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Chance-Constrained Iterative Linear-Quadratic
Stochastic Games

Hai Zhong1, Student Member, IEEE, Yutaka Shimizu2, and Jianyu Chen*3, Member, IEEE

Abstract—Dynamic game arises as a powerful paradigm for
multi-robot planning, for which safety constraint satisfaction is
crucial. Constrained stochastic games are of particular interest,
as real-world robots need to operate and satisfy constraints
under uncertainty. Existing methods for solving stochastic games
handle chance constraints using exponential penalties with hand-
tuned weights. However, finding a suitable penalty weight is
nontrivial and requires trial and error. In this letter, we pro-
pose the chance-constrained iterative linear-quadratic stochastic
games (CCILQGames) algorithm. CCILQGames solves chance-
constrained stochastic games using the augmented Lagrangian
method. We evaluate our algorithm in three autonomous driving
scenarios, including merge, intersection, and roundabout. Exper-
imental results and Monte Carlo tests show that CCILQGames
can generate safe and interactive strategies in stochastic environ-
ments.

Index Terms—Multi-Robot Systems, Motion and Path Plan-
ning, Optimization and Optimal Control

I. INTRODUCTION

W ITH the recent advances in multi-robot systems, dy-
namic game has emerged as a new paradigm for multi-

robot planning [1], [2]. Dynamic game naturally captures the
interactive nature of multi-agent planning, as the ego agent’s
strategy accounts for the fact that other agents’ plans could
change based on the ego agent’s action. A few works also
consider safety constraints in the dynamic game settings [3],
[4], which is another key aspect of multi-robot planning (e.g.,
avoiding collisions with other robots or obstacles).

Most of the existing work on dynamic games focuses on
deterministic settings. However, robots operating in the real
world must reason about uncertainties, resulting in stochastic
games. For example, robots need to reason about their unmod-
eled or disturbed system dynamics, noisy sensor perceptions,
and other agents’ motion and intention uncertainties. Also,
the complexity of satisfying safety constraints in stochastic
games is further evolved, as the agent needs to guarantee safety
under uncertainty. Schwarting et al. [5] recently proposed the
stochastic dynamic game (SDG) algorithm to solve stochas-
tic games, considering process and observation uncertainties.

Manuscript received: July, 8, 2022; Revised October, 5, 2022; Accepted
November, 22, 2022.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments.

1 Hai Zhong is with the Institute for Interdisciplinary Sciences, Tsinghua
University, Beijing, China. zhongh22@mails.tsinghua.edu.cn

2 Yutaka Shimizu is with Tier IV, Inc., Jacom Building, 1-
12-10 Kitashinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan.
purewater0901@gmail.com

3 Jianyu Chen is with the Institute for Interdisciplinary Sciences, Tsinghua
University, Beijing, China, and the Shanghai Qizhi Institute, Shanghai, China
(*corresponding author). jianyuchen@tsinghua.edu.cn

Digital Object Identifier (DOI): see top of this page.

−15 −11 −7 −3 1 5 9 13
x [m]

5

10

15

20

25

30

y 
[m

]

CCILQGames's Planned Trajectory
car 1
car 2
car 3

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
time step

0
1
2
3
4
5
6
7
8
9

10
11

sp
ee

d 
[m

/s
]

Speed Profile for CCILQGames's Planned Trajectory

car 1
car 2
car 3
nominal speed for car 1 and 3
nominal speed for car 2

(b)

−15 −11 −7 −3 1 5 9 13
x [m]

5

10

15

20

25

30

y 
[m

]

Planned Trajectory for SDG with penalty weight = 1
car 1
car 2
car 3

(c)

−15 −11 −7 −3 1 5 9 13
x [m]

5

10

15

20

25

30

y 
[m

]

Planned Trajectory for SDG with penalty weight = 400
car 1
car 2
car 3

(d)

Fig. 1: SDG with a large penalty weight could lead to
conservative strategies (as shown in (d)), while a small penalty
weight could cause unsafe trajectories (as shown in (c)).
CCILQGames could ensure performance while satisfying con-
straints without manually tuning penalty weights (as shown in
(a)).

SDG simply adds exponential penalties for chance constraint
violations. Yet, this approach is far from being satisfac-
tory: choosing the penalty weight is nontrivial. Inappropriate
penalty weights will result in undesired behaviors: a small
penalty leads to dangerous collisions (Figure 1(c)), while
a large penalty leads to conservative suboptimal behaviors
(Figure 1(d)). Tuning penalty terms requires trial and error
and is generally failure-prone, which prohibits the potential
for real-time applications. To the best of our knowledge, no
existing work systematically handles safety constraints for
stochastic dynamic games (with both process and observation
uncertainties).

This letter proposes the chance-constrained iterative linear-
quadratic stochastic games (CCILQGames) algorithm to over-
come the hurdle above. CCILQGames can incorporate chance
constraints in stochastic dynamic games, which allows speci-
fication of the probability threshold for successfully satisfying
constraints. We use the augmented Lagrangian method to
construct an outer and inner loop framework, with the benefits
of automatically tuning the penalty weights. The chance con-
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straint violation is calculated to update penalty and Lagrange
multiplier terms in the outer loop. We solve the corresponding
unconstrained stochastic game in the inner loop by extending
the iterative linear-quadratic games (ILQGames) algorithm [2],
[6] to the stochastic game setting. We evaluate the proposed
method in lane merging, three-player intersection, and round-
about scenarios. Experimental results and Monte Carlo tests
show that our approach generates interactive and safe strategies
under uncertainty.

II. RELATED WORK

A. Game-Theoretical Planning

A family of algorithms for solving differential games hinges
on transforming a differential game into one or a series of
single-agent optimal control problems. Kavuncu et al. [7] pur-
sue this idea by utilizing potential differential games, for which
Nash equilibria could be obtained by solving an associated
optimal control problem. Iterative best response scheme is
another family of algorithms that takes advantage of tools
for solving optimal control problems [8], [9]. This approach
solves Nash equilibria by solving single-agent optimal control
problems in a round-robin fashion. The usefulness of this type
of algorithm is demonstrated in racing games [8], [9]. A pitfall
for this approach is that there are no formal guarantees for
convergence to Nash equilibria.

Another thrust of game-theoretic solvers focuses on solving
for open-loop Nash equilibrium. The key to this type of
approach is to formulate the necessary conditions of open-loop
Nash equilibria by concatenating the Karush–Kuhn–Tucker
conditions for each player. Di et al. [10] solved the cor-
responding nonlinear program based on Newton’s method.
In [3], augmented Lagrangian is combined with Newton’s
method to handle state and control constraints. In [4], the
constrained nonlinear program is addressed by projected gra-
dient or Douglas-Rachford splitting method. As this type of
approach solves for open-loop Nash equilibrium (i.e., controls
are functions of time instead of states), special treatments such
as model predictive control are required to help to capture the
reactive game-theoretic nature [3]. Another limitation of the
aforementioned approaches is that they only consider deter-
ministic games and can not handle uncertainties in dynamics
and observations.

An increasingly popular branch of game-theoretic solvers
aims to compute local feedback Nash equilibrium [2], [6],
[10], [5], [11]. The iterative linear-quadratic game method
[2] exploits the analytical solutions of linear-quadratic games
and solves the game as a sequence of approximated linear-
quadratic games. Schwarting et al. [5] propose a belief space
variant of differential dynamic programming algorithm for
stochastic games, which could handle dynamics and obser-
vation uncertainties. However, their work handles chance con-
straints using exponential penalties, which requires adjusting
penalty weights by trial and error. Our work builds upon
the iterative linear-quadratic game method and extends to
stochastic games with dynamics and observation uncertainty.
In contrast to [5], our work directly handles chance constraints
using the augmented Lagrangian method. Our approach does

not require manually adjusting penalty weights and achieves
a good balance of safety and performance.

B. Chance-Constrained Planning

Chance constraint formulation provides a unified framework
for quantifying probabilistic constraint violations, which al-
lows the specification of desired probabilities for constraint
violations. However, calculating chance constraint violations
is intractable in general, which makes chance-constrained
planning challenging. A branch of works exploits the structure
of Gaussian belief distributions [12], [13], whether it be a true
belief distribution or an approximation. We follow this line
of work, exploiting the structure of linear-Gaussian systems
via linearization. We further incorporate this technique into an
augmented Lagrangian framework. A different line of research
exploits moment-based approaches to handle non-Gaussian
uncertainties [14]. [14] proposed a moment-based method
that can handle general chance-constrained motion planning
problems. The key to handling general chance-constrained
planning problems is to transform chance constraints into a set
of deterministic constraints on the moments of the probability
distributions of the states, along with an exact moment-based
uncertainty propagation method to relate the moments of the
uncertain states to control inputs.

III. PROBLEM FORMULATION

We consider the following nonlinear stochastic N -player
dynamics:

xk+1 = f(xk, u
1:N
k , wk), wk ∼ N (0,Σwk

), (1)

where xk and xk+1 ∈ Rn are the states at time step k and
k + 1. uik ∈ Rmi , i ∈ {1, ..., N} is the control input of player
i at time step k, and u1:Nk = {u1k, ..., uNk } is the collection
of all players’ controls at time step k. wk ∈ Rd represents
the Gaussian process noise at time step k. Σwk

is the cor-
responding covariance for wk. Although the dynamics model
considers Gaussian noises, it is still general as the Gaussian
noises could go through arbitrary nonlinear transformations
through f .

Following [5], we assume that each agent shares the same
observation model and state measurement. At the core of
CCILQGames is solving a series of linear-quadratic stochastic
games. Linear-quadratic stochastic games with certain struc-
tures are computationally tractable [15], [16], thanks to the
separation principle. In this work, assumption 1 is imposed to
make the linear-quadratic stochastic games tractable. We state
this assumption formally below:

Assumption 1. All agents share the same joint measurement
model and the same state (i.e., xk) measurement.

With assumption 1, we consider the following measurement
model:

yk+1 = h(xk+1, vk+1), vk+1 ∼ N (0,Σvk+1
), (2)

where yk+1 ∈ Rz and vk+1 ∈ Rs are the sensor measurement
and the Gaussian measurement noise at time step k+1. Σvk+1

is the covariance of the measurement noise.
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System dynamics (1) and measurement model (2) jointly
define a partially observable Markov decision process, in
which agents maintain a probability distribution of the state
xk. We use belief bk to represent the probability distribution
of state xk conditioned on control inputs and measurements:

bk = Pr(xk|y0, ..., yk, u1:N0 , ..., u1:Nk ). (3)

Furthermore, we consider chance constraints on state:

Pr(gk(xk) ≤ 0) ≥ p, (4)

where gk(xk) ≤ 0 is the nonlinear constraint on state xk at
time step k. p is the chance constraint threshold. We assume
gk(xk) is a scalar.

Each agent has a time-varying feedback control policy
γi(k, y1, ..., yk) ∈ Γi, which maps the current time step and
observations to control input (i.e., uik = γi(k, y1, ..., yk)). Γi is
the strategy space for player i. Each agent has a cost function
Ji defined as the expectation of states and measurements:

Ji(γ1, ..., γN ) =

E
X0,...,XL,Y0,...,YL

[
ciL(xL) +

L−1∑
k=0

cik(xk, u
1:N
k )

]
,

(5)

where L is the planning horizon, and X0, ..., XL, Y0, ..., YL
are random variables for states and measurements. Now we
are ready to define the generalized Nash equilibrium, which
is the Nash equilibrium under chance constraints:

Definition 1. A set of control policies {γ∗i }, i ∈ {1, ..., N},
is a generalized Nash equilibrium if the following inequality
holds for all players while satisfying chance constraints (4):

Ji(γ
∗
1 , ..., γ

∗
i , ..., γ

∗
N ) ≤ Ji(γ∗1 , ..., γi, ..., γ∗N ),

∀γi ∈ Γi, i ∈ {1, ..., N}.
(6)

As we describe in detail in section IV.C, our work builds
upon ILQGames. Since the computation of a Nash equilibrium
is generally intractable, ILQGames attempts to find local Nash
equilibria (i.e., the inequality in equation (6) holds within a
neighborhood around each player’s local Nash equilibrium
strategy) [17, Definition 1]. ILQGames solves a series of
linear-quadratic game approximations to the original game.
More precisely, ILQGames obtains the feedback Nash equi-
librium [1, Definition 6.2] solution to the approximate linear-
quadratic game. The feedback Nash equilibrium solution is
strongly time-consistent [1, Chapter 6, Theorem 6.6], which
is appealing since the feedback Nash equilibrium strategy re-
mains optimal at a future time step even if there are deviations
from the feedback strategy in the past time steps. Given that
ILQGames is at the core of our algorithm, CCILQGames also
aims to find local Nash equilibrium in practice.

With the above components, we can finally derive the target
problem for this work (i.e., finding the generalized Nash
equilibrium), which is summarized as follows:

Problem 1. Solve for a generalized Nash equilibrium with the
following cost functions, dynamics model, measurement model,
and chance constraints:

Ji(γ1, ..., γN ) = E[ciL(xL) +

L−1∑
k=0

cik(xk, u
1:N
k )],

xk+1 = f(xk, u
1:N
k , wk), wk ∼ N (0,Σwk

),

yk+1 = h(xk+1, vk+1), vk+1 ∼ N (0,Σvk+1
),

P r(gi,mk (xk) ≤ 0) ≥ pi,m, m ∈ {1, ..,M i
k},

i ∈ {1, ..., N},
where m, pi,m, and M i

k are the index for the mth chance
constraint, chance constraint threshold and the total number
of constraints at time step k for agent i.

IV. CHANCE-CONSTRAINED ITERATIVE
LINEAR-QUADRATIC GAME

A. System Linearization and Belief Dynamics
Given the current belief bk and next time step’s measure-

ment yk+1, the belief dynamics could be described using the
Bayesian filter [18]. Following [19], [13], we linearize the
dynamical system around a nominal trajectory and then apply
the Kalman filter to approximately track the belief dynamics.
Kalman filter approximates the true belief as a Gaussian
distribution, such that bk = (x̂k,Σxk

), where x̂k is the mean
and Σxk

is the covariance.
Given a nominal trajectory b̄ = {b̄k = (x̄k, Σ̄xk

), k ∈
{0, ..., L}}, ū1:N0 , ..., ū1:NL−1, satisfying x̄k+1 = f(x̄k, ū

1:N
k , 0),

we linearize the dynamics (1) and measurement models (2):

xk+1 = x̄k+1 +Ak(xk − x̄k) +

N∑
j=1

Bj(u
j
k − ū

j
k) +Wkwk,

yk+1 = h(x̄k+1, 0) +Hk+1(xk+1 − x̄k+1) + Vk+1vk+1,
(7)

where Ak, Bj ,Wk, Hk+1, Vk+1 are:

Ak =
∂f(x̄k, ū

1:N
k , 0)

∂xk
, Bj =

∂f(x̄k, ū
1:N
k , 0)

∂ujk
,

Wk =
∂f(x̄k, ū

1:N
k , 0)

∂wk
, Hk+1 =

∂h(x̄k+1, 0)

∂xk+1
,

Vk+1 =
∂h(x̄k+1, 0)

∂vk+1
.

(8)

Now we can use Kalman filter to propagate next time step’s
belief bk+1 = (x̂k+1,Σxk+1

) with the linearized dynamics,
observation model, and current belief bk = (x̂k,Σxk

):

x̂pk+1 = x̄k+1 +Ak(x̂k − x̄k) +

N∑
j=1

Bj(u
j
k − ū

j
k),

Σp
xk+1

= AkΣxk
AT

k +WkΣwk
WT

k ,

x̂k+1 = x̄k+1 +Ak(x̂k − x̄k) +

N∑
j=1

Bj(u
j
k − ū

j
k)

+Kk+1(yk+1 − (h(x̄k+1, 0) +Hk+1(x̂pk+1 − x̄k+1))),

Σxk+1
= (I −Kk+1Hk+1)Σp

xk+1
,

Kk+1 =Σp
xk+1

HT
k+1(Hk+1Σp

xk+1
HT

k+1 + Vk+1Σvk+1
V T
k+1)−1,

(9)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

where x̂pk+1 is the state’s prior estimation, Σp
xk+1

is the
covariance’s prior estimation, and Kk+1 is the Kalman gain.
The innovation term yk+1 − (h(x̄k+1, 0) + Hk+1(x̂k − x̄k))
is random, which renders the mean propagation stochastic.
Although the mean propagation is stochastic, the covariance
propagation is deterministic, dependent neither on measure-
ments nor controls.

B. Outer Loop: Augmented Lagrangian Scheme

1) Augmented Lagrangian Formulation: The augmented
Lagrangian associated with player i is formulated by augment-
ing the cost function (5) with Lagrange multiplier terms and
quadratic penalty terms:

li(X0, ..., XL, Y0, ..., YL, u
1:N
0 , ..., u1:NL−1)

= E
X0,...,XL,Y0,...,YL

[ciL(xL) +

L−1∑
k=0

cik(xk, u
1:N
k )]

+
L∑

k=1

Mk∑
m=1

λi,m[pi,m − Pr(gi,mk (xk) ≤ 0)]

+

L∑
k=1

Mk∑
m=1

Ii,m
2

[pi,m − Pr(gi,mk (xk) ≤ 0)]2,

(10)

where λi,m ∈ R is the Lagrange multiplier. Ii,m is defined as:

Ii,m =

{
0, pi,m − Pr(gi,mk (xk) ≤ 0) < 0 ∧ λi,m = 0,

µi,m, otherwise.
(11)

where µi,m ∈ R is the quadratic penalty term.
2) Augmented Lagrangian Update: Given a trajectory, the

Lagrange multipliers and penalty terms are updated as follows
[20]:

λi,m = max(0, λi,m + µi,m(pi,m − Pr(gi,mk (xk) ≤ 0)),

µi,m = φµi,m,
(12)

where φ > 1 is the increasing schedule.
3) Evaluating Chance Constraints Violations: Evaluating

chance constraint violations is necessary to update the La-
grange multipliers. However, directly calculating chance con-
straint violations could be intractable in general. Hence, we
follow the approach of [12], [13] to linearize chance con-
straints.

Given a trajectory with belief b̄k = (x̄k, Σ̄xk
) and control

ū1:Nk , we get a linearization of gi,mk (xk) around x̄k:

Gi,m
k xk + qi,mk , (13)

where

Gi,m
k =

∂gi,mk (x̄k)

∂xk
, qi,mk = gi,mk (x̄k)−Gi,m

k x̄k. (14)

Now we can consider the following linearized chance con-
straints:

Pr(Gi,m
k xk + qi,mk ≤ 0) ≥ pi,m. (15)

To step further, we can decompose the Gaussian random
variable xk into its mean x̄k and ēk = xk − x̄k ∼ N (0, Σ̄xk

):

Pr(Gi,m
k (x̄k + ēk) + qi,mk ≤ 0) ≥ pi,m. (16)

By rearranging terms, chance constraint (15) can be trans-
formed to a deterministic linear constraint on mean x̄k [12]:

Gi,m
k x̄k ≤ −qi,mk − ρ̄i,mk . (17)

ρ̄i,mk could be calculated using the quantile function for
univariate Gaussian, as Gi,m

k ēk ∼ N (0, Gi,m
k Σ̄xk

(Gi,m
k )T ):

Pr(Gi,m
k ek ≤ ρ̄i,mk ) = pi,m,

ρ̄i,mk =

√
2Gi,m

k Σ̄xk
(Gi,m

k )T erf−1(2pi,m − 1),
(18)

where erf−1 is the inverse error function. Since mean x̄k
and covariance Σ̄xk

are known for the nominal trajectory, the
violation of constraint (17) can be directly calculated.

C. Inner Loop: Iterative Linear Quadratic Game

The inner loop iteratively solves a linear-quadratic stochastic
game. We present how to construct the approximate linear-
quadratic game from the original game and solve it.

1) Approximate Linear-Quadratic Game: The inner loop
of the proposed CCILQGames performs an iterative linear-
quadratic stochastic game step, which involves iteratively solv-
ing a linear-quadratic stochastic game. We now present how
to obtain an approximated linear-quadratic stochastic game
with a given nominal trajectory b̄ = {bk = (x̄k, Σ̄xk

), k ∈
{0, ..., L}}, control strategies {γ̄i}, i ∈ {1, ..., N} and controls
ū1:N0 , ..., ū1:NL−1.

Toward this end, we first obtain the linearized dynamics
and observation model (7) around the nominal trajectory, as
described in section IV.A.

Moreover, a quadratic approximation to the running costs
cik(xk, u

1:N
k ) is necessary. Yet, before we are able to proceed,

we need to put the Lagrange multiplier and penalty terms asso-
ciated with chance constraints inside the expectation operator.

We proceed in the same manner as in section IV.B.(3).
By linearizing around the nominal trajectory, we obtain a
linear approximation to chance constraints in the form of a
deterministic linear constraint on the mean x̂k:

Gi,m
k x̂k ≤ −qi,mk − ρi,mk ,

ρi,mk =

√
2Gi,m

k Σxk
(Gi,m

k )T erf−1(2pi,m − 1),
(19)

where qi,mk is defined in (14). Since the covariance propagation
is deterministic as we mentioned in Section IV.A, we can
precompute the covariance before solving the game.

The linear constraint (19) now replaces the original chance
constraint. The Lagrange multiplier term can be directly put
inside the expectation operator:

λi,m(Gi,m
k x̂k + qi,mk + ρi,mk )

= E
Xk

[λi,m(Gi,m
k xk + qi,mk + ρi,mk )].

(20)
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For any probability distribution of Xk, Ii,m is determined
since the mean x̂k is determined. Now, the penalty term can
be transformed as follows:

Ii,m
2

(Gi,m
k x̂k + qi,mk + ρi,mk )2

=
Ii,m

2
[x̂TkG

i,m
k

T
Gi,m

k x̂k + 2(qi,mk + ρi,mk )TGi,m
k x̂k

+ (qi,mk + ρi,mk )T (qi,mk + ρi,mk )]

=
Ii,m

2
E
Xk

[xTkG
i,m
k

T
Gi,m

k xk + 2(qi,mk + ρi,mk )TGi,m
k xk

+ (qi,mk + ρi,mk )T (qi,mk + ρi,mk )]

− Ii,m
2
trace(Gi,m

k

T
Gi,m

k Σxk
),

(21)
Since Gi,m

k and Σxk
are constants after linearization around

the nominal trajectory, trace(Gi,m
k

T
Gi,m

k Σxk
) is also con-

stant. But the penalty Ii,m indeed depends on the control,
as the control affects the probability distribution of Xk.
So when constructing the linear-quadratic game, the trace
term trace(Gi,m

k

T
Gi,m

k Σxk
) should be taken into account.

However, calculating the derivative and hessian of it requires
calculating second and third order derivatives of the dynamics,
which could add heavy computational costs. So we omit
the trace term in each agent’s augmented Lagrangian as an
approximation in this work.

Combining (20) and (21), the Lagrange multiplier and
penalty terms are transformed into the expectation operator.
We denote the modified running cost as c̃ki(xk, u1:Nk ). Finally,
we are equipped to obtain a quadratic approximation for the
running costs:

c̃k
i(xk, u

1:N
k ) ≈ c̃ki(x̄k, ū1:Nk ) +

1

2
δxTk (Qi

kδxk + 2lik)

+
1

2

N∑
j=1

δujk
T

(Rij
k δu

j
k + 2rijk ),

(22)

where δxk = xk − x̄k, δujk = ujk − ūjk, Qi
k, R

ij
k are the

Hessians with respect to xk and ujk, and lik, r
ij
k are the

gradients with respect to xk and ujk. We take the value of
Ii,m
2 as the same as the nominal trajectory and treat it as a

constant as an approximation when constructing the quadratic
cost approximation. Same as [2], we omit the mix partial
derivatives.

2) Separation Principle for Linear-Quadratic Stochastic
Game: With (7) and (22), we have constructed a linear-
quadratic stochastic game. Next, we present the separation
principle for linear-quadratic stochastic games, which would
be exploited to solve the linear-quadratic stochastic game.

Theorem 1 (Separation principle for linear-quadratic stochas-
tic games). With assumption 1, We consider stochastic games

with linear dynamics, and quadratic costs for each player i:

xk+1 = Akxk +

N∑
j=1

Bju
j
k +Wkwk,

yk+1 = Hk+1xk+1 + Vk+1vk+1,

Ji = E
X0,...,XL,Y0,...,YL

[
1

2
xTL(Qi

LxL + 2liL)

+

L−1∑
k=0

(
1

2
xTk (Qi

kxk + 2lik) +
1

2

N∑
j=1

ujk
T

(Rij
k uk + 2rijk ))],

where wk and vk+1 are zero mean Gaussian white noise. The
initial Gaussian belief (x̂k,Σxk

) is known and independent of
the additive noises.

Then the Nash equilibrium strategy of the above stochastic
linear-quadratic game is the Nash equilibrium strategy of the
deterministic linear-quadratic game applied to the estimated
state x̂k provided by the Kalman filter.

The proof of Theorem 1 is in the appendix. Thanks to
Theorem 1, we can obtain the Nash equilibrium strategy of the
stochastic linear-quadratic game by solving the deterministic
linear-quadratic game, which has an analytical solution [1].

D. Algorithm for Chance-Constrained Iterative Linear-
Quadratic Stochastic Game

The proposed algorithm is summarized in algorithm 1. After
obtaining the Nash equilibrium, a line searching procedure is
necessary to find a suitable step size. We use the definition of
step size as in equation (7) in [2]. We define the merit function
to be M = 1

2‖
∂li

∂ui ‖2 and apply a backtracking line search
procedure to find a step size that satisfies the Armijo condition
[20]. We follow [21], [5] to use a zero-noise realization to
forward the dynamics. Then we use the extended Kalman
filter [18] to propagate the belief to obtain the next iteration’s
nominal trajectory.

V. EXPERIMENTS

A. Experimental Setup

In this section, we evaluate the performance of
CCILQGames in three autonomous driving scenarios:
lane merging, three-player intersection, and roundabout. We
also further conduct a Monte Carlo study to test the proposed
algorithm in noisy environments. We compare our algorithm
to SDG with different constraint penalty weights. Since
SDG is not open-sourced, we implement SDG by ourselves.
All experiments are conducted on a 2.2 GHz Intel Core i7
laptop. We run CCILQGames 50 times for each scenario to
calculate the computation time’s mean and standard deviation.
Computation time for lane merging, roundabout, and three-
player intersection are 0.1017 ± 0.007.3 s, 0.4230 ± 0.0212
s, and 0.0866± 0.0086 s respectively.

1) Dynamics and Measurement Model: We use the unicycle
model as the vehicle dynamic model throughout the three sce-
narios. The state of the vehicle contains its position, heading
angle, and velocity. The agent’s control input is composed of
its angular velocity and scalar acceleration.
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Fig. 2: The first row illustrates the results for the lane merging scenario, while the second row shows the results for the
roundabout scenario.

Algorithm 1: Chance-Constrained Iterative Linear-
Quadratic Stochastic Game

Input: Initial belief b0 = (x̂0,Σx0), nominal control ū
Output: Belief trajectory b̄ = {b̄0, b̄1, ..., b̄L}, ū and

feedback control policy {γi}, i ∈ {1, ..., N}
1 b̄← Propagate belief with ū;
2 while max chance constraint error > tolerance do
3 Linearize chance constraints around b̄ and evluate

chance constraint violations;
4 update λ, µ;
5 while not converge do
6 Linearize the system and chance constraints

around the nominal trajectory b̄, ū;
7 Transform Lagrange multiplier and penalty

terms, then add to the running costs;
8 Obtain a quadratic cost approximation;
9 {γi} ←Solve the linear-quadratic stochastic

game;
10 Backtracking line search for step size α;
11 b̄, ū← Propagate belief with control policy

{γi};
12 end
13 end

We use the following measurement model for each agent in
all three scenarios:

yik+1 = xik+1 + vik+1, vik+1 ∼ N (0,Σvi
k+1

), (23)

where xik+1, y
i
k+1 are the state and measurement of agent i

at time step k + 1. vik+1 is the associate noise. The joint
measurement model is just the concatenation of all agents’
measurement models.

2) Costs and Chance Constraints: We consider quadratic
costs for distance from the lane center, deviation from the
nominal speed, and control efforts, which are in the same form
as in [2]. We consider chance constraints on the proximity
and collisions with obstacles. For the proximity constraints,
the minimum distance threshold between two agents is set to
3 m. The obstacle avoidance constraint is formulated using
the convex feasible set [22], [13]. We augment the cost of
the SDG simply with quadratic penalties for proximity con-
straint violations and linear penalties for obstacle avoidance
constraint violation, all weighted by a penalty weight (1 or
400). We set the chance constraint threshold p to 0.95 in all
experiments.

B. Lane Merging

As shown in figure 2, two vehicles need to merge into the
same lane in the lane merging scenario. Also, vehicles need to
avoid collisions between each other and obstacles on the lane
boundary. The planning horizon is 3 seconds with 20 time
steps.

Figure 2(a) illustrates the planned trajectory using
CCILQGames, in which the ellipses represent the covariance
of the state. As demonstrated in the speed profile (Figure 2(b)),
the red vehicle speeds up to cut into the lane ahead of the
blue vehicle. By contrast, the blue vehicle slows down and
allows the blue vehicle to merge. As shown in figure 2(c),
a small penalty weight of 1 leads to unsafe strategies: two
vehicles do not avoid collisions with each other. The Monte
Carlo tests further validate a high probability of constraint
violations. A large penalty weight of 400 leads the blue vehicle
to slow down to let the red vehicle passes first. Notice that the
penalty weight of 400 does not lead to a conservative strategy
in this case. But the corresponding strategy is less safe than
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CCILQGames’s strategy, as we would illustrate in the Monte
Carlo Tests.

C. Three-Player Intersection

In the three-player intersection scenario, the planning hori-
zon is 2.5 s with 16 time steps. Figure 1(a) illustrates the
trajectory planned by CCILQGames. The red vehicle acceler-
ates to pass the intersection ahead of the green vehicle. On
the other hand, the blue vehicle slows down to wait for the
red vehicle to go across the intersection. Interestingly, the
red vehicle tweaks to avoid collisions. SDG with a small
penalty weight could lead to unsafe behaviors. All vehicles
go straight across the intersection without avoiding collisions
(Figure 1(c)). However, a large penalty weight again leads to
conservative strategies, as only the red vehicle could pass the
intersection while the others turn back (Figure 1(d)).

D. Roundabout

The planning horizon is 2.5 s with 16 time steps for
the roundabout scenario. Figure 2(e) illustrates the trajectory
planned by CCILQGames. The red vehicle accelerates to
escape the roundabout and cuts into the lane earlier than the
blue vehicle. The blue vehicle’s strategy is to slow down to
let the red vehicle pass first. The green vehicle also slows
down to leave space for the blue vehicle. Figure 2(g) shows
the trajectory for SDG with a penalty weight of 1. The red
vehicle turns around after escaping the roundabout since the
cost only encourages to stay close to the lane center instead of
specifying a direction. The strategy leads to collisions, which
are validated by the Monte Carlo Tests. By comparison, a
large penalty weight again leads to conservative behaviors,
as only the blue vehicle navigates successfully (Figure 2(h)).
The green vehicle slows down and could not get out of the
Roundabout while the red vehicle turns back.

E. Monte Carlo Tests

We conduct a Monte Carlo study to test the performance
of CCILQGames in stochastic environments. We run 100
trials for each scenario. The process noises are sampled from
N (0, 0.1I), with the exception of heading angle’s variance be-
ing 0.05. The observation noises are sampled fromN (0, 0.6I),
with the exception of angular velocity’s variance being 0.1.
The noises’ covariances are the same for planning (the planned
trajecctoreis are shown in previous subsections) and Monte
Carlo testing. Recall that our constraints are imposed on all the
time steps in all three experiments. As shown in our problem
formulation, we treat the same type of constraints at different
time step as different constraints (e.g., the proximity constraint
at time steps 1 and 2 are counted as two different constraints).
Therefore, we calculate the statistics of constraint violations
for each constraint in 100 trials. Figure 3 shows the histograms
of constraint violations in 100 trials for CCILQGames and
SDG in the three scenarios.

The maximum number of constraint violations among all
the constraints for CCILQGames are 18,16,18 in lane merging,
intersection and roundabout scenarios in 100 trials. By com-
parison, the maximum number of constraint violations among

all the constraints for SDG with penalty weights 1(400) are
54 (33), 62 (25), 54 (22) in lane merging, intersection and
roundabout scenarios in 100 trials.

F. Limitations

We would like to discuss several limitations of
CCILQGames. First, since we handle the chance constraints
via linear approximations, there are no strict chance constraint
satisfaction guarantees. Additionally, the linearization
techniques could only specify a chance constraint threshold
for each individual constraint instead of a joint threshold
for satisfying all the constraints. As a result, CCILQGames
achieves rates of 48%, 51%, and 51% of constraint satisfaction
for all the constraints in lane merging, intersection and
roundabout scenarios in 100 trials. By comparison, SDG
with the penalty weight 1 (400) achieves rates of 13%
(35%), 6% (65%), 19% (32%) in lane merging, intersection
and roundabout scenarios in 100 trials. We argue that the
above limitations could be mitigated or resolved via an Model
Predictive Control (MPC) formulation. For example, [23] uses
the same technique to handle chance constraints in an MPC
framework and achieves zero chance constraint violations in
experiments. Another possible way to mitigate this limitation
is to use the Bonferroni correction [24] to assign a chance
constraint threshold to each individual constraint. One more
limitation of CCILQGames is that the Kalman filter could
experience numerical instabilities in some cases (e.g., the
covariance matrix becomes not symmetric positive definite).

VI. CONCLUSIONS

We have presented a novel algorithm for solving stochastic
dynamic games under chance constraints. Our work extends
the deterministic ILQGames to stochastic games with both ob-
servation and process noises while handling chance constraints
using the framework of augmented Lagrangian. We showcased
the proposed algorithm in the lane merging, three-player in-
tersection, and roundabout scenarios. The experimental results
proved the effectiveness of the proposed approach.

APPENDIX

A. Proof for Theorem 1

Proof. We can reformulate the cost function as follows:

Ji = E
X0,...,XL,Y0,...,YL

[
1

2
xTL(Qi

LxL + 2liL)

+

L−1∑
k=0

(
1

2
xTk (Qi

kxk + 2lik) +
1

2

N∑
j=1

ujk
T

(Rij
k uk + 2rijk ))],

= E
Y0,...,YL

[
1

2
x̂TL(Qi

Lx̂L + 2liL)

+

L−1∑
k=0

(
1

2
x̂Tk (Qi

kx̂k + 2lik) +
1

2

N∑
j=1

ujk
T

(Rij
k uk + 2rijk ))]

+

L∑
k=0

1

2
trace(Qi

kΣxk
),

(24)
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Histrogram for SDG with penalty weight = 400 
in Lane Merging Scenario
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Historgram for CCILQGames in 
Three Player Intersection Scenario
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Historgram for SDG with penalty 1 in Intersection Scenario
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Histogram for CCILQGames in Roundabout Scenario
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Fig. 3: Histograms of constraint violations for all the constraints in 100 Monte Carlo Tests, with sampled process and observation
noises.

where x̂k is the mean of the state at time step k. Notice that the
trace terms trace(Qi

kΣxk
) are constants and do not depend on

control strategies. Due to assumption 1, the dynamics of x̂k are
the same for different agents. In other words, given the same
realizations of the observation noises, all the agents would get
the same x̂k from their Kalman filters. Now since x̂k is fully
observable (given by Kalman filter [25]), we have reduced
the problem to a stochastic linear-quadratic game with closed-
loop perfect state information pattern. By Corollary 6.4 in [1],
the Nash equilibrium of the linear-quadratic stochastic game
with exact state information coincides with the deterministic
version of the linear-quadratic game. We add linear costs of
states and controls into the cost function, which is slightly
different than the original setting in [1]. But the corollary still
holds, with minor modifications in the derivation, which is not
included due to page limits.
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