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Gaussian Radar Transformer
for Semantic Segmentation in Noisy Radar Data

Matthias Zeller1 Jens Behley2 Michael Heidingsfeld3 Cyrill Stachniss4

Abstract—Scene understanding is crucial for autonomous
robots in dynamic environments for making future state predic-
tions, avoiding collisions, and path planning. Camera and LiDAR
perception made tremendous progress in recent years, but face
limitations under adverse weather conditions. To leverage the full
potential of multi-modal sensor suites, radar sensors are essential
for safety critical tasks and are already installed in most new
vehicles today. In this paper, we address the problem of semantic
segmentation of moving objects in radar point clouds to enhance
the perception of the environment with another sensor modality.
Instead of aggregating multiple scans to densify the point clouds,
we propose a novel approach based on the self-attention mech-
anism to accurately perform sparse, single-scan segmentation.
Our approach, called Gaussian Radar Transformer, includes the
newly introduced Gaussian transformer layer, which replaces the
softmax normalization by a Gaussian function to decouple the
contribution of individual points. To tackle the challenge of the
transformer to capture long-range dependencies, we propose our
attentive up- and downsampling modules to enlarge the receptive
field and capture strong spatial relations. We compare our
approach to other state-of-the-art methods on the RadarScenes
data set and show superior segmentation quality in diverse
environments, even without exploiting temporal information.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

AUTONOMOUS vehicles need to understand their sur-
roundings to safely navigate in dynamic, real-world

environments. To achieve holistic perception and enhance
safety, the sensor suites of autonomous vehicles are versatile
to explore redundant information of individual sensors such as
cameras, LiDAR, or radar. Particularly in autonomous driving,
where a malfunction of one modality can result in lethal
consequences, redundancy is key. Widely explored cameras
and LiDAR sensors capture the environment precisely but face
limitations under adverse weather such as fog, rain, and snow.
Additional information is required, which is accessible via
radar sensors, and hence, makes them crucial to enable safe
autonomous mobility.
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Fig. 1: Our method performs semantic segmentation of moving
objects (bottom) from 4D sparse, single-scan radar point clouds (top)
exploiting additional information including the velocity and the radar
cross section. In the bottom image, each color represents a different
semantic class for moving objects (static is grey).

In this work, we investigate the semantic segmentation
of moving objects in radar point clouds. This task requires
differentiating between detections of moving and static ob-
jects and assigning a class label to each radar detection,
as illustrated in Fig. 1. Compared to LiDAR point clouds,
radar point clouds are noisier due to sensor noise and multi-
path propagation and more sparse. However, radar sensors
provide additional information such as the relative velocity to
directly indicate moving objects, making the sensor inherently
suitable for single-scan processing. Furthermore, the radar
cross section depends on the structure, material, and surface
of the reflections, which helps to differentiate objects.

Most state-of-the-art methods for estimating semantics from
radar data [23], [26] strongly rely on the aggregation of
information over multiple scans to accurately perform seman-
tic segmentation. However, aggregation inherently introduces
latency, making it unsuitable for tasks requiring immediate
information about the vehicle’s vicinity, such as collision
avoidance. Therefore, this work investigates the processing of
single scans by exploiting the additional information provided
by radar sensors.

The main contribution of this paper is a new method for
accurate, single-scan, radar-only semantic segmentation of
moving objects. It takes sparse point cloud representations
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of radar scans as input and outputs a semantic label for
each point. To extract discriminative point-wise features, we
build on the self-attention mechanism, a fully attentive neural
network with our novel Gaussian transformer layer, and our
attentive up- and downsampling modules as central building
blocks. We optimize the transformer layer and enable the
decoupling via the usage of a Gaussian. Furthermore, our
attentive sampling enables the capturing of complex local
structures and progressively increases the receptive field of
individual points. We combine these building blocks in our
new backbone, called Gaussian radar transformer, to enhance
feature extraction on sparse and noisy radar point clouds.

In sum, we make three key claims: Firstly, our approach
demonstrates state-of-the-art performance for semantic seg-
mentation of moving objects in sparse, single-scan radar point
clouds without aggregating multiple scans and without ex-
ploiting temporal dependencies. Secondly, the Gaussian trans-
former layer and the attentive up-and downsampling modules
improve feature extraction by decoupling individual points and
enlarging the receptive field to enhance accuracy. Thirdly, our
fully attentive network is able to extract discriminable features
from additional sensor information such as Doppler velocity
and radar cross section.

II. RELATED WORK

There is extensive literature on semantic segmentation of
point clouds, mostly, however, working on LiDAR data. The
works can be categorized into projection-based, voxel-based,
point-based, and hybrid methods [8].

Projection-based methods are inspired by the successful
convolutional neural networks (CNNs) [13], [16]. Squeeze-
Seg [33], SqueezeSegV2 [32], RangeNet++ [17], and Sal-
saNext [4] project the point cloud into frontal view images
or 2D range images to exploit 2D convolutions. Milioto et
al. [17] further alleviate the problem of blurry CNN output
and discretization errors by efficient GPU-enabled projective
nearest neighbor search as a post-processing step to enhance
segmentation results. However, projection-based methods face
several problems due to intermediate representation including
discretization errors and occlusion.

Voxel-based. To maintain the 3D geometric information
between the data points, voxel-based encoding can be used.
VoxSegNet [31] voxelizes the point clouds as dense cuboids
and leverages atrous 3D convolution and attention-based ag-
gregation to enhance feature extraction under limited resolu-
tion. Since outdoor point clouds are sparse and vary in density,
just a small percentage of voxels are occupied. This makes it
inefficient to apply dense convolution neural networks. To re-
duce the computational burden, Graham et al. [6] propose sub-
manifold sparse convolutional networks which only generate
outputs for occupied voxels. Following Polarnet [43], Zhu et
al. [47] introduce the cylindrical partitioning, which does not
alter the 3D topology compared to the 2D approach, and pro-
cesses the features by asymmetrical 3D convolution networks.
The advancement in 3D point cloud processing has led to
state-of-the-art results of (AF)2-S3Net [3] and RPVNet [39] in
the SemanticKITTI LiDAR point cloud semantic segmentation

benchmark [1]. Xu et al. [39] combine the voxel-based method
with point- and projection-based encoding, utilizing a gated
fusion module to adaptively merge the features leading to a
hybrid approach. Since voxel-based methods inherently intro-
duce discretization artifacts and information loss, the hybrid
method utilizes point-wise information to alleviate the lossy
encoding of information.

Point-based. To leverage the full potential of 3D points, es-
pecially for sparse point clouds, and keep the geometric infor-
mation intact, point-based methods [12], [20], [27] have been
introduced. The pioneering work of Qi et al. [20] consumes
point clouds directly by shared multi-layer perceptrons (MLPs)
and aggregates nearby information by symmetrical pooling
functions. The successor PointNet++ [21] groups points hi-
erarchically and progressively extracts features from larger
local regions. Schumann et al. [24] adapt the approach and
optimize the network for sparse radar point cloud processing.
However, the ability to capture local 3D structures is limited,
especially in sparse point clouds. To circumvent, Schumann et
al. [26] aggregate scans, include additional features, or exploit
strong temporal relationships. To combine local features and
reduce the computational cost point-based methods benefit
from effective sampling strategies [10], [35], [40], [41]. The
most frequently used methods for small-scale point clouds are
farthest point sampling [21] and inverse density sampling [35].

Another approach to learning per-point local features is
kernel-based convolutions. PointConv [35] uses an MLP
whereas KPConv [27] defines an explicit convolution to di-
rectly learn the kernel. Nobis et al. [18] extended KPConv [27]
and exploit the time dimension of multiple radar scans to
perform object detection. Another method to elaborate a
stronger connection of the individual points is graph-based,
conducting message passing on the constructed graphs [12].
PointWeb [46] uses adaptive feature adjustment to represent
regions and capture local interactions. However, graph-based
networks capture edge relationships of local patches which are
invariant to the deformation of these. Velickovic et al. [29] and
Wang et al. [30] utilize the self-attention mechanism which is
inherently permutation invariant to leverage the limitations and
further improve the accuracy.

Self-attention models have revolutionized natural language
processing [5], [28] and inspired self-attention modules for
image recognition [11], [22], [44] and point cloud pro-
cessing [36], [41]. Recent point transformer networks [7],
[37], [42], [45] enhance state-of-the-art performance for 3D
point cloud understanding by elaborating the self-attention
mechanism. PCT [7] proposes offset-attention to sharpen the
attention weights by element-wise subtraction of the self-
attention features and the input features. Point Transformer
uses the vector-based subtraction attention [44] to aggregate
local features whereas Stratified Transformer applies dot-
product attention and increases the effective receptive field
by a window-based key-sampling strategy. Furthermore, recent
work elaborates positional encoding to enhance accuracy and
keep position information throughout the network [14].

In contrast to the related work, we propose a novel archi-
tecture inspired by self-attention and point transformers. With
our newly introduced Gaussian Radar Transformer we are
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Fig. 2: The architecture of our Gaussian Radar Transformer for semantic segmentation of moving objects. FCL: fully connected layer, ADS:
attentive downsampling, AUS: attentive upsampling, GTB: Gaussian transformer block

able to capture complex structures in sparse point clouds and
further extend the capabilities of the self-attention mechanism.
Furthermore, our proposed fully attentive network includes
advanced sampling strategies and substantially enhances state-
of-the-art performance for semantic segmentation of moving
objects in radar point clouds.

III. OUR APPROACH

The goal of our approach is to achieve accurate semantic
segmentation of moving objects in single-scan, sparse radar
point clouds to enhance scene understanding of autonomous
vehicles. To accomplish this, we introduce a point-based
framework to directly processes the input point cloud to omit
information loss, and builds upon the successful self-attention
mechanism throughout the network. Fig. 2 depicts our Gaus-
sian Radar Transformer (GRT). We adopt the encoder-decoder
structure of the Point Transformer [45]. We replace each
module and use our Gaussian transformer layer as the central
building block of each stage, which enables decoupled fine-
grained feature aggregation. Furthermore, we introduce atten-
tive up- and downsampling modules to enlarge the receptive
field and extract discriminative features.

A. Transformers

Before presenting our contribution, we shortly revisit trans-
formers as they are a key ingredient in our work. Transformers
and self-attention networks rely on the encoded representation
of the input features xF ∈ RD within the queries q, the keys
k, and the values v, as follows:

q = Wqx
F , k = Wkx

F , v = Wvx
F , (1)

where Wq ∈ RD×D, Wk ∈ RD×D and Wv ∈ RD×D

are the corresponding learned matrices of fully connected
layers or multi-layer perceptrons (MLPs). To calculate the
attention scores Ai,j , different methods exist such as scalar
dot-product [28] and vector attention [44]. The scaling by the
factor dC is intended to counteract the effect of small gradients
for the softmax if it grows large in magnitude and is defined
as follows:

Ai,j = softmax

(
qik
>
j√
dC

)
. (2)

There is an alternative way for the weighting of individual
feature channels by vector attention that utilizes relation

functions f such as addition or subtraction. To keep fine-
grained position information throughout the network, Wu et
al. [34] and Zhao et al. [45] use relative positional encoding
ri,j = pi − pj , 1 ≤ i, j ≤ Nl. The final attention weights Ai,j

are determined by the softmax function:

Ai,j = softmax(f(qi,kj) + ri,j). (3)

Since global self-attention leads to unacceptable memory
consumption and computational cost the inputs are restricted
to local areas with Nl points determined by farthest point
sampling and k nearest neighbor (kNN) [21], [45]. The
intermediate representation yj utilizing vector attention is
calculated as follows:

yj =

Nl∑
i=1

Ai,j � vi. (4)

The aggregated features y are processed by an MLP with a
learnable weight matrix Wy ∈ RD×D:

o = Wyy, (5)

to calculate the final output o.

B. Gaussian Transformer Layer

In sparse radar point clouds, individual reflections contain
essential information for downstream tasks such as seman-
tic segmentation of moving objects. To enable independent
and precise feature aggregation, we introduce the Gaussian
transformer layer (GTL) based on the Point Transformer
layer [45] including vector self-attention as illustrated in
Fig. 3 (a). Contrary to other approaches, including the Point
Transformer [45], which focuses on dense point clouds, we do
not utilize the softmax function, which is defined as:

si =
exp(zi)∑Nl

j=1 exp(zj)
. (6)

The softmax function leads to a coupling of points since
individual outputs si are dependent on all inputs zj with
j ∈ {1, . . . , Nl}, which is why the softmax function is also not
scale invariant (weighting for dot-product attention Sec. III-A).
Furthermore, the backpropagation of the loss L through the
softmax function to obtain the partial derivative ∂L

∂zj
to de-

termine the gradients at the input is dependent on all output
values. The calculation of the chain rule of derivatives for the
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Fig. 3: The detailed design of each module of our Gaussian Radar Transformer (a) shows the Gaussian transformer layer, (b) the attentive
downsampling module, and (c) the attentive upsampling module. FCL: fully connected layer, pos. enc.: positional encoding, concat.:
concatenation, norm.: normalization, FPS: farthest point sampling, kNN: k nearest neighbor

softmax can be expressed by the Jacobian matrix Jsoftmax as
follows:

∂L
∂z

= Jsoftmax
∂L
∂s
. (7)

If the output values grow in magnitude the gradients di-
minish since the Jacobian converges to a zero matrix. Hence,
the error propagation is restricted, which slows down the
learning process. In contrast, we argue that points belonging
to the same class should aggregate the information, whereas
points belonging to different classes reduce the information
aggregation to a minimum, both of which can lead to a close to
zero Jacobian matrix. To overcome this limitation, we replace
the softmax function in Eq. (3) by a Gaussian function G,
which is executed on every dimension of the vector, for vector
self-attention:

Ai,j = G(f(qi,kj) + ri,j), (8)

to assess fine-grained information flow for sparse radar point
clouds. Since the Gaussian function is applied to each feature
individually, the points are decoupled, which enables a precise
information aggregation to enhance feature extraction and
performance. Moreover, the partial derivative of the Gaussian
depends on a single output value sj . Hence, vanishing gradi-
ents may influence individual points but not whole local areas,
which can be seen by the chain rule:

∂L
∂zj

=
∂L
∂sj

∂sj
∂zj

. (9)

To derive the output o, we calculate the sum of the element-
wise multiplication:

oj =

Nl∑
i=1

Ai,j � vi, (10)

without further processing by a linear layer reducing compu-
tational cost in contrast to Eq. (5). Following Qi et al. [21]
and Zhao et al. [45], we determine the local areas by far-
thest point sampling and kNN algorithm with k = Nl. We
directly derive the queries qi, the keys ki, and the values
vi by applying a fully connected layer with weight matrix
Wqkv ∈ RD×3D. For the positional encoding, we adopt the
approach of Zhao et al. [45]. We process the relative position
by two fully connected layers and replace the activation

function by the Gaussian error linear unit (GELU) [9] to
determine the positional encoding.

C. Gaussian Transformer Block

Our Gaussian transformer layer (GTL) is embedded into
the center of the Gaussian transformer block (GTB) which is
a residual block, similar to the Point Transformer block [45],
with two fully connected layers processing the input and the
output. We replace the activation function with GELU after
each fully connected layer. The GTB processes point clouds
P with point coordinates pi ∈ R2 and point-wise features
(XF = {xF

1 , . . . ,x
F
N}), where xF

i ∈ RD with feature dimen-
sion D. The features of the individual points xF

i are enriched
by the information aggregation within the block enhanced by
the GTL. The point coordinates pi are utilized to calculate
the positional encoding but not further transformed to keep
detailed position information.

D. Attentive Downsampling Layer

To reduce the cardinality of the point cloud Pl+1 ⊂ Pl and
thereby the number of points N , we process the point cloud by
the attentive downsampling layer, depicted in Fig. 3 (b). Our
approach aims to enable adequate sampling and feature pro-
cessing by applying the self-attention mechanism throughout
the network. To reduce computational complexity, we follow
Yang et al. [40] and calculate the attention weights by a single
feed-forward layer with the weight matrix Wf ∈ R(D+2)×D

and no direct representation of keys, queries, and values. We
concatenate the input features xF

i and the point coordinates
pi to include positional information to calculate the attention
weights Ai,j . Additionally, we normalize the attention weights
over the whole point cloud to amplify the contribution of
valuable points. The final weights are multiplied with the
input features xF within local areas which are determined
by farthest point sampling and the kNN algorithm [21], with
k = Nd resulting in:

yi =

Nd∑
j=1

Ai,j � xF
j . (11)

The features are fed into another fully connected layer
with LayerNorm [38] and a GELU activation function. In
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contrast to Point Transformer [45], which utilizes farthest point
sampling and max pooling [21], our attentive downsampling
includes the information of nearby points, which we assume
as valuable for sparse point clouds.

E. Attentive Upsampling Layer

To deduce discriminative features, we argue that the up-
sampling and feature concatenation of the skip connection is
crucial to further enhance performance. The common method
for upsampling, also utilized by Point Transformer [45], is
an interpolation of the k = 3 nearest neighbors based on an
inverse distance weighted average [21]. The interpolated points
Nu are concatenated with the features of the points, which
are passed through the skip connection. The inverse distance
weighted average does not include further feature-based infor-
mation. Hence, the interpolation combines the features only
based on their relative position. This is reasonable for dense
point clouds because nearby points often belong to the same
class.

However, this might be problematic for sparse point clouds,
especially for small instances, which are represented by single
points. Therefore, we consider upsampling as an important
part to improve feature extraction and propose the attentive
upsampling layer. The upsampling layer, which is illustrated
in Fig. 3 (c), first processes the features of the skip connection
and the proceeding GTB by two separate fully connected
layers with LayerNorm and GELU activation function. To
propagate the points from Pl to Pl+1 where Pl ⊂ Pl+1 with
Nl ≤ Nl+1, we feed the position information of the two
point sets and the corresponding features into our attentive
upsampling layer. We calculate the k nearest neighbors of
the individual points for the point set of the skip connection
Ps within the point cloud which has to be upsampled Pl.
The attention mechanism enables information aggregation of
larger local areas since the attention weights will control the
information flow and not reduce the discriminability which is
possible if large local regions are interpolated. To integrate the
positional information we calculate the relative position of the
kNN of the two point sets given by:

ri,j = pi − pj , (12)

where pj ∈ Ps and pi ∈ Pl. The relative distances ri,j are
concatenated with the features. Following our downsampling
layer, we calculate the attention weights directly by processing
the concatenated features with a fully connected layer and
normalizing the weights over the whole point cloud. The
output of the summation is processed by a fully connected
layer with LayerNorm and GELU activation function. The
self-attention mechanism turns into an inter-attention between
the two point clouds to enable attentive feature aggregation.
The upsampling is repeated until we have broadcasted the
features to the original set of points. We optimize the infor-
mation aggregation by determining the weighting based on
the relative position and the features. We emphasize that the
sampling steps are essential for appropriate feature extraction
of transformer architectures for sparse point clouds.

F. Input Features

The input is a sparse radar point cloud with N points,
feature dimension D, and batch size b. Each point pi is defined
by two spatial coordinates xi, yi. Additionally, the radar
sensors provide the ego-motion compensated Doppler velocity
vi and the radar cross section σi resulting in a 4-dimensional
input vector xF

i = (xi, yi, vi, σi)
>.

IV. IMPLEMENTATION DETAILS

We construct our architecture based on the self-attention
mechanism. The central building blocks are the GTL and the
attentive down- and upsampling modules to extract discrimi-
native features for point cloud understanding. The backbone
adopts the U-Net architecture of Point Transformer [45] with
an encoder-decoder architecture including skip connections.
First, we directly extract features of the sparse input point
cloud by a GTB and increase the per-point feature dimension
to 32. The resulting features are progressively down-sampled
by four consecutive stages where each reduces the cardinality
of the point cloud by a factor of two resulting in [N/2, N/4,
N/8, N/16] points. The per-point features are further gradually
increased to 64, 128, 256, and 512. The individual stages
include the GTB and attentive downsampling modules in the
encoder part, which are replaced by attentive upsampling mod-
ules in the decoder part of the network. The per-point features
maps of the final decoder layer are processed by an MLP
with two fully connected layers to obtain point-wise semantic
classes PS = {pS1 , . . . , pSN}, where pSi ∈ {1, . . . , C}.

We implement the Gaussian Radar Transformer in Py-
Torch [19]. To train the network, we utilize the SGD optimizer
with an initial learning rate of 0.05, a momentum of 0.9, and a
cosine annealing learning rate scheduler [15]. The batch size
b is set to 32. The loss combines the Lovász loss [2] and
weighted cross-entropy. We follow Schumann et al. [26] and
set the weights of the cross-entropy loss for dynamic objects
to 8.0 and for static to 0.5 to account for the class imbalance of
the data set. For the attentive sampling operations, we define
k = 9 for the kNN operation, and for the Gaussian transformer
layer, we restrict the local area to Nl = 16. We define G(x)
as:

G(x) = exp

(
−x2

2

)
, (13)

such that for x = 0 the attention weight is G(x) = 1.
Additionally, we apply data augmentation, which includes
scaling, rotation around the origin, jitter augmentation of the
coordinate features, and instance augmentation.

V. EXPERIMENTAL EVALUATION

The main focus of this work is to enhance the semantic
segmentation of moving objects in sparse and noisy radar
point clouds. We present our experiments to show the ca-
pabilities of our method and to support our key claims that
our approach achieves state-of-the-art performance in semantic
segmentation of moving objects in single-scan radar point
clouds without exploration of temporal dependencies or the



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022.

IoU F1Method Input mIoU F1 static car ped. ped. grp. bike truck static car ped. ped. grp. bike truck
RadarPNv1 [24] 61.0 74.3 98.7 58.2 36.0 58.7 58.4 56.1 99.4 73.6 52.9 74.0 73.8 71.9
RadarPNv2 [26] aggregation 61.9 75.0 98.7 63.8 38.8 58.5 51.0 61.0 99.4 77.9 55.9 73.8 67.5 75.8
Point Voxel Transformer [42] 45.9 57.5 99.3 47.5 7.3 47.5 54.6 19.2 99.6 64.4 13.6 64.4 70.6 32.2
Point Transformer [45] 55.6 68.1 99.3 58.1 15.2 56.8 55.1 48.9 99.6 73.5 26.4 72.5 71.1 65.6
Gaussian Radar Transformer

single-scan
68.5 79.8 99.4 69.6 36.3 71.2 71.2 62.8 99.7 82.1 53.2 83.2 83.2 77.1

TABLE I: Semantic segmentation results of moving objects on the RadarScenes test set in terms of IoU and F1 scores. The results of
RadarPNv1 [24] and RadarPNv2 [26] are calculated based on the reported confusion matrix.
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Fig. 4: Qualitative results of Point Transformer [45], Point Voxel Transformer [42], and Gaussian Radar Transformer on the test set of
RadarScenes [25].

aggregation of scans. Moreover, we demonstrate that the Gaus-
sian transformer layer and the attentive up- and downsampling
modules improve feature extraction and contribute to the final
performance. Our fully attentive network is able to extract
valuable features from the Doppler velocity and radar cross
section provided by the radar sensor.

A. Experimental Setup

We train and evaluate our method on RadarScenes [25],
which is the only large-scale, open-source radar data set
including point-wise annotations for varying scenarios. The
data set consists of 158 annotated sequences. We use the rec-
ommended 130 sequences for training and split the remaining
28 sequences into validation (sequences: 6, 42, 58, 85, 99,
122) and test set. The RadarScenes [25] data set is split into
separate scans for each of the four sensors. Since the field-
of-view of the sensors is restricted to certain areas, we derive
detailed information about the surrounding by merging the
individual sensor data from the four sensors into a single radar
point cloud. The measurement times and the pose information
are given, which enables a transformation into a common
coordinate system. We aggregate four scans, one of each
sensor, which results in the final input point clouds with
transformed local coordinates. To evaluate the performance,
Schumann et al. [25] propose the point-wise macro-averaged
F1 scores based on all five moving object classes and the
static background class (C = 6). We further report the
IoU = TP

TP+FN+FP and mIoU = 1
C

∑C
i=1 IoUi scores,

which are common for semantic segmentation tasks [1]. We
train each network using its specific hyperparameters with two
Nvidia RTX A6000 GPUs over 50 epochs on the training set
and report the results on the test set. For more details on the
training regime for Point Transformer1, we refer to the original
paper [45].

1https://github.com/POSTECH-CVLab/point-Transformer

B. Semantic Segmentation of Moving Objects

The first experiment presents the performance of our ap-
proach on the RadarScenes test set to investigate the claim
that we achieve state-of-the-art results for semantic segmen-
tation of moving objects in sparse and noisy radar point
clouds without the aggregation of scans or the exploration
of temporal dependencies. In this experiment, we compare
our Gaussian Radar Transformer with the recent and high-
performing Point Transformer by Zhao et al. [45] as well
as the baselines provided by Schumann et al. [24], [26]. We
selected Point Transformer as a reference since the method
meets the following requirements: (1) single-scan input for
comparability; (2) point-based method, since the voxelization
leads to discretization artifacts and hence a loss of infor-
mation, see Point Voxel Transformer in Tab. I; (3) very
good performance on different benchmarks including semantic
scene understanding. Furthermore, the Point Transformer [45]
utilizes vector attention, which is beneficial for point cloud
understanding.

Our Gaussian Radar Transformer outperforms the existing
methods in terms of both, mIoU and F1 score, as displayed
in Tab. I. Especially, we achieve superior performance on
five of the six classes, except pedestrian. We assume that
the individual detection in radar scans contains important
information, which is why strict point-based methods enhance
the performance compared to Point Voxel Transformer. The
baselines exploit temporal dependencies of consecutive radar
scans within a memory feature map, utilize additional global
coordinates or densify the point clouds by aggregation. The
exact comparison of the results is difficult because Schumann
et al. work on a subset of the officially released data set.
However, the IoU for the class pedestrian indicates that the
exploration of temporal information is beneficial for small
instances. We suspect that the consistent detection of pedes-
trians over the whole sequence, which is difficult for strict
single-scan approaches, further improves the performance.
Nevertheless, the Gaussian Radar Transformer considerably
improves the IoU for the class pedestrian as opposed to Point

https://github.com/POSTECH-CVLab/point-Transformer
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# ADS AUS GTL F1 mIoU

A 74.0 61.0
B X 77.0 64.7
C X 77.3 65.5
D X X 78.8 66.8
E X X X 79.4 68.3

TABLE II: Influence of the different components of the approach in
terms of mIoU and F1 score on the RadarScenes validation set.

Transformer by more than 19 absolute percentage points.
Fig. 4 shows some qualitative results on the test set. Notably,
our approach achieves superior performance under adverse
weather including rain and fog.

C. Ablation Studies on Method Components

The first ablation study presented in this section is designed
to support our second claim that our proposed self-attention
modules each contribute to the advancements of the Gaussian
Radar Transformer. To assess the influence of the different
components of our fully attentive backbone, we evaluate the
performance in terms of mIoU and F1 score on the validation
set. To replace our proposed modules, we follow commonly
used network designs. We substitute the Gaussian function
by the softmax function and keep the rest of the Gaussian
transformer layer as it is. For the attentive downsampling, we
utilize local max pooling and we exchange attentive upsam-
pling by trilinear interpolation based on an inverse distance
weighted average. Tab. II summarizes the influence of different
components on the performance in terms of mIoU on the
validation set.

In configuration (A), we replace each module by its sub-
stitute, which leads to a noticeable decrease in mIoU. We
suspect that the commonly used modules are highly optimized
for denser point clouds but struggle to capture fine-grained
information from sparse and noisy radar point clouds. In
(B), we add attentive downsampling (ADS), see Sec. III-D,
which introduces a smooth information exchange within the
downsampling step of individual points, visibly improving the
results. In (C), we add the attentive upsampling (AUS) module
to enlarge the receptive field and include encoded feature infor-
mation to optimize the information aggregation, see Sec. III-E.
The larger receptive field resulting from the increased local
area from three (trilinear) to nine points improves the F1

score by 3.3 and the mIoU by 4.5 absolute percentage points.
Although the AUS only affects the features of the decoder part
it leads to an additional improvement of mIoU by 0.8 absolute
percentage points compared to AUS in (B). In (D), we add
the attentive up- and downsampling which further enhance
the performance. This shows the importance of the attentive
sampling modules for sparse radar point cloud processing. In
(E), we utilize the fully attentive network to illustrate the
improvement due to the usage of the Gaussian function by
decoupling individual points, see Sec. III-B, resulting in the
best performance. In conclusion, the Gaussian function and
the attentive up- and downsampling are essential to extract
valuable features from sparse and noisy radar point clouds.

Input Features F1 mIoU

xF = (x, y) 56.0 43.7
xF = (x, y, σ) 63.7 50.1
xF = (x, y, v) 75.0 62.0
xF = (x, y, v, σ) 79.4 68.3

TABLE III: Influence of the different input features in terms of mIoU
and F1 score on the RadarScenes validation set.

D. Ablation Studies on Input Features

The third experiment evaluates the performance depending
on the provided information by the radar sensor and demon-
strates that our approach is capable of capturing complex
local structures within the features to enhance mIoU. For this
experiment, we utilize our Gaussian Radar Transformer and
add to the position information of x and y coordinates, the
ego-motion compensated Doppler velocity v, the radar cross
section σ, or both. Tab. III displays the influence of the input
features xF on the validation set performance. As we presume,
the ego-motion compensated Doppler velocity is especially
valuable for semantic segmentation of moving objects since
the feature inherently distinguishes between moving and non-
moving parts of the environment resulting in an increase of
mIoU of 18.2 absolute percentage points. Moreover, we further
improve the mIoU if we add the radar cross section features σ
suggesting that our approach extracts valuable features for the
downstream task from additional sensor information. Hence,
the Gaussian Radar Transformer achieves the best performance
including radar cross section and ego-motion compensated
Doppler velocity.

In summary, our evaluation supports our statement that
our method provides competitive semantic segmentation per-
formance of moving objects in single-scan, sparse radar
point clouds. At the same time, our method exploits self-
attention modules which enhance the performance in multi-
dimensional radar data processing outperforming state-of-the-
art approaches. Thus, we support all our claims with this
experimental evaluation.

VI. CONCLUSION

In this paper, we presented a novel approach to perform se-
mantic segmentation of moving objects in sparse, noisy, single-
scan radar point clouds obtained from automotive radars.
Our method exploits the self-attention mechanism throughout
the network and replaces the softmax normalization of the
transformer by a Gaussian. This allows us to successfully
segment moving objects and improve the feature extraction by
decoupling individual points. We implemented and evaluated
our approach on the RadarScenes data set, providing compar-
isons to other methods and supporting all claims made in this
paper. The experiments suggest that the proposed architecture
achieves good performance on semantic segmentation of mov-
ing objects. We assessed the different parts of our approach
and compared them to other existing techniques. Overall, our
approach outperforms the state of the art both in F1 score and
mIoU, taking a step forward towards sensor redundancy for
semantic segmentation for autonomous robots and vehicles.
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