σ(xi)
, (12)

before being propagated forward through the network. The in-
verse operation is performed at the output where the prediction
torques are subject to τ

pred
j = σ(τ j)τ

norm
j + τ j.

C. Algorithmic Training Motion Generation with LIMOPA

Dynamic modeling is often performed for motion tasks
within a fairly constrained effective workspace large-scale
movement patterns [12], [14], e.g., palletization or pick-and-
place tasks, characterized by mainly joint-wise anisotropic
motion. To our best knowledge, the dynamic modeling of
collaborative robots over a wide kinematic during LIMO and
fine-scale movements was not attempted before. To provide
a data set for the development and evaluation of IDMs for
this motion type, we propose a novel algorithmic method
for the parametric generation of randomized LIMO-paths
(see Algorithm 1). The aims are 1) to provoke hysteretic
effects at low velocities and directional reversals within narrow
positional windows, i.e., backlash and non-linear friction, and
2) to maximize the kinematic range over which these are
observed. LIMOPA partitions the motion in configuration
space into linear reaching-phases where target configurations
are approached, and subsequent sinusoidal exploring-phases
where the robot performs locally isotropic reconfigurations
around the prior target configuration. This is realized by the
pre-calculation of a geometric path of length P composed as a
joint configuration sequence C = {q1, . . . ,qP} with qp ∈Rn=7

Algorithm 1 Locally Isotropic Motion Path Algorithm (LIMOPA)
while numberOfScaffoldConfigs < goalNumberOfScaffoldConfigs do

randomConfig = getRandomConfig(jointIntervals)
endEffectorPosition = forwardKinematics(randomConfig)
feasible = checkFeasibility(randomConfig)
if endEffectorPosition ∈ cartesianSampleRange and feasible == True then

scaffoldConfigs[end] = randomConfig
end if

end while
sortedScaffoldConfigs[1] = scaffoldConfigs[1]
for i=1 to length(sortedScaffoldConfigs) do

queriedConfig = sortedScaffoldConfigs[i]
remove queriedConfig from scaffoldConfigs
neighborConfig[i+1] = kdNearestNeighbor(queriedConfig, scaffoldConfigs)
remove neighborConfig from scaffoldConfigs
sortedScaffoldConfig[i+1] = neighborConfig
configPathPoints[end+1] = neighborConfig
sinusoidals = generateRandomSinusoidals()
append(configPathPoints, sinusoidals)

end for
return configPathPoints

: scaf fold conf igurations

linear reaching phase sinusoidal exploring phase

z

x y

z

x y

Fig. 4: Path geometry generated by LIMOPA. (Left) After
interpolation between two scaffold configurations (see red
markers) via random, joint-wise linear motion profiles, (Right)
low-amplitude randomized sinusoidal joint trajectories are
appended around the current scaffold configuration.

as the p-th waypoint of C. The implementation is based on a
randomly generated list of kinematically feasible and collision-
free scaffold-configurations S = {qscaf

1 , . . . ,qscaf
L } of length L,

that are identified in simulation. The scaffold configuration
qscaf

l represents the goal configuration to be reached in the l-th
reaching-phase via joint-wise linear motion. This is followed
by the l-th exploration-phase in the form of a time-unfolded
joint-wise random sinusoidal path jel ∈ RT of length T
parameterized by a discrete Fourier series

jel(t) =
3

∑
k=1

Arand
k sin

(
2π f rand

k t +ϕ
rand
k

)
, (13)

jel = { jel(1), . . . , jel(T rand)} . (14)

Arand
k ∈ [0.5,3], f rand

k ∈ [−4,4] and ϕ rand
k ∈ [0,2π] are drawn

randomly from the respective intervals for each joint j and
each k-th summand of the Fourier series. The path length of
the l-th exploration phase el = (1el , . . . ,n=7el) ∈ R(n=7)×T rand

is randomly determined by T rand ∈ [2000,2500]. This results
in a configuration path

C = {qscaf
1︸︷︷︸

7×1

, e1︸︷︷︸
7×T rand

,qscaf
2︸︷︷︸

7×1

, e2︸︷︷︸
7×T rand

, . . . ,qscaf
L︸︷︷︸

7×1

, eL︸︷︷︸
7×T rand

} . (15)

Joint-wise independent, random sinusoidal motions are chosen
to excite a wide range of dynamic state combinations, also
provoking hysteretic behavior via sinusoidal oscillations; the
parameter intervals are defined to preserve nonlinearity by
preventing saturation of potential hysteresis loops. Although
neural network-based approaches rely on the availability of a
rich and representative training data set, the high dimensional-
ity of robot dynamics, encompassing at least dim(q, q̇, q̈,τ ) =
4×n state space dimensions for n joints, makes an exhaustive
dynamic state space sampling intractable. To balance sampling
efficiency and representative quality, we define an effective
workspace Weff as the kinematically reachable quadrant of a
sphere radius 0.8 m in front of the robot, bounded by the
y-axis and the positive x- and z-axes of the base coordinate
system to be sampled as a subspace of the reachable workspace
Wtot ⊃Weff within which local manipulator dexterity is pre-
served [1], [23].
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Fig. 6: Visualization of the dynamic space of each joint
spanning angle, speed, torque and rotation since direction
reversal contained in the training data.

Given the robot joint limits, the joint spaces are uniformly
sampled to obtain candidate configurations subject to a fea-
sibility check for collisions and compliance with the sample
space definition in simulation. This is repeated until, in our
case, 150 so-called scaffold configurations are identified. To
reduce the path execution time on the real robot, the scaffold
configurations are sorted by distance in configuration space
via a nearest-neighbor search based on a kd-tree representation
of the configuration space. As described, the final geometric
path is lastly constructed by inserting an exploration sequence
after each scaffold configuration. With an average of 2250
waypoints for each exploration phase, this results in approxi-
mately, 337500 waypoints for the total path and an execution
duration of roughly 1 hour. The waypoints on the geometric
path are sequentially executed by the proprietary controller
of the robot manufacturer such that the waypoint transitions
are executed as linear configuration space interpolations with
soft real-time constraints. At the beginning of each reaching
phase, the joint-wise relative velocity and acceleration are
randomly set between 60% and 90% with respect to the
individual maximum joint velocities. During exploring phases,
the relative velocities are randomly set between 10% and 30%.

Through this motion generation strategy, thorough coverage
of the Cartesian and configuration workspace is achieved.
Concurrently, the coverage of a wide range of dynamic state
combinations in the acquired data is ensured by including
multiple permutations of simultaneously occurring kinematic
states, motion directions, and torques, yielding a comprehen-
sive yet efficient sampling of the dynamic state space (Fig. 6
and 5). We provide our LIMOPA data set under [19].

D. Training Scheme
The neural networks are trained on the data set shown in Fig.

5 containing 804205 sequential joint positions and torques,
where the velocities and accelerations are obtained by numeric
differentiation.

We employ a random train-test-split of 80% to 20 % for
the data set. With respect to the time-series networks, the data
set is partitioned into sub-sequences, such that the shuffling
affects only the order of the sub-sequences but not that of
the samples within one such sub-sequence. The training of
all networks is conducted for 10 runs with Xavier- and zero-
initialization for 100 epochs using the AdamW optimizer [24]
with an empirically determined initial learning rate ε = 0.001
that is reduced when the training loss does not decrease for
consecutive epochs. To prevent over-fitting, the batch size is
set to 50. The mean squared error

LMSE(τHYB, τ̃meas) =
1
m

m

∑
i
||(τHYB− τ̃meas)

2
i || , (16)

between τHYB and the low-pass filtered torque measurements
τ̃meas, i.e., to reduce torque ripples due to vibrations induced
by nonlinear actuator transmission [2], is used as the loss
metric. The prediction modules are trained within the hybrid
model structure (see (3)) either 1) with the full input feature
space defined in (10), 2) as standalone networks without the
input feature inclusion of τRBD and the output addition of
the upstream RBD model estimates, 3) without the rotational
history encoding input r, or in case of the time-series networks
4) with different input sequence lengths T = {100,500}. As
Transformers are intended for long sequence lengths exceeding
the hypothetical capability of recurrent topologies, the Trans-
former is only trained once on sequence lengths of T = 500
and with the full feature space.

IV. EVALUATION OF THE MODEL ARCHITECTURES

To explore optimal IDM architecture and configuration for
LIMO dynamics, we focus on the implications of various
components of the base architecture presented in Section III.

The performance of the proposed model architectures and
their variations are evaluated comparatively on the training
and test data sets acquired during the execution of LIMO
according to the trajectory generated by LIMOPA (Sec. III-C).
The models are further validated on a separate data set
acquired during the execution of a sequence of large-amplitude
sinusoidal excitation trajectories (akin to the trajectory used for
parametric regression) over the full workspace with decreasing
base frequency to obtain dynamic and hysteretic states not con-
tained in the original training data set, e.g. large accelerations,
speeds, and rotations in one direction.
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Fig. 7: Torque predictions of the evaluated model architectures during a LIMOPA-based trajectory for joints 2 and 7.

To this end, an inexhaustive grid search is performed by
ablating parts of the input feature space and connections
between the model components as per (10) and Fig. 2, and
variation of the neural network base architecture. The tested
modules are named after their base architecture (see Sec. III-B)
and the specifiers "with r", indicating usage of the rotational
history encoding r, and "with τRBD", denoting the model being
configured as a hybrid architecture where τRBD is used both as
a neural network input and for the final output addition (Fig.
3). Thus, the architectures are rendered equivalent to either the
sole baseline RBD model, neural network component, or the
full hybrid architecture.

On all data sets, models trained in hybrid configuration
consistently achieved lower MSEs than their standalone coun-
terparts, where hybridization of MLP-7 and LSTM-2 100 lead
to MSE reductions by factors in the magnitude of 103 (see
Table 1). This substantiates previous claims of a boosted
absolute model performance through grey-box approaches,
or at least better convergence on limited training data. In
view of related hybrid modeling approaches carried out on
dynamically similar robots as in [3], the problem of underfit-
ting on highly dynamic robotic motion data seems common,
necessitating the inclusion of model priors like an RBD model.

Interestingly, however, LSTM-FCL and Transformer archi-
tectures, converged to low MSEs on the LIMO data set even

TABLE I: MSE between model predictions and filtered mea-
sured torques. The results are sorted joint-wise by color.

Tr
ai

ni
ng

M
SE

(N
m

)

Architecture Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Joint Avg.
RBD 1.9499 25.2967 0.8434 2.7134 0.3373 0.0963 0.0442 4.4687
MLP-7 1.0049 202.5057 179.1369 77.0004 0.4084 0.5081 0.1949 65.8228
MLP-7 with τRBD 0.4154 0.9537 0.3475 0.3101 0.0468 0.1345 0.0701 0.3256
MLP-7 with τRBD,r 0.2938 0.9160 0.3455 0.3115 0.0251 0.0523 0.0387 0.2833
LSTM-2 100 0.6039 82.8548 12.9735 12.1421 0.2604 0.4004 0.2052 15.6344
LSTM-2 100 with τRBD 0.0593 0.0952 0.0207 0.0208 0.0214 0.0252 0.0234 0.0380
LSTM-2 100 with τRBD,r 0.0518 0.0517 0.0163 0.0171 0.0129 0.0124 0.0111 0.0248
LSTM-FCL 100 0.1138 0.1530 0.0694 0.0662 0.0735 0.2152 0.1912 0.1260
LSTM-FCL 100 with r 0.0770 0.2207 0.0586 0.0567 0.0270 0.0495 0.0413 0.0758
LSTM-FCL 100 with τRBD,r 0.0385 0.0683 0.0188 0.0198 0.0161 0.0155 0.0115 0.0270
LSTM-FCL 500 0.0713 0.1468 0.0648 0.0698 0.0690 0.2011 0.1816 0.1150
LSTM-FCL 500 with τRBD 0.0317 0.1177 0.0237 0.0249 0.0284 0.0265 0.0300 0.0404
LSTM-FCL 500 with τRBD,r 0.0292 0.0507 0.0196 0.0199 0.0159 0.0133 0.0119 0.0230
Transformer 500 with τRBD,r 0.4293 0.1134 0.0459 0.0455 0.0190 0.0306 0.0216 0.0461

Te
st

M
SE

(N
m

)

RBD 2.0882 23.1839 0.0991 2.1749 0.4097 0.0985 0.0471 4.0145
MLP-7 0.9836 207.1595 178.9357 75.4605 0.4061 0.5070 0.196 66.2355
MLP-7 with τRBD 0.4081 0.9160 0.3758 0.3148 0.0463 0.1360 0.0710 0.3240
MLP-7 with τRBD,r 0.2747 0.8845 0.3309 0.2916 0.0252 0.0054 0.0385 0.2644
LSTM-2 100 0.6095 80.8355 12.3105 11.5995 0.2737 0.4068 0.2058 15.1774
LSTM-2 100 with τRBD 0.0730 0.1297 0.0321 0.0338 0.0239 0.0291 0.0262 0.0497
LSTM-2 100 with τRBD,r 0.0663 0.0849 0.0274 0.0266 0.0151 0.0138 0.0121 0.0352
LSTM-FCL 100 0.1254 0.2114 0.0886 0.0922 0.0807 0.2282 0.1924 0.1455
LSTM-FCL 100 with r 0.1224 0.2955 0.1092 0.0777 0.0315 0.0595 0.0487 0.1064
LSTM-FCL 100 with τRBD,r 0.0526 0.0991 0.0258 0.0265 0.0171 0.0181 0.0124 0.0360
LSTM-FCL 500 0.0754 0.1842 0.0798 0.0954 0.0740 0.2200 0.1825 0.1302
LSTM-FCL 500 with τRBD 0.0410 0.1380 0.0309 0.0319 0.0293 0.0273 0.0319 0.0472
LSTM-FCL 500 with τRBD,r 0.0400 0.0628 0.0253 0.0271 0.0168 0.0141 0.0124 0.0284
Transformer 500 with τRBD,r 0.1432 0.3179 0.1222 0.1284 0.0236 0.0390 0.0244 0.1142

Va
lid

at
io

n
M

SE
(N

m
)

RBD 0.3487 31.0620 2.6918 4.7038 0.0639 0.0833 0.0177 5.5673
MLP-7 2.4092 234.5064 100.1022 120.5577 0.8988 0.6676 0.0627 66.6006
MLP-7 with τRBD 0.4618 10.3878 4.2824 4.0479 0.0644 0.1134 0.0387 2.7709
MLP-7 with τRBD,r 0.4289 7.4943 3.6548 3.8454 0.0386 0.1056 0.0207 2.2269
LSTM-2 100 1.5878 304.6905 57.9000 88.5953 0.5772 0.8465 0.0881 64.8979
LSTM-2 100 with τRBD 0.5207 16.3673 4.0213 5.8706 0.0802 0.3689 0.0432 3.8960
LSTM-2 100 with τRBD,r 0.4342 15.1118 4.2252 5.2702 0.0743 0.2406 0.0627 3.6313
LSTM-FCL 100 1.9988 92.3633 43.3894 63.3062 0.8600 1.2037 0.1299 29.1216
LSTM-FCL 100 with r 2.4335 15.4618 4.6502 7.7476 0.2056 0.4692 0.2863 4.4649
LSTM-FCL 100 with τRBD,r 1.6668 12.8295 5.6193 7.7479 0.2303 0.1847 0.0616 4.0486
LSTM-FCL 500 2.1022 177.2180 52.5657 48.5196 0.9719 1.9562 0.1507 40.4978
LSTM-FCL 500 with τRBD 1.6170 18.0963 6.5467 5.7261 0.1450 0.2118 0.0810 4.6320
LSTM-FCL 500 with τRBD,r 1.7519 13.6668 6.2471 6.4873 0.1268 0.2433 0.0425 4.0808
Transformer 500 with τRBD,r 0.8202 20.3129 3.3142 3.6276 0.0561 0.1471 0.0448 4.0461

in non-hybrid configuration, whereby in hybrid configuration,
LSTM-FCL achieved the lowest MSE. Specifically, the highest
accuracy for the 500 variant, indicates that longer sequences
may still contain additional exploitable information. The high
accuracy of LSTM-FCL, may originate from its recurrent ar-
chitecture and regression ability via the distal fully connected
layer. The Transformer also evaluated on sequences of length
T = 500 yielded no further improvement, which may indicate
an advantage of recurrence over attention mechanisms.

A grid search for the optimization of topological hyperpa-
rameters for the best-performing model LSTM-FCL 500 with
τRBD,r revealed both the addition of a second LSTM cell
and the increase of the cell width to independently provide
accuracy gains (Fig. 8). An exception was observed on the
validation data where two layers with 15 neurons performed
closely to two layers and 55 neurons and outperformed the
other variants. As this is not seen in the LIMO data sets,

we suspect a lower dimensionality due to a width of 15 over
two layers to cause a structural bias-variance balance allowing
to rather generalize to non-LIMO dynamics contained in the
validation data by restricting encoding of LIMO dynamics.

In terms of further utilization of sequence history informa-
tion, each model trained with the rotational history encoding r
outperformed their counterparts, demonstrating the benefit of
sequence history information for non-recurrent and recurrent
topologies alike. Respecting the performance on the non-
LIMO validation data set, we report a reduced, albeit still
significant, benefit of r. This can be regarded as evidence for
our assumption, that sequence-history effects, i.e. hysteresis,
play a more critical role during LIMO in contrast to con-
ventional motion. This is also supported by a) the accuracy
gains attributable to the use of time-series architectures on
the LIMO data set, where these are able to leverage more
temporal information, and, conversely, b) relative accuracy
losses on the non-LIMO validation data set. Likewise, the
RBD performed similarly on all data sets, but significantly
worse than the remaining hybrid models during LIMO. This
again may be due to the proportionally higher influence of

Fig. 8: MSEs of variations of LSTM-FCL-500 with τRBD,r
investigated within ablation experiments.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

hysteretic effects being mainly provoked by LIMO dynamics
outside the framework of RBD. Surprisingly, the hybrid MLP
architectures performed best on the non-LIMO validation
data in accordance with [3], [13] where this model class
was successfully used for IDM of non-LIMO. We suspect
predominant exposure to LIMO data during training leading
the specialized time-series architectures to adapt to this motion
type. Although re-training on data containing other dynamic
ranges may be necessary to improve model generalization,
the aforementioned topological optimization (Fig. 8) already
yielded significant accuracy gains on the validation data set.

The temporal courses of the model predictions in Fig. 7
show the qualitative superiority obtained by model hybridism
and time-series encoding capabilities by the congruence be-
tween predictions and measurements across all joints. In par-
ticular, this is apparent at inflection points in the torque profiles
at directional reversals of joint 7, which is structurally isolated
from gravitational torques, e.g. for the MLPs at t ≈ [2s,12s]:
Without r the prediction curve is of rectangular shape with
sudden jumps. This is mitigated by the rotation history encod-
ing used by MLP-7 with r, which is able to approximate the
slope of the torque curve. This qualitative advantage is present
in the remaining time-series architectures as well, where the
temporal information further reduces overshooting predictions
at motion reversals and close tracking of the true torques, even
for joint 2 with the highest dynamic range.

V. CONCLUSION

The inverse dynamics modeling problem is presented, em-
phasizing the complexity of modeling slow, locally isotropic,
for which we postulated a relative increase in the contri-
bution of a plethora of non-linear phenomena to the total
dynamics originating from joint flexibility and low-velocity
friction. Parametric model identification proved unsatisfactory
in capturing the dynamics of motion sequences that provoke
said effects. Likewise, conventional neural networks were
shown to not yield satisfactory results in face of the data
scarcity. Using time-series model learning based on LSTM
and Transformer network topologies, we demonstrated that
exploiting temporal information provides substantial model
accuracy gains, that could be increased and transferred to non-
recurrent architectures through the introduction of a rotational
history encoding. We provided a hybrid base architecture that
leverages the combination of a physics-based model prior
with the universal approximation ability of neural networks,
with three main advantages over conventional black or white
box approaches for dynamic modeling: Firstly, the physical
explainability of model predictions is retained. Secondly, the
needed amount of training data could be reduced. Lastly,
significant increases in joint torque estimation accuracy during
complex and conventional motion were achieved. As a next
step, we intend to investigate the integration of our model
architecture within a real-time force control scheme.
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