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Learning Efficient Policies for Picking
Entangled Wire Harnesses: An Approach to

Industrial Bin Picking
Xinyi Zhang1, Yukiyasu Domae2, Weiwei Wan1, and Kensuke Harada1,2

Abstract—Wire harnesses are essential connecting components
in manufacturing industry but are challenging to be automated
in industrial tasks such as bin picking. They are long, flexible and
tend to get entangled when randomly placed in a bin. This makes
it difficult for the robot to grasp a single one in dense clutter.
Besides, training or collecting data in simulation is challenging
due to the difficulties in modeling the combination of deformable
and rigid components for wire harnesses. In this work, instead of
directly lifting wire harnesses, we propose to grasp and extract
the target following a circle-like trajectory until it is untangled.
We learn a policy from real-world data that can infer grasps and
separation actions from visual observation. Our policy enables the
robot to efficiently pick and separate entangled wire harnesses
by maximizing success rates and reducing execution time. To
evaluate our policy, we present a set of real-world experiments
on picking wire harnesses. Our policy achieves an overall 84.6%
success rate compared with 49.2% in baseline. We also evaluate
the effectiveness of our policy under different clutter scenarios
using unseen types of wire harnesses. Results suggest that our
approach is feasible for handling wire harnesses in industrial bin
picking. Supplementary material, code, and videos can be found
at https://xinyiz0931.github.io/aspnet.

Index Terms—Grasping, Deep Learning in Grasping and
Manipulation, Factory Automation

I. INTRODUCTION

B IN picking is a vital task in manufacturing industry that
enables a robot to pick objects randomly placed in a bin.

If we try to automate an assembly process without using bin
picking, we need to prepare a large amount of parts feeders ac-
cording to the number of assembly parts. Although robotic bin
picking has been researched for decades [1]–[6], some objects
(e.g., wire harnesses) can still be challenging when automating
this process. A wire harness is an indispensable component
used in almost every electric drive product. Fig. 1(a) shows its
appearance. It comprises a group of bundled wires and multi-
conducted connectors and is used for transmitting signals and
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Fig. 1. (a-b) Wire harnesses are composed of both deformable and rigid
components. They get entangled easily in clutter and their length may
exceed the robot arm’s reach areas. (c) Directly lifting a wire harness causes
entanglement. (d) We learn a bin picking policy to efficiently extract an
entangled wire harness from an unstructured bin.

power. The structure of a wire harness also poses challenges
in robotic bin picking: (1) The existence of both deformable
and rigid components makes them easily form an entangled
clutter in the bin; (2) The complex geometries and deformable
nature cause difficulties in 3D modeling; (3) The length of a
wire harness often exceeds the operation range of a robot,
making it difficult to extract one from the bin. To successfully
perform bin picking using wire harnesses, the robot must be
equipped with the capability of effectively isolating each from
the entanglement. For this reason, the manufacturing industry
still relies on human workers to grasp and separate entangled
wire harnesses. Therefore, developing an intelligent system to
automate this process is highly demanded.

Existing works on industrial bin picking have primarily
focused on rigid parts. These methods grasp objects by avoid-
ing collisions in highly cluttered environments [1], [4]–[8].
For picking simple shaped objects, the robot usually lifts
the target in the vertical direction after a successful grasp.
Different from those objects, wire harnesses involve complex
entanglement when randomly placed in a bin. Besides, they
are much longer than the rigid parts already automated in bin
picking. The physical reach range of the robot in a bin picking
working cell is limited for completely lifting them. Simply
adapting the existing bin picking strategies shows unsatisfied
performance (see Fig. 1(c)). Previously, some studies have
addressed the entanglement problems but for picking curved
rigid parts by avoiding the potentially tangled parts [9], [10].
However, there remain problems for densely cluttered wire
harnesses where the bin often contains no isolated objects
as Fig. 1(b) shows. Motivated by modeling and manipulating
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deformable linear objects, studies on visually processing wire
harnesses start with segmenting or generating synthetic data
for wire harnesses with pure linear shapes [11], [12]. For those
with complex geometries, obtaining precise models or training
in simulation remains difficult. Alternatively, employing a real
robot to collect large-scale data is time-consuming. Annotating
ground truth labels is also challenging due to the lack of
entanglement metrics.

In this paper, we (1) design an effective motion to untangle
wire harnesses in clutter and (2) learn a policy to perform bin
picking tasks with higher success rates and lower execution
time. The key components of our system are:

• We propose a post-grasping action to untangle wire
harnesses. Instead of lifting in the vertical direction, the
robot separates the entangled objects in the horizontal
direction. The action continuously follows a circle-like
trajectory to extract the target within the limited robot’s
reach range. Fig. 1(d) shows this process.

• We learn a bin picking policy to infer an optimal grasp
and a post-grasping action from a depth image. Our
policy can prioritize grasping the untangled objects, avoid
grasping at the bad positions (e.g., the ends of the object)
and reason the extracting distance to reduce the execution
time for a successful picking. Additionally, we train the
policy with real-world data by leveraging active learning
for satisfying convergence.

Our contributions are three-fold. (1) We develop a unique
bin picking system that can disentangle wire harnesses from
dense clutter. (2) Instead of lifting the target in the vertical
direction after grasping, our policy proposes to simultaneously
lift and move in the horizontal direction for separating wire
harnesses. (3) We learn a policy using real-world data to
infer the optimal actions, which further improves bin picking
efficiency. Real-world experiments suggest our policy can
significantly improve the average success rates and reduce
operation time compared with baselines.

II. RELATED WORK

A. Industrial Bin Picking

Industrial bin picking has been developed for decades. Prior
works have primarily focused on model-based approaches such
as 3D object localization or 6D pose identification [2], [13],
[14] and grasp planning [7], [8], [15]. Alternatively, model-
free methods do not require known object information and
can produce grasp poses for novel objects. Domae et al. [1]
proposed to plan grasps considering collisions between the
gripper and the objects from a single depth image. Several
works leverage deep learning to mitigate the challenges of
complex physical interactions and environment uncertainties.
Mahler et al. [16] trained a model from synthetic data to
produce collision-free grasps for daily objects. Matsumura
et al. [5] proposed a learning-based method to plan robust
grasps for industrial parts. However, there remain challenges
in handling difficult objects. Recently, several works tackled
the challenges of those objects which are (1) difficult to be
recognized, e.g., transparent or shiny objects [6], [17], (2)
difficult to perform grasping, e.g., thin and elliptical objects
[18], [19], and (3) involved with rich physical interactions,
e.g., tangled-prone objects [9], [10]. So far, these approaches
have focused on rigid objects. Leao et al. [20] proposed a

method to pick up soft tubes by fitting shape primitives to
clutter, but it does not work on dense clutter or objects with
irregular shapes. Objects with non-rigid nature and complex
geometries like wire harnesses are relatively unexplored and
remain challenging in the industrial bin picking domain.

B. Deformable Object Manipulation
Deformable object manipulation has primarily focused on

two object classes: 1D (cable, rope) and 2D (fabric, cloth).
Several studies adopt specially designed motion primitives
to accomplish various manipulation tasks such as knot ty-
ing/untying [21]–[23], spreading cloth [24] or whipping ropes
[25]. Using deformable and long objects in industrial bin
picking poses new challenges. The cluttered scenes are more
complex due to the entanglement issues caused by their
deformable nature. Ray et al. [26] proposed to untangle herbs
from a pile using a two-finger gripper. Takahashi et al. [27]
proposed a learning-based separation strategy for grasping a
specified mass of small food pieces. Although some works
have addressed the factory automation problems for wire
harnesses [11], [28], [29], robotic wire harnesses picking is
less studied. In this paper, we propose a novel and efficient
bin picking strategy to deal with wire harnesses.

III. MOTION PRIMITIVES FOR DISENTANGLING

When a robot tries to isolate small and rigid objects from
a bin, it can lift them in a vertical direction after a successful
grasp. However, this movement is insufficient for isolating
long and flexible objects like a wire harness, whose length
exceeds the bin picking workspace. To extract such objects,
the required motion primitives must be designed to (1) provide
enough space for effectively disentangling long objects and (2)
handle various tangle patterns. Instead of directly lifting, the
horizontal movement of the gripper can help pull the target
object out. The possible positions of the gripper should also
remain in the outer part of the parts bin during disentangling.
In the end, we propose two motion primitives for effectively
disentangling a long and flexible object:

Fig. 2. (a) Helix motion primitive ψH = (H, θH) where the helix trajectory
is defined as H = (cH , rx, ry , h0, h). (b) Spinning motion primitive ψS =
(θS , cS).

Helix motion: ψH = (H, θH) where H denotes the helix
trajectory represented by (cH , rx, ry, h0, h) and θH denotes
the execution angle following the trajectory (see Fig. 2(a)).
cH denotes the base center of H and rx, ry constrain the
smallest and largest radius from the center. h denotes the
height of H . The helix starts after the gripper lifts the target
and reaches h0. The stop point of the helix is determined
by the execution angle θH . It is a post-grasping motion
where the gripper simultaneously lifts and pulls following
a helix-like trajectory. Let the gripper move around the bin
while holding an entangled object. Part of this object is also
moving outside the bin. When the gripper continuously moves



ZHANG et al.: LEARNING EFFICIENT POLICIES FOR PICKING ENTANGLED WIRE HARNESSES 3

Fig. 3. The proposed motion primitives can handle two properties of wire
harnesses: tangle-prone and length. (a) The robot separates an entangled wire
harness from a gentle angle following a helix trajectory. (b) A spinning motion
is performed when the target’s connectors slightly hang on the other objects.

like drawing circles, the grasped object can be disentangled
softly along a side angle. Fig. 3(a) shows that this movement
provides adequate space to pull the target (green) out of the
entangled objects (yellow). Meanwhile, we also observe that
other entangled objects remain in the bin during or after this
process, making the workspace clean for the next picking.
Spinning motion: ψS = (cS , θS) where cS denotes the
position of the gripper tip and θS denotes the one-way rotation
angle of the spinning (see Fig. 2(b)). The robot performs a
two-way spinning about the axis that is vertical to the robot
workspace. The gripper spins to handle the entanglement that
may be occluded from the observation. As Fig. 3(b) shows,
when the rigid components of the wire harness still slightly
hang on the others after the helix motion, an extra spinning
can help separate them with less execution time. It can also
handle the length of a wire harness by extracting it inside a
limited working cell.

IV. LEARNING BIN PICKING POLICIES

The goal of our bin picking policy is to pick up a single wire
harness at a time by inferring the optimal grasp and action
from current entanglement situation. If the scene contains
isolated objects, the robot prefers directly lifting them after
grasping. Otherwise, the robot can infer disentangling actions
and grasp poses to extract the target from the bin. Given a
top-down depth image o as observation, we formulate our bin
picking policy π with a trained model parameterized by τ
using:

a∗, g∗ = πτ (o) (1)

where the outputs are an action a∗ and a grasp g∗ with
the maximal task effectiveness. The action a comprises the
proposed motion primitives. Fig. 4 shows the three essential
modules in our policy:
Module I. Model-Free Grasp Detection: A grasp detection
algorithm using a depth image without object models.

Fig. 4. Overview of our policy. Given a depth image of an unstructured
bin, Model-Free Grasp Detection module samples a set of non-collision grasp
candidates. Then, Action Success Prediction module takes a depth image,
grasp candidates and action candidates as input and evaluates the success
possibility for each action-grasp pair. Finally, Action-Grasp Inference module
ranks these pairs and outputs the optimal action and grasp.

Module II. Action Success Prediction (ASP): A trained
model using real-world data that predicts the success possi-
bilities of the disentangling actions.
Module III. Action-Grasp Inference: A method to infer
the action-grasp pair with the highest effectiveness using the
trained ASP model.

A. Model-Free Grasp Detection
We select Fast Graspability Evaluation (FGE) [1] - a model-

free approach to detect collision-free grasps. FGE calculates
pixel-wise graspability scores by convoluting a gripper’s tem-
plate of contact and collision areas with the input depth map.
A grasp composes a pixel location g = (u, v) on the depth map
and a rotation angle φ indicating the gripper’s orientation. We
transform (u, v, φ) to the grasp with four degrees of freedom
(gx, gy, gz, gφ) denoting the grasp point and the gripper’s
orientation at the robot coordinate frame. This module outputs
a set of grasps ordered by their FGE scores.

B. Action Success Prediction (ASP)
1) Action Formulation: We formulate each disentangling

action a with a motion scheme ψ and two parameters as
follows:

a = (ψ, θH , θS) | ψ = {ψH} or {ψH , ψS} (2)

where the robot only performs the helix motion ψH or
performs the spinning motion ψS after ψH . Note that directly
executing ψS after grasping may not be effective since the
extracting displacement of the target object is small. We
propose six separation actions ah, ahs, af , afs, atf , atfs using
two motion primitives and a direct lifting action adl. Table I
shows their notations and illustrations. We use M to represent
the collection of these seven actions.

2) Action Parameter Determination: To determine the pa-
rameters of each action and search for the best action, we
define a numerical metric action complexity for explor-
ing the trade-off between success rates and execution time.
Let A(a) denote the action complexity of the action a ∈
{adl, ah, ahs, af , afs, atf , atfs}. It is defined by assuming that
actions with larger θH or θS involve higher complexity. To
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TABLE I
ACTION PARAMETERS AND EXECUTION DETAILS

adl ah ahs af afs atf atfs

ψ - {ψH} {ψH , ψS} {ψH} {ψH , ψS} {ψH} {ψH , ψS}
θH 0 π π 2π 2π 4π 4π
θS 0 0 π/2 0 π/2 0 π/2

Time (s) 1.2 2.3 2.8 5 5.5 8.2 8.7
SR 31/80 47/80 60/80 65/80 66/80 70/80 72/80

A 0 1 2 3 4 5 6

* Time (s) - Execution time of performing the action trajectory.
* SR - Success Rate of picking a single object.
* A - Action complexity.

reduce the search cost during exploration, we assume that
the action complexity linearly scales with the success rate of
each action. We find this linear relationship by executing 80
physical attempts for each action as Table I presents. Then,
we use this hypothesis to determine the action parameters
experimentally. Specifically, we predefine a set of possible
values of θH , θS experimentally for our policy to select. θH
can be selected from {0, π, 2π, 4π} and θS can be selected
between {0, π/2}. Note that the other parameters of the
motion primitives H = (cH , rx, ry, h0, h) and cS are fixed
in our policy. Finally, we assign integers 0 to 6 as the action
complexity for the discrete actions from adl to atfs. The action
parameters and execution details are included in Table I.

Our policy can explore the optimal action by minimizing
the action complexity as much as possible. Let us consider
a case when the robot performs atf to extract an entangled
object. Suppose the target object is entirely disentangled after
a full circle (af ) while the robot still needs to perform the
second circle. Thus, the current observation only requires af
as the optimal action to ensure a successful separation with
less execution time, while atf is a redundant action which
can also solve the entanglement but costs more time. We can
observe that an optimal action has lower action complexity
than a redundant action. Thus, the optimal action is required
to untangle the target with minimal action complexity.

3) Prediction Model: The inference of the optimal action
without object models should be conditioned on the grasp
locations. We propose Action Success Prediction (ASP) to
predict if the action-grasp pair can successfully separate the
target. ASP learns a function parameterized by τ :

p = fτ (o, g, a) (3)

where the input is a depth image o ∈ R224×224×3 with
triplicated depth values across three channels to match with
the default input size of the image encoder’s backbone, a
pixel-wise grasp pose g = (u, v) ∈ R2, a categorical action
a ∈ R7 and the output is a success possibility in the range
of [0, 1]. We encode the image using a ResNet-50 backbone
[30], the grasp point using a single fully-connected layer with
256 units, and the categorical action using a fully-connected
layer with 14 units. Then we concatenate the output from all
three branches and feed it to a fully-connected layer with 256
units and produce an action success possibility.

4) Training via Active Learning: The dataset for training
ASP is entirely collected from real-world experiments. Each

Fig. 5. Success-logical and failure-logical samples in the dataset. The notation
above each figure denotes predicted action ← labeled action. The numbers
inside the brackets refer to the action complexity.

Algorithm 1: Active Learning Algorithm
input: Data pool, transfer ratio r, actions M
output: ASP model τ

1 Select training data from data pool
2 Train ASP model τ using training data
3 while data pool is not empty do
4 N ← number of samples in data pool
5 i← 0
6 while i 6 r ×N do
7 Randomly select {o, g, a, S} from data pool
8 ap ←ActionGraspInference(o, g,M, τ )
9 if S = 1 and A(ap) 6 A(a) then

// Success-logical
10 Move to training data, i = i+ 1
11 else if S = 0 and A(ap) > A(a) then

// Failure-logical
12 Move to training data, i = i+ 1

13 Fine-tune ASP model τ using training data

sample has a depth image o, a grasp location g, a labeled
action a and a binary success metric S = {0, 1}. We execute
each action for the clusters with 6, 10, 12 and 18 objects. We
label each attempt with success (S = 1) or failure (S = 0)
depending on if the robot picks a single wire harness. Due to
this data collection manner, some samples in the dataset are
labeled with redundant actions instead of optimal actions. To
deal with this problem, we leverage active learning to train the
ASP model, making it possible to predict optimal actions using
this dataset. Generally, we first select several samples manually
as training data to train the model, use the trained model to
predict the remaining samples, query and transfer samples for
training and fine-tune the model repeatedly. Specifically, we
manually select the initial training data with approximately
optimal actions. Note the number of samples for each action
is roughly equal. Let data pool denote the left samples except
for the training data. After training, we query the samples in
the data pool and transfer the logical samples to the training
data. Here, a sample (o, g, a, S) can be determined as success-
logical or failure-logical using the trained model τ and
our proposed Action-Grasp Inference module (Section IV.C).
Let ap = ActionGraspInference(o, g,M, τ ) denote the
predicted action:

• Success-logical: A(ap) 6 A(a). For samples labeled
with S = 1, the labeled action a is a redundant action
compared with the predicted action ap (Fig. 5(a)).

• Failure-logical: A(ap) > A(a). For samples labeled with
action a and failure S = 0, the predicted action ap has



ZHANG et al.: LEARNING EFFICIENT POLICIES FOR PICKING ENTANGLED WIRE HARNESSES 5

higher action complexity (Fig. 5(b)).
During each iteration, as the number of logical samples

increases, the model performance of predicting the optimal
actions also improves. We define a transfer ratio r representing
the ratio of the number of samples that would be transferred
in each iteration to the number of samples in the current
data pool. The iteration stops when the data pool is empty
or early stops before overfitting. Algorithm 1 shows the detail
of training ASP via active learning.

C. Action-Grasp Inference
At this point, we’ve obtained a set of grasp candidates,

action candidates and the scores of each action-grasp pair.
Our policy then needs to determine which action-grasp pair
can be executed. This module infers all possible action-grasp
pairs to guarantee a successful picking with minimal action
complexity:

a∗, g∗ = ActionGraspInference(o,G,M, τ) (4)

where the inputs are a depth image o, a collection of actions
M , grasp candidates G with FGE scores from the Model-
Free Grasp Detection module and ASP model τ . This module
first predicts the action success possibilities of all action-grasp
pairs P = fτ (o,G,M). If all possibilities in P are lower than
the threshold pthld, which means all action-grasp pairs cannot
solve the entanglement, we select the grasp with the highest
FGE score and the most complex action atfs. Otherwise, the
best solution is determined by the action-grasp pair with the
lowest action complexity. If multiple grasps share the same
action complexity, we select the pair with the highest FGE
score.

V. EXPERIMENTS AND RESULTS

We conduct several real-world experiments to answer the
following three questions: (1) How does the learned ASP
model perform using active learning? (Section V-A) (2) Does
our bin picking policy perform more accurately and effectively
than baselines? (Section V-B) (3) How does our method qual-
itatively improve the performance of picking wire harnesses?
(Section V-C)

A. ASP Model Performance
Our dataset contains 722 samples. We set the ratio of

active learning r = 0.4 and use a simple decision threshold
of pthld = 0.5 over the softmax of each action’s success
possibility to classify success (1) or failure (0). We train
the network using binary cross-entropy loss function and the
Adam optimizer. We stop training after three times of fine-
tuning as it achieves the best performance. Fig. 6 shows
the accuracy and loss during active learning. The gray curve
refers to the Initial Model (IM) trained using manually de-
termined samples, which would be potentially accurate but
lack robustness due to fewer data. The green line indicates the
Final Model (FM), which performs the best as the fine-tuning
goes on since it converges to IM but with higher data-driven
accuracy.

Moreover, Table II shows the details of each iteration in
active learning. Row 1-2 shows the number of samples used
as the training data and left in the data pool. Particularly, 92

Fig. 6. Accuracy and loss of each model during action learning.

TABLE II
DETAILS AND VALIDATION RESULTS OF ACTIVE LEARNING

IM 2nd 3rd FM
# Samples in Training Data 282 453 558 618
# Samples in Data pool 428 257 152 92

Ratio of Success-Logical (%) 78.5 85.7 87.8 88.9
Ratio of Failure-Logical (%) 85.1 80.1 90.1 91.7

TABLE III
AVERAGE PREDICTED SCORES USING VALIDATION SAMPLES

adl ah ahs af afs atf atfs

S = 1 0.352 0.489 0.702 0.750 0.783 0.730 0.787
S = 0 0.257 0.375 0.581 0.636 0.678 0.606 0.685

samples left in the data pool after the final fine-tuning are
used to validate all models by checking the number of logical
samples. Row 3-4 shows the ratios of logical samples increase
with the fine-tuning process. Finally, Table III validates our
hypothesis that more complex actions correspond to higher
success rates. We respectively present the average scores
predicted by FM for each action. FM can correctly predict
an ascending order of possibilities as the action complexity
increases. We can observe that afs, atf , atfs share similar
scores since the validation samples contain 18 objects at most.
atfs does not show a significantly high score due to the
accumulated low scores when all predictions fail and atfs is
forced to be selected.

B. Bin Picking Performance

1) Physical Experiment Setup: We use a NEXTAGE robot
from Kawada Industries Inc. The robot is required to grasp
objects from the parts bin lying in front of it and transport
them to another bin located on its left side. The robot’s left
arm operates over a workspace captured as a top-down depth
image by a Photoneo PhoXi 3D scanner M. A two-fingered
parallel gripper is attached at the arm tip. The setup is shown
in Fig. 7(a). The length of the wire harness used in this work is
74cm. After performing the analysis and physical experiments,
we fix the parameters of the proposed trajectory as cH =
(0.525,0.065)[m], rx = 0.1m, ry = 0.225m, h0 = 0.32m,
h = 0.14m as well as the speed of the action since they yield
high task effectiveness. We sample several waypoints on the
trajectory and plan motions with a uniform velocity. We use
a PC with an Intel Core i7-CPU and 16GB memory without
GPU for real-world experiments and a PC with an Intel Core
i5-6400 CPU, 16GB memory and an Nvidia GeForce 1080
GPU for learning.

We present three baselines. DL (directly lifting) uses FGE
to detect the grasp point and executes by directly lifting
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TABLE IV
PERFORMANCE OF BIN PICKING EXPERIMENTS

5 Objects 10 Objects 15 Objects

Method Success Rate (%) PPH Avg. A Success Rate (%) PPH Avg. A Success Rate (%) PPH Avg. A

Consecutive Picking

DL 64.0 128 - 60.0 92 - 56.0 108 -
RAND 88.0 115 2.3 92.0 117 2.5 76.0 99 2.8
TFS 96.0 133 - 92.0 127 - 90.0 124 -
Ours-IM 84.0 131 0.8 76.0 117 2.3 74.0 111 2.9
Ours-FM 88.0 156 0.8 88.0 140 2.8 86.0 143 2.3
Ours-FM-R 89.8 154 0.8 89.8 142 2.8 84.4 123 2.9

18-20 Objects 20-22 Objects 22-25 Objects

Method Success Rate (%) PPH Avg. A Success Rate (%) PPH Avg. A Success Rate (%) PPH Avg. A

Randomized Picking
DL 46.6 93 - 40.0 80 - 23.3 47 -
Ours-FM 86.7 113 2.9 80.0 112 3.3 73.3 103 4.3
Ours-FM-R 92.6 108 2.6 91.7 103 4.5 76.9 107 4.6

Fig. 7. Physical experiment setup for bin picking.

(adl). RAND executes a random action and the grasp with
the highest FGE score. TFS only executes the most complex
action atfs and the grasp of the highest FGE score. We also
present three versions of our policy. Ours-IM is our policy
using the initial model in active learning while Ours-FM uses
the final model. Ours-FM-R denotes Ours-FM with a recovery
module using force feedback. After performing the predicted
action, we record the force from an F/T sensor mounted on
the robot’s wrist to determine if the grasped wire harness is
still entangled. If there exists a sudden increase of force, the
target is not disentangled and the robot places it back to the
parts bin.

We leverage two metrics to evaluate the bin picking per-
formance. Success rate refers to the number of successful
attempts of picking up a single object divided by the number of
attempts of placing. PPH (Pickings Per Hour) is the number
of successful attempts the robot can execute in one hour.
Additionally, we present Avg. A (Average action complexity)
to evaluate how the action complexity predicted by our policy
varies under different entanglement scenarios.

2) Task Design: We prepare two real-world bin picking
tasks. Consecutive picking aims to empty the bin filled with
respectively 5, 10, or 15 objects. The robot picks up objects
one by one until the bin is empty. Randomized picking refers
to picking up objects from the bin filled with respectively 18-

20, 20-22 and 22-25 objects. After each picking, we reload
the bin and shuffle the wire harnesses to provide randomness
during the task. It can encourage the robot to confront different
patterns of entanglement as much as possible. Fig. 7(b) shows
the bins filled with different numbers of wire harnesses.

3) Comparisons with Baselines: Table IV compares the
performance of the three versions of our policy and three
baselines in success rate and PPH. For consecutive picking
where the goal is to empty the bin, Ours-FM and Ours-FM-
R significantly increase the average success rate from 56.7%
to 87.3% and 88.1% compared to DL. TFS achieves higher
success rates than Ours-FM but has lower PPH since TFS
only executes the time-consuming action atfs. Especially in
the latter half of a continuous picking task when fewer objects
remain in the bin, our policy can shorten the execution time
by inferring adequate actions. Ours-FM-R also has lower PPH
since this policy needs extra actions to place the entangled
objects back in the parts bin. Furthermore, the average action
complexities for the predicted actions using RAND, Ours-IM,
Ours-FM and Ours-FM-R are also presented in Table IV. The
average action complexity for 5 objects is significantly lower
than that for 10 and 15 objects. As the number of objects in
the bin increases, the action complexity of the predicted action
increases. It demonstrates that entanglement frequently occurs
when the bin contains more objects and requires more complex
actions. We also observe that the failed attempts by baselines
always drag objects outside the workspace, requiring human
workers to rearrange after each attempt. Our policy helps
maintain a relatively clean workspace during the consecutive
picking thanks to the horizontal separation and our action-
grasp inference algorithm.

For randomized picking, we compare the performance of
Ours-FM and Ours-FM-R with a DL baseline as Table IV
shows. More objects are involved in this task than consecu-
tive picking. Thus, the possibilities of encountering complex
entanglement patterns become higher. Ours-FM completes the
task with 80% accuracy and 109 PPH, almost twice higher than
DL. The results suggest that our policy can grasp the tightly
intertwined objects in dense clutter. All three proposed mod-
ules collaboratively contribute to efficient bin picking from
perception to manipulation planning. However, as the number
of objects increases, both metrics of Ours-FM decrease. Due
to heavier occlusions and visual noise, the detected grasp
candidates become fewer and some entanglement patterns can
hardly be recognized from the depth image. Despite this,
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Fig. 8. Qualitative results. (a) Ours-FM predicts the optimal action-grasp pairs for each action. (b) Ours-FM predicts the best action and grasp marked using
red in real-world experiments. All action-grasp pairs are presented using the same colors.

the most complex action atfs can still strive for success.
Additionally, Ours-FM-R outperforms Our-FM in success rate
especially when the number of objects increases thanks to the
recovery module but has lower PPH. When the bin contains
more than 22 objects, Ours-FM-R shows a higher success rate
and PPH than Ours-FM, indicating the feedback module can
help further improve the bin picking performance.

C. Qualitative Analysis
1) Visualized Results: We present visualized results of

picking attempts with grasps, actions and input depth images.
First, Fig. 8(a) presents the predicted action-grasp pairs of each
action. It demonstrates that our policy infers the actions not
only by analyzing the object number in the scene but also by
reasoning about the occlusions around the input grasp point.
Additionally, if the robot grasps close to the wire harness’s
end, our policy tends to predict more complex actions since
this case may require the gripper to handle the length by
moving a larger distance. Then, Fig. 8(b) shows a set of
successful pickings with the reasoned action-grasp candidates
ranked by descending prediction scores. The optimal action-
grasp pairs inferred by our policy are marked as red. Our
policy can recognize the objects barely entangled with others
that only require adl. As for the scenes that do not contain
such objects, our policy can reason the entanglement situation
and predict the proper actions. When the predicted scores of
all action-grasp pairs are lower than pthld, our policy executes
atfs and grasp with the highest FGE score, where the target
is likely on the top of the pile.

2) Novel Wire Harnesses: To demonstrate the breadth of our
method, we utilize Ours-FM for two unseen wire harnesses.
They differ from those used for training in lengths and struc-
tures but have similar components (e.g., deformable cables and
rigid connectors). Fig. 9 shows two novel wire harnesses and
the corresponding action-grasp pairs predicted by our policy.
Table V shows their length and the average action complexity
of prediction with different object numbers. In the case of
shorter objects (see Fig. 9(a)), our model does not predict
actions with too higher complexity. The robot tends to select
adl and ah to pick up objects. Since this type of wire harness is
less tangle-prone, the accuracy of picking them primarily relies
on the grasp detection module while our policy can handle
the potential entanglement. On the other hand, for long wire
harnesses (Fig. 9(b)) whose length exceeds our bin picking

Fig. 9. Novel types of wire harnesses and the predicted action-grasp pairs by
our policy. (a) Short wire harnesses. (b) Long wire harnesses.

TABLE V
PREDICTED AVERAGE ACTION COMPLEXITY (Avg. A)

FOR TWO TYPES OF UNSEEN WIRE HARNESSES

Type Length (cm) 5 Objects 10 Objects 15 Objects

Short 45 0.7 1.3 1.7
Long 115 4.8 4.6 -

working cell, Table V suggests that our policy tends to output
more complex actions. However, even atfs is still insufficient
to separate each. More complex manipulation strategies are
needed for such objects.

D. Failure Modes and Limitations
We observe four failure modes in the physical experiments.
• Objects outside of the bin: The input image of the ASP

model does not include the complete objects.
• Grasp failure: The grasp failure rate is 2.1% (24/1170). A

grasp fails when the robot grasps multiple objects in hand
or grasps nothing. It mainly comes from vision sensor’s
noise and heavy occlusion.

• Tightly wedged objects: The target tightly inserts another
one’s cable bundles or rigid components, making it ex-
tremely difficult to be disentangled.

• Action prediction failure: Our policy sometimes predicts
the wrong actions for separation due to visual noise or
heavily occluded objects.

Our policy also has limitations. First, for long wire har-
nesses, the robot fails to extract them from the entanglement
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since their length exceeds the robot’s reachable areas. Second,
the training phase is unique and conditioned on the structure
of the objects in the dataset. It would be difficult to adopt
our current policy to wire harnesses with completely different
geometries.

We divide the reasons causing failure modes and limitations
into two categories and provide future extensions. (1) Poor
visual prediction for heavily occluded clutter: We will extend
our policy by using multi-sensory inputs other than vision-
only predetermined policy and force-only feedback control.
We will also consider online closed-loop learning and more
effective recovery methods to further improve the robustness
of our policy. (2) Insufficient motion primitives: the proposed
motion primitives cannot solve some complex cases and the
reach range of a single robot manipulator is limited. We will
consider more effective motion primitives using dual-arm or
involving dynamics. It would also be interesting to design
more general motion primitives to utilize our policy on various
wire harnesses with different geometries.

VI. CONCLUSIONS

We present a novel bin picking system for grasping and
separating entangled wire harnesses. We design an efficient
post-grasping action for disentangling the target in clutter,
learn a policy from real-world data to reason the extracting
distance and produce the optimal action and grasp from
a single depth image. Real-world experiments suggest that
our policy can successfully untangle the intertwined wire
harnesses from different cluttered scenes and pick them up
one at a time with high accuracy.
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