
Picking Up Speed: Continuous-Time Lidar-Only
Odometry using Doppler Velocity Measurements

Yuchen Wu, David J. Yoon, Keenan Burnett, Soeren Kammel, Yi Chen, Heethesh Vhavle, and Timothy D. Barfoot

Abstract—Frequency-Modulated Continuous-Wave (FMCW)
lidar is a recently emerging technology that additionally en-
ables per-return instantaneous relative radial velocity measure-
ments via the Doppler effect. In this letter, we present the
first continuous-time lidar-only odometry algorithm using these
Doppler velocity measurements from an FMCW lidar to aid
odometry in geometrically degenerate environments. We apply
an existing continuous-time framework that efficiently estimates
the vehicle trajectory using Gaussian process regression to
compensate for motion distortion due to the scanning-while-
moving nature of any mechanically actuated lidar (FMCW and
non-FMCW). We evaluate our proposed algorithm on several
real-world datasets, including publicly available ones and datasets
we collected. Our algorithm outperforms the only existing method
that also uses Doppler velocity measurements, and we study
difficult conditions where including this extra information greatly
improves performance. We additionally demonstrate state-of-
the-art performance of lidar-only odometry with and without
using Doppler velocity measurements in nominal conditions. Code
for this project can be found at: https://github.com/utiasASRL/
steam icp.

I. INTRODUCTION

Multi-beam lidars have become a common addition to the
sensor suite of an autonomous vehicle. Estimation algorithms
to handle the long-range 3D measurements (i.e., point clouds)
produced by these sensors have also matured, and are capable
of producing highly accurate motion estimates, often at a sub-
decimeter level of accuracy for localization [1].

Lidar motion estimation performs exceptionally when there
exists sufficient geometric structure in the surroundings to
uniquely constrain all six degrees of freedom of the vehicle
pose. In contrast, even the best estimators will struggle and
even fail in geometrically degenerate environments. Long
tunnels, highways with a barren landscape, and bridges are
typical examples of extreme conditions where prior knowledge
of the vehicle kinematics is insufficient to compensate for the
lack of geometric information. A common solution in such
situations is to rely on an additional sensor such as an Inertial
Measurement Unit (IMU) [2], [3].

Frequency-Modulated Continuous Wave (FMCW) lidar is
a recently emerging technology [4], [5] that provides a
promising alternative solution for geometrically degenerate

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Yuchen Wu, David J. Yoon, Keenan Burnett, and Timothy D.
Barfoot are with the University of Toronto Institute for Aerospace
Studies (UTIAS), University of Toronto, Toronto, ON M3H5T6, Canada
yuchen.wu; david.yoon; keenan.burnett; tim.barfoot
[@robotics.utias.utoronto.ca]

Soeren Kammel, Yi Chen, and Heethesh Vhavle are with Aeva Inc., Moun-
tain View, CA 94043, USA soeren; ychen; heethesh [@aeva.ai]

-25m/s 0m/s

We use the relative radial
velocity w.r.t. the static
scene to aid odometry.

Moving objects are
naturally rejected by our
algorithm.

Fig. 1: An example lidar frame from the Aeva Aeries I FMCW
Lidar colored by the measured relative radial velocity (i.e.,
Doppler velocity). Vehicles driving in the same direction are
colored in magenta as they have the same velocity as the ego-
vehicle, while vehicles driving in the opposite direction are
in red. They can be clearly distinguished from the underlying
static scene. Our proposed algorithm uses the relative radial
velocity with respect to the static scene to aid odometry.
Moving objects are naturally rejected by our algorithm using
robust estimation techniques.

environments. While capable of producing dense point clouds
comparable to a typical time-of-flight lidar, FMCW lidars also
measure the relative velocity between each measured point
along the radial direction via the Doppler effect, which we call
a Doppler velocity measurement. Figure 1 depicts an example
lidar frame1 colored by the Doppler velocity of each point.
Hexsel et al. [6] recently showed that these Doppler velocity
measurements are beneficial for lidar odometry in an Iterative
Closest Point (ICP)-based algorithm.

In this letter, we improve upon the existing work [6]
by incorporating the Doppler velocity measurements in a
continuous-time estimation framework. Continuous-time esti-
mation allows for each measurement to be associated with
its actual time of acquisition, avoiding the need for an IMU
to correct the motion distortion of a lidar frame due to the
scanning-while-moving nature of mechanically actuated lidars.
Similar to [6], we present a Doppler velocity factor that can
be applied in conjunction with the usual point-to-plane factor
for frame-to-map alignment. However, our proposed factor

1Throughout this letter, we refer to the aggregation of points over one full
lidar field-of-view as a lidar frame.

ar
X

iv
:2

20
9.

03
30

4v
2

 [
cs

.R
O

]
 3

 D
ec

 2
02

2

https://github.com/utiasASRL/steam_icp
https://github.com/utiasASRL/steam_icp

differs from theirs in that it is applied to the vehicle’s body-
centric velocity as opposed to pose since body-centric velocity
is also part of our estimated state. We evaluate our lidar
odometry algorithm on several real-world datasets, including
publicly available ones collected using a non-FMCW lidar
and datasets we collected using an FMCW lidar. Through
our evaluation, we demonstrate overall state-of-the-art lidar-
only odometry performance with and without using Doppler
velocity measurements under both nominal and geometrically
degenerate conditions.

II. RELATED WORK

Lidar motion estimation typically adopts a point cloud
registration approach using a variant of ICP [7], [8]. Most
lidar motion estimation pipelines can be divided into a data
processing front-end and a state estimation back-end [9].

The front-end processes the raw lidar frames, which in-
cludes keypoint/feature extraction, global/local map building,
and data association. LOAM [2] extracts edge and plane
features and matches them via nearest-neighbor association.
SuMa [10] matches raw frames to a surfel map using projective
data association. Recently, Vizzo et al. [11] introduced a
triangle mesh map representation and a ray-casting-based
point-to-mesh association approach. Other alternatives have
been proposed in [12]–[18], though we do not discuss them
in detail in the interest of space.

The back-end leverages the processed data to estimate the
vehicle state over time, seen as the vehicle trajectory. Existing
approaches are different in how they formulate and estimate
the trajectory. Discrete-time estimators formulate a trajectory
where there is a temporal state (i.e., marginal) that corresponds
to the acquisition time of every measurement. However, typical
multi-beam lidars are mechanically actuated and produce thou-
sands of measurements for every lidar frame. Consequently,
each measurement may have a unique timestamp. Even after
preprocessing into sparser keypoints, it is often not feasible
to have a discrete state estimate at each measurement time.
One option is to correct for the motion of each frame using
an additional sensor such as an IMU [2], [3].

Alternatively, the vehicle trajectory can be estimated as a
continuous function of time. The most straightforward ap-
proach is to apply linear interpolation between discrete states
[2], [19], [20]. However, using linear interpolation between
poses restricts the trajectory to have a piece-wise constant
velocity, which cannot accurately represent trajectories un-
dergoing high-frequency changes in velocity. Dellenbach et
al. [21] address this limitation by allowing the vehicle poses
to be discontinuous between lidar frames, trading trajectory
smoothness for a closer representation. Another option for
higher representational power without losing smoothness is
to represent the trajectory using temporal basis functions [22],
[23]. Referred to as a parametric methods, the trajectory is
parameterized by the associated basis-function weights and has
been demonstrated several times for lidar motion estimation
using B-splines [24]–[27].

Nonparametric methods instead estimate the continuous-
time trajectory as a Gaussian process (GP) [28]. Barfoot et

al. [29] demonstrated that through careful selection of the
underlying GP prior and a Markovian state, we can benefit
from the usual sparsity exploited in discrete-time estimation.
Anderson and Barfoot [30] extended this idea for trajectory
estimation in SE(3). A desirable feature of their approach
is that the GP prior is made to be physically motivated (e.g.,
white noise on acceleration). Lidar motion estimation has been
demonstrated several times using various GP priors [1], [31]–
[33].

All works discussed thus far consider lidars that only
produce point clouds (optionally with intensity information).
Advancements in FMCW technology have enabled a new
type of lidar, i.e., the Aeva Aeries I FMCW Lidar [34], that
can additionally measure the relative radial velocity (Doppler
velocity) of each point. Hexsel et al. [6] presented an ICP-
based algorithm that uses the Doppler velocity measurements
and demonstrated improved performance in environments with
insufficient geometric structure.

The Aeva Aeries I FMCW Lidar is mechanically actuated,
similar to existing multi-beam lidars. Hexsel et al. [6] applied
a discrete-time estimator, which requires the lidar frames to be
corrected for motion beforehand using an IMU. We improve
upon their work by formulating the back-end estimator using
GP regression in SE(3) [30]. Although the GP regression
approach has been applied to lidar odometry before [1], [31]–
[33], the benefits of including Doppler velocity measurements
have not been demonstrated. Compared to the work of Hexsel
et al. [6], we demonstrate state-of-the-art performance in lidar
odometry without using additional sensors.

Furthermore, the FMCW technology can also be applied to
radars, and there has been some work using an FMCW radar
for motion estimation [35], [36]. Both Kellner et al. [35] and
Vivet et al. [36] use the Doppler velocity measurements from
an FMCW radar to estimate the velocity of the ego-vehicle,
which is the same as what they are used for in this work.

III. METHODOLOGY

Our lidar odometry algorithm adopts the conventional ICP-
based frame-to-map approach while incorporating Doppler
velocity measurements in a sliding-window implementation.

A. Data Processing Front-End

We follow the approach of Dellenbach et al. [21]. Keypoints
are extracted from each lidar frame via voxel grid downsam-
pling. We use a grid size of 1.5m and keep one random point
in each voxel. Our local map is a point cloud accumulated
from the most recent frames and cropped to be within 100m
of the latest estimate of the vehicle after each frame update.
The local map is stored in a sparse voxel grid structure with
a 1m grid size and a maximum of 20 points per voxel. We
use point-to-plane ICP for frame-to-map matching. Each frame
point is associated with a map point via nearest-neighbor
association, and the corresponding plane normal is computed
by applying Principle Component Analysis (PCA) to the 20
closest neighbors of the associated map point.

(k − 1)th Frame kth Frame

xk−2 xk−1 xk

Estimated State Interpolated State Local Map Point

Motion Prior φmp Point-to-Plane φp2p Doppler Velocity φdv

Fig. 2: This diagram shows the states and factors involved in
our sliding-window estimation with an example window size
of two. We query the trajectory states at the acquisition time
of each keypoint in each lidar frame. The motion prior factor
φmp connects neighboring trajectory states. The point-to-plane
factor φp2p requires local map information while the Doppler
velocity factor φdv does not. For computational efficiency,
we implement this sliding-window estimation by introducing
one estimated state at the end of each lidar frame and
using GP interpolation to obtain states at other measurement
times. This way, motion prior factors between interpolated and
estimated/interpolated states are merged into factors between
estimated states. Point-to-plane and Doppler velocity factors
applied to interpolated states depend on the adjacent estimated
states. Past states falling outside the window are marginalized
and no longer updated.

B. Trajectory Estimation Back-End

Notation: We denote F−→i to be the inertial reference frame,
F−→v to be the vehicle reference frame, and F−→` to be the
lidar reference frame. Let Tvi ∈ SE(3) be the inertial-to-
vehicle transformation (i.e., the vehicle pose) and $iv

v =[
νiv
v

T
ωiv

v
T
]T
∈ R6 be the vehicle body-centric velocity

where νiv
v and ωiv

v are translational and rotational velocities,
respectively2. Furthermore, let T`v be the fixed vehicle-to-
lidar transformation assuming the lidar is rigidly mounted on
the vehicle, q be a homogeneous point from a lidar frame
(expressed in F−→`), and p be a homogeneous point in the local
map (expressed in F−→i).

We follow previous work [30] to represent a continuous-
time trajectory as a Gaussian process (GP). Our trajectory
is x(t) = {Tvi(t),$

iv
v (t)}. We use the White-Noise-on-

Acceleration (WNOA) motion prior

Ṫvi(t) =$
iv
v (t)∧Tvi(t),

$̇iv
v (t) = w(t), w(t) ∼ GP(0,Qcδ(t− τ)),

(1)

where w(t) ∈ R6 is a zero-mean, white-noise GP. The prior
is applied in a piecewise fashion across an underlying discrete
trajectory of pose-velocity state pairs, xk, each corresponding

2The superscripts and subscripts follow the convention in [37].

F−→i

F−→v F−→`

νi`
` ωi`

`

qq̇

˜̇r
d

Fig. 3: This diagram provides a graphical illustration of the
Doppler velocity error term derivation. F−→i, F−→v , and F−→` are
the inertial, vehicle, and lidar reference frames, respectively. q
and q̇ are the measured point position and velocity expressed
in F−→`, respectively. d is a unit vector along the direction of
q, and ˜̇r is the relative radial velocity according to $i`

` =[
νi`
`

T
ωi`

`

T
]T

. See Section III-B for the expression of d

and ˜̇r.

to the end time of the kth lidar frame3. Note that the period
of the kth frame lies between xk−1 and xk. For a keypoint qj

with acquisition time tj where tk−1 < tj < tk, we associate
it to an interpolated state x(tj) that depends on xk−1 and
xk through GP interpolation. Interpolation is done efficiently
through our choice of motion prior and Markovian state [30].

We jointly align the most recent five frames to the local
map in a sliding window by optimizing for the states xk−5 to
xk. Figure 2 illustrates the states and factors in our problem.
We refer readers to Anderson and Barfoot [30] for details on
the motion prior factor and discuss the measurement factors
below.

1) Point-to-Plane Factor: The point-to-plane factor is

φp2p = ρ
(√

α4 e2p2p

)
, (2)

ep2p = nTD
(
p−Tvi(t)

−1T−1`v q
)
, (3)

with q measured at time t and Tvi(t) being the vehicle pose
queried from the trajectory. p is the nearest neighbor of q
in the local map, n is the surface normal of p, and α =
(σ2 − σ3)/σ1 [21], [38] is a heuristic weight to favour planar
neighborhoods. D is a constant projection that removes the
fourth homogeneous element. ρ(·) is a robust cost function
chosen to be Cauchy with c = 0.5 [39], and we discard any
measurement resulting in ep2p ≥ 0.5m.

2) Doppler Velocity Factor: The Doppler velocity factor is

φdv = ρ

(√
β e2dv

)
, (4)

edv = ṙ − qTDT

(qTDTDq)1/2
Dq�T `v$

iv
v (t), (5)

3x0 is at the start of the first frame.

(a) Baker-Barry Tunnel (b) Robin Williams Tunnel (c) Ontario Highway 404 (d) Ontario Highway 427

Fig. 4: Representative scenes in the Aeva dataset. The straight tunnels (a) and (b) have poor geometric structure to constrain the
vehicle motion in the longitudinal direction. The Ontario highway sequences have moderate geometric structure from buildings
and vegetation by the side of the highway.

where $iv
v (t) is the vehicle body-centric velocity queried at t,

D is the same projection as above, ṙ is the Doppler velocity
measurement associated with q measured at time t, T `v =
Ad (T`v) is the adjoint matrix of T`v , and the (·)� operator
converts a homogeneous point to a 4 × 6 matrix, as defined
in [37, p.246]. β = 0.1 is a constant heuristic weight and ρ(·)
is again the Cauchy robust cost function with c = 0.05 [39].
We dicard any measurement resulting in edv ≥ 2m/s.

To derive our error term (5), we first define q̇ and q̇i to be
q’s velocity expressed in the lidar and inertial reference frame,
respectively. Applying the transport theorem,

q̇i = Ti`(t)
(
q̇−$i`

` (t)
∧q
)
. (6)

Assuming q is static in the inertial frame such that q̇i = 0,
we can rearrange (6) to be (see SE(3) identities in [37])

q̇ = $i`
` (t)

∧q

= q�$i`
` (t)

= q�T `v$
iv
v (t), (7)

where (7) relates the point velocity q̇ to the body-centric
velocity component of our trajectory state $iv

v . Next, we
project q̇ onto q to obtain the predicted Doppler velocity:

˜̇r = qTDT

(qTDTDq)
1/2︸ ︷︷ ︸

Projection d

Dq�T `v$
iv
v (t). (8)

Finally, taking the difference between the predicted and mea-
sured relative radial velocity gives the error function edv in
(5). This derivation is graphically illustrated in Figure 3.

TABLE I: Aeva Dataset Statistics

Seq. # Location Length
[m]

Num. of
Frames

Geometric
Structure

00 Baker-Barry Tunnel (Empty) 860 837 Poor
01 Baker-Barry Tunnel (Vehicles) 907 658 Poor
02 Robin Williams Tunnel 689 301 Poor
03 Brisbane Lagoon Freeway 4942 1762 Poor
04 Ontario Highway 7 8876 6343 Moderate
05 Ontario Highway 407 7836 4734 Moderate
06 Don Valley Parkway 10310 5083 Moderate
07 Ontario Highway 427 7238 4012 Moderate

At this point, we highlight the characteristics of our Doppler
velocity factor. Firstly, the factor does not require the local

Aeva FMCW Lidar

Aeva FMCW Lidar

Fig. 5: Our platform, Boreas, is previously used to collect the
Boreas dataset [40] and additionally equipped with an Aeva
Aeries I FMCW Lidar [34] for use in this work.

map. Secondly, the rotational velocity of the lidar frame ωi`
` is

unfortunately not observable4. Finally, by having the vehicle’s
body-centric velocity as part of the state, the Doppler velocity
measurement is incorporated directly into our estimator with-
out further approximations or assumptions. While the first two
characteristics have been observed by Hexsel et al. [6], the
last one is unique to our formulation. Hexsel et al. [6] derived
a relation between Doppler velocity and vehicle pose using
a constant-velocity approximation within the period of each
frame, which is not needed in our formulation.

We treat sliding-window estimation as a factor-graph opti-
mization problem and solve it iteratively using Gauss-Newton
with Iteratively Reweighted Least Squares (IRLS) [41]. Rather
than naively dropping states out of the sliding window, we
explicitly marginalize out each old state. Each new state
is initialized based on the GP extrapolation of our motion
prior (i.e., constant velocity). The point-to-plane association
of keypoints in the latest frame and the plane normals are

4Note that qTDTDq� will have its last three elements being zero, which
masks the rotational component of $i`

` . It implies that we cannot rely
solely on Doppler velocity measurements to recover the full vehicle state
(pose/velocity).

https://www.boreas.utias.utoronto.ca

TABLE II: Quantitative results on KITTI-raw/360 dataset using KITTI RTE metric. The average is computed over all segments
of all sequences as in [21]. Note that CT-ICP optimizes one lidar frame at a time, while our algorithm optimizes multiple
frames in a sliding window. For a fair comparison, we evaluate our algorithm using the estimated poses at the front of the
window (i.e., newest timestamp).

KITTI-raw 00 01 02 03 (NA) 04 05 06 07 08 09 10 AVG

CT-ICP [21] 0.51 0.81 0.55 - 0.43 0.27 0.28 0.35 0.80 0.47 0.49 0.55
STEAM-ICP (Ours) 0.49 0.65 0.50 - 0.38 0.26 0.28 0.32 0.81 0.46 0.53 0.52

KITTI-360 00 01 (NA) 02 03 04 05 06 07 08 (NA) 09 10 AVG

CT-ICP [21] 0.41 - 0.38 0.34 0.65 0.39 0.42 0.34 - 0.45 0.69 0.45
STEAM-ICP (Ours) 0.41 - 0.38 0.48 0.69 0.40 0.43 0.60 - 0.35 0.73 0.45

−400 0 400
x [m]

−800

−400

0

y
[m

]

Ground Truth
STEAM-ICP

−400 0 400 800 1200
x [m]

−400

0

400

800

1200

y
[m

]

Ground Truth
STEAM-ICP

0 400 800 1200
x [m]

0

400

800

y
[m

]

Ground Truth
STEAM-ICP

0 400 800
x [m]

0

400

800

y
[m

]

Ground Truth
STEAM-ICP

Fig. 6: Trajectories estimated by STEAM-ICP from the longest four sequences (over 10000 frames) in KITTI-360 dataset:
sequence 00 (11501 frames), 02 (19231 frames), 04 (11400 frames), and 09 (13955 frames).

re-computed after every five Gauss-Newton iterations.

IV. EXPERIMENTS

A. Datasets

We demonstrate our method and make comparisons to
existing work on several real-world data sequences, which we
categorize into two datasets: KITTI-raw/360 and Aeva. All
data sequences provide accurate pose estimates from a GNSS-
INS system for evaluation5.

1) KITTI-raw/360 dataset: contains 19 sequences of raw
lidar frames from the publicly available KITTI dataset [42] and
its successor KITTI-360 [43]. The lidar used in this dataset
is a Velodyne HDL-64, which is not an FMCW lidar. The
sequences in this dataset were collected from urban/suburban
environments and are rich in geometric structure for lidar
motion estimation. We apply our estimator to the variation
of the dataset made available by Dellenbach et al. [21].

2) Aeva dataset: contains 8 sequences of lidar frames from
an Aeva Aeries I FMCW Lidar that produces Doppler velocity
measurements6. Aeva Aeries I FMCW Lidar has a horizontal
field-of-view of 120◦, a vertical field-of-view of 30◦, a 300m
maximum operating range, a Doppler velocity measurement
precision of 3cm/s, and a sampling rate of 10Hz.

Sequences 00-03 are relatively short sequences purposely
collected in environments with poor geometric structure (e.g.,
tunnels, freeways), which have been used in previous work

5For ground truth pose generation, we refer the readers to [42] for KITTI-
raw/360, [6] for Aeva sequence 00-03, and [40] for Aeva sequence 04-07.

6We have published these sequences, which can be found at https://github.
com/utiasASRL/steam icp.

[6], but required an additional IMU to correct for the scanning-
while-moving nature of the sensor. Sequences 04-07 are longer
sequences collected using our data collection platform, Boreas
(Figure 5), on Toronto, Ontario highways with moderate
geometric structure. Table I has a summary of the dataset
statistics, and Figure 4 shows some representative scenes.

B. Evaluation

We use the KITTI Relative Translation Error (KITTI RTE),
which averages the translation error over path segments of
lengths 100m to 800m in 100m intervals. For the Aeva
dataset, we additionally include evaluation using the Frame-
to-Frame Relative Translation Error (Frame-to-Frame RTE)
metric [44], which was used in [6]. In the interest of space,
we omit showing the rotation error in the main text since the
translation error is where our comparisons differ the most.
Interested readers can find our full evaluation results in our
supplementary material [45].

We name the two variants of our algorithm using and not
using the Doppler velocity measurements STEAM-DICP and
STEAM-ICP, respectively, after the continuous-time trajectory
estimation framework, STEAM, presented in [30].

On the KITTI-raw/360 dataset, we compare STEAM-ICP
with CT-ICP [21]. CT-ICP, to the best of our knowledge, is the
current state-of-the-art continuous-time lidar-only odometry
algorithm. It achieves similar performance on the KITTI
odometry benchmark as other state-of-the-art methods (e.g.,
LOAM [2], IMLS-SLAM [38], and MULLS [18]) using lidar
frames without motion distortion and demonstrates better
performance using lidar frames with motion distortion. On

https://github.com/utiasASRL/steam_icp
https://github.com/utiasASRL/steam_icp

TABLE III: Quantitative results on Aeva dataset using both KITTI RTE and Frame-to-Frame RTE metrics. Note that all
algorithms (including Doppler-ICP) are evaluated using motion-distorted frames. We exclude the first 60 frames of each
sequence from evaluation because the vehicle does not start at zero velocity in these sequences, which causes the local map
to be initialized from motion-distorted frames. Results of Seq. 04-07 (Range-Limited) were obtained by limiting the range of
the lidar frames to 40m.

KITTI RTE [%] Frame-to-Frame RTE [m]

Sequences 00-03 00 01 02 03 AVG 00 01 02 03 AVG

Doppler-ICP [6] 1.66 2.60 1.03 1.72 1.80 0.0246 0.0254 0.0380 0.0494 0.0402
CT-ICP [21] 2.83 12.26 9.11 1.54 3.35 0.0401 0.3753 0.2446 0.0801 0.1827
STEAM-ICP (Ours) 2.28 12.86 22.74 2.10 4.16 0.0541 0.4134 0.6076 0.2892 0.3180
STEAM-DICP (Ours) 2.35 2.60 0.74 1.70 1.88 0.0180 0.0211 0.0299 0.0362 0.0299

Sequences 04-07 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 3.86 2.81 2.13 2.93 3.00 0.0864 0.0485 0.0140 0.2355 0.1181
CT-ICP [21] 0.34 0.34 0.41 0.48 0.38 0.0194 0.0202 0.0198 0.0216 0.0202
STEAM-ICP (Ours) 0.38 0.29 0.36 0.36 0.35 0.0211 0.0250 0.0230 0.0298 0.0244
STEAM-DICP (Ours) 0.33 0.46 0.30 0.37 0.36 0.0064 0.0119 0.0081 0.0201 0.0119

Seq. 04-07 (Range-Limited) 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 13.73 6.29 2.72 6.95 7.96 0.2555 0.1679 0.0198 0.4047 0.2444
CT-ICP [21] 10.90 56.44 66.64 5.39 33.87 0.0857 1.9122 1.8926 0.0637 1.3279
STEAM-ICP (Ours) 67.48 3.48 2.57 3.99 24.50 1.6030 0.1107 0.0644 0.1778 0.9056
STEAM-DICP (Ours) 2.25 3.11 2.28 2.27 2.44 0.0173 0.0337 0.0211 0.0453 0.0297

0 50 100 150 200 250
Frame

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fr
am

e-
to

-F
ra

m
e

R
T

E
[m

]

STEAM-DICP
STEAM-ICP

Tunnel Start Tunnel End

200 300 400 500
x [m]

100

200

300

400

y
[m

]

Ground Truth
STEAM-DICP
STEAM-ICP

Tunnel Start

Tunnel End

300m Tunnel

Fig. 7: This figure shows a comparison of Frame-to-Frame RTE between STEAM-ICP and STEAM-DICP on the Robin
Williams Tunnel sequence (left), the corresponding trajectories versus ground truth (middle), and the point cloud map built
from STEAM-DICP (right). Due to the poor geometric structure in the longitudinal direction, STEAM-ICP under-estimates
the length of the trajectory inside the tunnel, while STEAM-DICP remains unaffected thanks to the correction from Doppler
velocity measurements.

the Aeva dataset, we compare STEAM-DICP with STEAM-
ICP, CT-ICP, and Doppler-ICP [6]. Note that Doppler-ICP is
the only existing algorithm that also uses Doppler velocity
measurements to aid lidar odometry.

C. Results
Table II shows quantitative results on the KITTI-raw/360

dataset. Compared to CT-ICP, our odometry achieves compara-
ble performance, demonstrating that we are performing at state
of the art using non-FMCW lidars (i.e., no Doppler velocity
measurements). Example plots of the estimated trajectory are
shown in Figure 6.

Quantitative results on the Aeva dataset are shown in
Table III. On the difficult sequences with insufficient geometric
structure (i.e., sequences 00-03), both CT-ICP and STEAM-
ICP (i.e., methods that do not use Doppler velocity mea-
surements) perform poorly. Figure 7 highlights the problem

in sequence 02 (Robin Williams Tunnel), where we see that
the Frame-to-Frame RTE for both CT-ICP and STEAM-
ICP increases dramatically during the tunnel portion of the
sequence.

On sequences with moderate geometric structure (i.e., se-
quences 04-07), methods that do not use the velocity mea-
surements perform well. Doppler-ICP performs worse overall
due to using a frame-to-frame approach (i.e., no accumulated
local maps) and not accounting for the motion in each lidar
frame. STEAM-DICP performs similarly to STEAM-ICP and
CT-ICP, showing that the velocity measurements are not as
impactful on sequences with sufficient geometry. However, we
still see minor improvements in Frame-to-Frame RTE, sug-
gesting that the velocity measurements overall help improve
performance.

Another way to highlight the benefit of the Doppler velocity

0 1 2 3 4 5 6 7
x [km]

−2

−1

0

1

2

3

4

5
y

[k
m

]
Ground Truth
Doppler-ICP
STEAM-DICP

−2 −1 0 1 2 3 4 5
x [km]

−6

−5

−4

−3

−2

−1

0

y
[k

m
]

Ground Truth
Doppler-ICP
STEAM-DICP

−2 −1 0 1 2 3 4
x [km]

0

1

2

3

4

5

6

7

y
[k

m
]

Ground Truth
Doppler-ICP
STEAM-DICP

−1 0 1 2 3 4
x [km]

−6

−5

−4

−3

−2

−1

0

y
[k

m
]

Ground Truth
Doppler-ICP
STEAM-DICP

Fig. 8: Trajectories estimated by STEAM-DICP and Doppler-ICP from sequences 04-07 in the Aeva dataset without limiting the
range of the sensor. Doppler-ICP exhibits higher drifts due to using a frame-to-frame registration approach and not accounting
for motion distortion.

measurements is to limit the range of the lidar artificially. The
majority of the distinctive structure in the environment is off-
road and further away from the sensor, therefore limiting the
range increases the difficulty for estimation. We see in the
Range-Limited section of Table III that methods using the
Doppler velocity measurements, Doppler-ICP and STEAM-
DICP, are the most robust to this artificial increase in difficulty,
with ours (STEAM-DICP) performing the best.

D. Implementation

We implemented our back-end (see Section III-B) for
continuous-time trajectory estimation using an open-source
C++ library, STEAM7 [30]. The front-end that processes the
lidar data was made to be the same as CT-ICP by using the
C++ library that the authors have made publicly available8. We
use the same parameters as CT-ICP for keypoint extraction,
neighborhood search, normal estimation, and map building
to maintain a fair comparison. Parameters of the trajectory
estimation back-end were determined empirically.

Our implementation is currently not quite real-time capable,
running at approximately 5Hz on the KITTI sequences and
approximately 2Hz on the Aeva sequences after incorporating
the Doppler velocity measurements9. The current bottleneck is
the processing of each motion prior and measurement factor
in STEAM, which was designed with more focus on general-
ization rather than computational speed. We strongly believe
that a real-time capable implementation can be achieved
by implementing an estimator specific to our problem, e.g.,
by hardcoding Jacobian computations instead of relying on
STEAM’s built-in automatic differentiation.

V. CONCLUSIONS

In this letter, we presented a continuous-time lidar odometry
algorithm leveraging the Doppler velocity measurements from
an FMCW lidar to aid odometry. Our algorithm combines
the lidar data processing front-end in [21] with our STEAM

7STEAM library: https://github.com/utiasASRL/steam
8CT-ICP library: https://github.com/jedeschaud/ct icp
9We run experiments using an Intel Xeon E5-2698 v4 2.2 GHz processor

with 20 physical cores. We parallelize trajectory interpolation and Jacobian
computation using 20 threads.

continuous-time estimator as the back-end, efficiently esti-
mating the vehicle trajectory using GP regression. Through
continuous-time estimation, our algorithm handles the motion
distortion problem of mechanically actuated lidars. Incorpo-
rating the Doppler velocity information helps prevent odom-
etry failures under geometrically degenerate conditions. By
estimating vehicle pose and body-centric velocity, Doppler
velocity measurements are incorporated directly into the es-
timator without further approximations or assumptions. Using
both publicly available and our own datasets, we demon-
strated state-of-the-art lidar odometry performance under nom-
inal conditions with and without velocity information. On
kilometer-scale highway sequences, we demonstrated superior
performance over the only existing lidar odometry method
that also uses Doppler velocity information under nominal and
geometrically degenerate conditions.

There are multiple directions for future work to improve the
proposed algorithm further. Currently, we apply robust cost
functions to the point-to-plane error ep2p and the Doppler ve-
locity error edv individually for outlier rejection. Alternatively,
one can apply a single robust cost function to

[
ep2p edv

]T
to reject outliers using both sources of information (in the
same spirit as the Dynamic Point Outlier Rejection scheme
in [6]). The velocity measurements can also be used by the
data processing front-end to segment and remove points from
moving objects before data association (e.g., by using the
method of [46]). In addition, one can replace the WNOA GP
prior used in this work with the WNOJ prior [32] or the Singer
prior [33], which have shown to improve lidar odometry in
nominal conditions.

REFERENCES

[1] K. Burnett, Y. Wu, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot,
“Are we ready for radar to replace lidar in all-weather mapping and
localization?” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 328–10 335, 2022.

[2] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and
mapping,” vol. 41, no. 2, pp. 401–416, 2017.

[3] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry
and mapping,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 3144–3150.

[4] B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and B. E. Boser, “Lidar
system architectures and circuits,” IEEE Communications Magazine,
vol. 55, no. 10, pp. 135–142, 2017.

https://github.com/utiasASRL/steam
https://github.com/utiasASRL/steam
https://github.com/jedeschaud/ct_icp

[5] S. Royo and M. Ballesta-Garcia, “An overview of lidar imaging systems
for autonomous vehicles,” Applied Sciences, vol. 9, no. 19, 2019.

[6] B. Hexsel, H. Vhavle, and Y. Chen, “DICP: Doppler Iterative Closest
Point Algorithm,” in Proceedings of Robotics: Science and Systems,
2022.

[7] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[8] F. Pomerleau, F. Colas, and R. Siegwart, A Review of Point Cloud
Registration Algorithms for Mobile Robotics, 2015.

[9] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” vol. 32,
no. 6, pp. 1309–1332, 2016.

[10] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments,” in Proceedings of Robotics: Science
and Systems, 2018.

[11] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson
surface reconstruction for lidar odometry and mapping,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
5624–5630.

[12] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 4758–4765.

[13] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss, “Suma++: Efficient lidar-based semantic slam,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 4530–4537.

[14] D. Kovalenko, M. Korobkin, and A. Minin, “Sensor aware lidar odom-
etry,” in 2019 European Conference on Mobile Robots (ECMR), 2019,
pp. 1–6.

[15] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar
odometry and mapping package for lidars of small fov,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp.
3126–3131.

[16] S. W. Chen, G. V. Nardari, E. S. Lee, C. Qu, X. Liu, R. A. F. Romero,
and V. Kumar, “Sloam: Semantic lidar odometry and mapping for forest
inventory,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
612–619, 2020.

[17] X. Zheng and J. Zhu, “Efficient lidar odometry for autonomous driving,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8458–8465,
2021.

[18] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile lidar
slam via multi-metric linear least square,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 11 633–
11 640.

[19] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in 2009 IEEE International Conference on Robotics and
Automation, 2009, pp. 4312–4319.

[20] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan,
“Elastic lidar fusion: Dense map-centric continuous-time slam,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 1206–1213.

[21] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. G. Goulette, “Ct-
icp: Real-time elastic lidar odometry with loop closure,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 5580–5586.

[22] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch
estimation using temporal basis functions,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 2088–2095.

[23] S. Anderson and T. D. Barfoot, “Towards relative continuous-time slam,”
in 2013 IEEE International Conference on Robotics and Automation,
2013, pp. 1033–1040.

[24] R. Zlot and M. Bosse, “Efficient Large-scale Three-dimensional Mobile
Mapping for Underground Mines,” vol. 31, no. 5, pp. 758–779, 2014.

[25] L. Kaul, R. Zlot, and M. Bosse, “Continuous-Time Three-Dimensional
Mapping for Micro Aerial Vehicles with a Passively Actuated Rotating
Laser Scanner,” vol. 33, no. 1, pp. 103–132, 2016.

[26] H. Alismail, L. D. Baker, and B. Browning, “Continuous trajectory
estimation for 3d slam from actuated lidar,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 6096–6101.

[27] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d
lidar-based online mapping,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 5000–5007.

[28] C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian Process Gauss-
Newton for non-parametric simultaneous localization and mapping,”
vol. 32, no. 5, pp. 507–525, 2013.

[29] T. Barfoot, C. Hay Tong, and S. Sarkka, “Batch Continuous-Time
Trajectory Estimation as Exactly Sparse Gaussian Process Regression,”
in Robotics: Science and Systems X, 2014.

[30] S. Anderson and T. D. Barfoot, “Full steam ahead: Exactly sparse gaus-
sian process regression for batch continuous-time trajectory estimation
on se(3),” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 157–164.

[31] T. Y. Tang, D. J. Yoon, F. Pomerleau, and T. D. Barfoot, “Learning a bias
correction for lidar-only motion estimation,” in 2018 15th Conference
on Computer and Robot Vision (CRV), 2018, pp. 166–173.

[32] T. Y. Tang, D. J. Yoon, and T. D. Barfoot, “A white-noise-on-jerk motion
prior for continuous-time trajectory estimation on se(3),” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 594–601, 2019.

[33] J. N. Wong, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “A Data-
Driven Motion Prior for Continuous-Time Trajectory Estimation on
SE(3),” vol. 5, no. 2, pp. 1429–1436, 2020.

[34] “Aeva Inc. Aeva Aeries I,” https://www.aeva.com/aeries-i/, accessed:
2022-08-19.

[35] D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann, and K. Di-
etmayer, “Instantaneous ego-motion estimation using doppler radar,”
in 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013), 2013, pp. 869–874.

[36] D. Vivet, P. Checchin, and R. Chapuis, “Localization and mapping using
only a rotating fmcw radar sensor,” Sensors, vol. 13, pp. 4527–4552,
2013.

[37] T. D. Barfoot, State Estimation for Robotics, 2017.
[38] J.-E. Deschaud, “Imls-slam: Scan-to-model matching based on 3d data,”

in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 2480–2485.

[39] K. MacTavish and T. D. Barfoot, “At all costs: A comparison of
robust cost functions for camera correspondence outliers,” in 2015 12th
Conference on Computer and Robot Vision, 2015, pp. 62–69.

[40] K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian,
W.-K. Tseng, A. Lambert, K. Y. K. Leung, A. P. Schoellig, and
T. D. Barfoot, “Boreas: A multi-season autonomous driving dataset,”
arXiv:2203.10168, 2022.

[41] P. W. Holland and R. E. Welsch, “Robust regression using iteratively
reweighted least-squares,” Communications in Statistics - Theory and
Methods, vol. 6, no. 9, pp. 813–827, 1977.

[42] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.

[43] J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger, “Semantic instance
annotation of street scenes by 3d to 2d label transfer,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 3688–3697.

[44] D. Prokhorov, D. Zhukov, O. Barinova, K. Anton, and A. Vorontsova,
“Measuring robustness of visual slam,” in 2019 16th International
Conference on Machine Vision Applications (MVA), 2019, pp. 1–6.

[45] Y. Wu, D. J. Yoon, K. Burnett, S. Kammel, Y. Chen, H. Vhavle, and
T. D. Barfoot, “Picking up speed: Continuous-time lidar-only odometry
using doppler velocity measurements,” arXiv:2209.03304, 2022.

[46] M. Guo, K. Zhong, and X. Wang, “Doppler velocity-based algorithm
for clustering and velocity estimation of moving objects,” in 2022
7th International Conference on Automation, Control and Robotics
Engineering (CACRE), 2022, pp. 216–222.

https://www.aeva.com/aeries-i/

SUPPLEMENTARY MATERIAL

This supplementary material presents the full quantitative results on the Aeva dataset using both KITTI Relative Pose Error
metric (Table IV) and Frame-to-Frame Relative Pose Error metric (Table V) [44]. Note again that all algorithms are evaluated
using motion-distorted frames, and we exclude the first 60 frames of each sequence from evaluation. Results of Seq. 04-07
(Range-Limited) were obtained by limiting the range of the lidar frames to 40m.

Results of the translation error have been reported and discussed in the main text. Regarding the rotation error, we see that
Doppler-ICP seems to do slightly better in rotation on the Frame-to-Frame metric. However, the overall difference between
Doppler-ICP and STEAM-DICP is not significant, and our algorithm outperforms theirs on the KITTI metric, which averages
rotation error over longer trajectory segments.

TABLE IV: Quantitative results on Aeva dataset using KITTI Relative Pose Error metric.

Translation [%] Rotation [deg/m]

Sequences 00-03 00 01 02 03 AVG 00 01 02 03 AVG

Doppler-ICP [6] 1.66 2.60 1.03 1.72 1.80 0.0330 0.0143 0.0335 0.0064 0.0122
CT-ICP [21] 2.83 12.26 9.11 1.54 3.35 0.0085 0.0148 0.0121 0.0038 0.0062
STEAM-ICP (Ours) 2.28 12.86 22.74 2.10 4.16 0.0078 0.0155 0.0124 0.0040 0.0063
STEAM-DICP (Ours) 2.35 2.60 0.74 1.70 1.88 0.0077 0.0166 0.0137 0.0040 0.0065

Sequences 04-07 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 3.86 2.81 2.13 2.93 3.00 0.0115 0.0104 0.0079 0.0060 0.0093
CT-ICP [21] 0.34 0.34 0.41 0.48 0.38 0.0010 0.0012 0.0014 0.0015 0.0012
STEAM-ICP (Ours) 0.38 0.29 0.36 0.36 0.35 0.0012 0.0009 0.0011 0.0012 0.0011
STEAM-DICP (Ours) 0.33 0.46 0.30 0.37 0.36 0.0010 0.0013 0.0009 0.0012 0.0011

Seq. 04-07 (Range-Limited) 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 13.73 6.29 2.72 6.95 7.96 0.0350 0.0224 0.0103 0.0113 0.0213
CT-ICP [21] 10.90 56.44 66.64 5.39 33.87 0.0315 0.2084 0.2239 0.0165 0.1158
STEAM-ICP (Ours) 67.48 3.48 2.57 3.99 24.50 0.1218 0.0087 0.0072 0.0076 0.0455
STEAM-DICP (Ours) 2.25 3.11 2.28 2.27 2.44 0.0062 0.0090 0.0069 0.0071 0.0072

TABLE V: Quantitative results on Aeva dataset using Frame-to-Frame Relative Pose Error metric.

Translation [m] Rotation [deg]

Sequences 00-03 00 01 02 03 AVG 00 01 02 03 AVG

Doppler-ICP [6] 0.0246 0.0254 0.0380 0.0494 0.0402 0.1357 0.1670 0.1655 0.0827 0.1163
CT-ICP [21] 0.0401 0.3753 0.2446 0.0801 0.1827 0.1907 0.2865 0.1593 0.1163 0.1675
STEAM-ICP (Ours) 0.0541 0.4134 0.6076 0.2892 0.3180 0.1322 0.1855 0.1503 0.1195 0.1366
STEAM-DICP (Ours) 0.0180 0.0211 0.0299 0.0362 0.0299 0.1384 0.1821 0.1475 0.1125 0.1336

Sequences 04-07 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 0.0864 0.0485 0.0140 0.2355 0.1181 0.0557 0.0453 0.0655 0.0559 0.0558
CT-ICP [21] 0.0194 0.0202 0.0198 0.0216 0.0202 0.0460 0.0401 0.0582 0.0501 0.0485
STEAM-ICP (Ours) 0.0211 0.0250 0.0230 0.0298 0.0244 0.0460 0.0410 0.0603 0.0489 0.0490
STEAM-DICP (Ours) 0.0064 0.0119 0.0081 0.0201 0.0119 0.0447 0.0391 0.0587 0.0474 0.0474

Seq. 04-07 (Range-Limited) 04 05 06 07 AVG 04 05 06 07 AVG

Doppler-ICP [6] 0.2555 0.1679 0.0198 0.4047 0.2444 0.0917 0.0673 0.0688 0.0609 0.0741
CT-ICP [21] 0.0857 1.9122 1.8926 0.0637 1.3279 0.1300 71.1626 77.2449 0.1086 36.2160
STEAM-ICP (Ours) 1.6030 0.1107 0.0644 0.1778 0.9056 0.8207 0.1058 0.1211 0.0944 0.3328
STEAM-DICP (Ours) 0.0173 0.0337 0.0211 0.0453 0.0297 0.0923 0.0844 0.1059 0.0852 0.0925

	I Introduction
	II Related Work
	III Methodology
	III-A Data Processing Front-End
	III-B Trajectory Estimation Back-End
	III-B1 Point-to-Plane Factor
	III-B2 Doppler Velocity Factor

	IV Experiments
	IV-A Datasets
	IV-A1 KITTI-raw/360 dataset
	IV-A2 Aeva dataset

	IV-B Evaluation
	IV-C Results
	IV-D Implementation

	V Conclusions
	References

