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Learn to Grasp via Intention Discovery and its
Application to Challenging Clutter

Chao Zhao, Chunli Jiang, Junhao Cai, Hongyu Yu, Michael Yu Wang, and Qifeng Chen

Abstract—Humans excel in grasping objects through diverse
and robust policies, many of which are so probabilistically rare
that exploration-based learning methods hardly observe and
learn. Inspired by the human learning process, we propose a
method to extract and exploit latent intents from demonstrations,
and then learn diverse and robust grasping policies through self-
exploration. The resulting policy can grasp challenging objects
in various environments with an off-the-shelf parallel gripper.
The key component is a learned intention estimator, which
maps gripper pose and visual sensory to a set of sub-intents
covering important phases of the grasping movement. Sub-
intents can be used to build an intrinsic reward to guide policy
learning. The learned policy demonstrates remarkable zero-shot
generalization from simulation to the real world while retaining
its robustness against states that have never been encountered
during training, novel objects such as protractors and user
manuals, and environments such as the cluttered conveyor.

Index Terms—Grasping, Dexterous Manipulation, Reinforce-
ment Learning, Imitation Learning, Learning from Demonstra-
tions

I. INTRODUCTION

Grasping is a fundamental maneuver in many tasks, and
grasping a particular object may require a dedicated policy.
For example, consider a common grasping scenario where the
robot needs to grasp the credit card with a parallel gripper, as
shown in Fig. 1. Grasping a credit card object is challenging
because the card is so thin that a successful grasp policy
may require the gripper to interact with the object and utilize
external surfaces to aid manipulation. Although developing
flexible and robust policies for grasping diverse objects is a
breeze for humans, the current state of the art in robotics is
still far from such a capability.

Recent studies have focused on autonomous grasping policy
discovery. This area is dominantly driven by model-free
reinforcement learning (RL), which obtains grasping policies
by self-exploration [1], [2]. However, an important issue with
exploration-based methods is that some grasping policies are
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Fig. 1: A parallel gripper with the learned policy picking objects using vision
for sensing. The time-lapse image shows the actions of the gripper as it
interacts with a credit card to pick it up. The red arrow shows the card’s
motion. The depth image on the bottom-left shows the visual observation.

probabilistically rare, which results in the discovered grasping
policies having a similar pattern (i.e., approaching the object
and closing the fingers). In this regard, imitation learning offers
a way to learn robot skills by mimicking the expert behaviors
in demonstrations [3], [4]. However, existing methods only
attempt to match the expert action sequences [5], ignoring the
understanding of high-level goal planning in the demonstration.
As a result, the learned policy cannot be transferred to scenes
absent from the demos, limiting the generalization ability.

Therefore, exploiting dexterous grasping strategies from
human demos while retaining the ability to explore and adapt
to novel scenarios autonomously remains an open problem.
This motivates us to propose a method inspired by the human
learning process to address this challenge.

Evidence from neuroscience suggests that when humans
learn a skill or children learn from others, they selectively
focus on the underlying intents of an actor’s behavior rather
than learning atomic actions [6]. Then, learning is facilitated
by following the intents and self-practice. Inspired by this
intuitive introspection, we propose a framework to mimic this
process to learn grasping, as shown in Fig. 2. At its core,
policy learning is based on a principled solution to incorporate
the intrinsic reward from intents into RL training. The key
component is an intention estimator that predicts probability
distributions of a set of intents. The intents are the temporal
abstraction of the important phases in the grasping trajectories
(e.g., go to a position, rotate, close gripper) compared with
detailed movements. The RL agent leverages the foresight
afforded by the intention estimator to guide policy learning.
Meanwhile, the agent is able to learn policies purely by self-
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exploration when the intention estimator meets novel scenes.
Thus, the proposed approach combines the best of both worlds:
the diversity of policies provided by demonstration and the
adaptability and generalizability brought by self-exploration.

The primary contribution of this paper is the proposed
method for learning dexterous grasping policies that have
the ability to: 1) grasp objects in broad categories, such as
credit cards, Go stones, and soda cans, with only an off-
the-shelf parallel gripper; 2) grasp in scenes that are never
encountered in demonstrations, such as a cluttered table; 3)
learn grasping policies that are unable to be obtained purely by
self-exploration; and 4) only use easy, readily available sensors
such as the depth camera. While some of these features have
been individually demonstrated, we are unaware of published
studies that tackle all four.

II. RELATED WORK

Grasping is a fundamental problem in robotics; it enables
further in-hand manipulation and interaction with the en-
vironment. Conventional analytic methods model physical
processes between the object and the gripper and use model-
based planning to output grasping policies [7]. However, the
complexity of physical analysis typically assumes known
physical properties to make analysis or planning tractable,
which are hard to obtain in practice. Meanwhile, objects are
often occluded in cluttered scenes, which makes analyzing
feasible grasps challenging. Some works have explored using
pre-grasp manipulation, such as sliding [8], to create graspable
poses of objects. For example, [9] grasp an object by pushing
the object against a support surface and lift the object by
pivoting. However, such methods need prior knowledge of the
environment and objects’ physical properties.

Learning-based methods have recently emerged as alter-
natives to robotic grasping [10], [11], as they can detect
grasps from visual features rather than explicitly using prior
knowledge of objects. For example, some grasp synthesis
methods [12], [13] use neural networks to accept visual
observation as input and output pose estimates of feasible
grasps. On the other hand, [14] defines each pixel as a top-
down grasp primitive rather than predicting a grasp pose and
evaluates each grasp quality through a fully-convolutional
neural network. [15] extends this method with an adjustable
finger and a model-based primitive to produce an effective
grasping system. While predefined primitives can improve data
efficiency, they also limit the diversity of policies. Another
line of work uses model-free RL algorithms to acquire the
grasping policy autonomously through self-exploration [1],
[16], [17]. However, the grasping policy is often hard to explore,
particularly as the degrees of freedom increase [18]. Some
studies [19], [20] introduce clustering-based intrinsic rewards
to accelerate RL learning but cannot obtain policies beyond
self-exploration capabilities.

For learning dexterous policies, imitation learning is a
common approach [3], [21], [22]. The well-known imitation
learning method includes behavior cloning, which realizes
a mapping between robot states and actions from human
demonstration. However, the application of imitation learning

to grasping has largely been confined to the quality of expert
demonstrations, and collecting demonstration data is often
expensive and time-consuming [21]. Moreover, the common
issue with these methods is that they are hard to generalize
to unseen objects or environments that are not included in
demonstrations due to distributional shifts and compounding
errors [5],[23]. Other works focus on designing end-effectors to
grasp challenging objects instead of focusing on the grasping
policy. The end effector can be designed by humans or
discovered through learning algorithms [24]. However, end
effectors with complicated designs often only apply to specific
object types, reducing the robot’s versatility and increasing
the system’s complexity.

Compared with the abovementioned studies, our presented
approach substantially improves the diversity of graspable
objects and the grasping policies. Rather than imitating atomic
actions, our method extracts the latent intents from demos
and utilizes them in policy learning, incorporated with self-
exploration. The entire learning is completed in simulation
without expensive demo collection in field conditions and is
consistently effective in zero-shot transfer to the real world.

III. METHOD

In this section, we describe the proposed method for learning
the grasping policy. Our method consists of three phases, as
illustrated in Fig. 2.

First, an intent estimator is trained with simulated grasps to
learn a mapping between the state in a grasp demonstration and
intents (see Sec. III-A). Grasps are generated in the simulation
using the three provided grasp types (see Fig. 3). The intention
estimator captures the environment and robot information using
a network and outputs a set of probabilities representing the
distance between the given state and intents.

In the second phase, the grasping policy is trained with
RL (see Sec. III-B). During training, we exploit two kinds of
rewards: a task reward and an intrinsic reward. The task reward
is sparse and given when the robot successfully grasps. The
intrinsic reward is from the intention estimator and guides the
RL agent when the agent approaches an intent. Chronologically,
the latter appeared intention is both achievable and closer to
the solution than the former. Therefore, providing positive
rewards can facilitate robot learning after each intent is fulfilled.
Such construction compensates for the inability to discover
interesting policies with random exploration.

Last, we transfer and deploy the learned policy to the
physical robot. Our training in simulation only uses rigid
objects with simple geometry, such as the cube and cylinder
(see Sec. III-C). Yet when deployed on a real robot, the robot
successfully handles broad object categories (protractors, Go
stones, etc.) and environments (cluttered table and conveyor)
with only an off-the-shelf parallel gripper.

A. Learning an Intention Estimator

In the first phase of learning, we aim to learn an intention
partitioning strategy with a neural network, as shown in Fig.
3A. The input is a given state from simulated grasp demos, and
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Phase A: Learn an intention estimator in simulation

Simulated demos

State s
MLP Encoder

Conv Encoder

Intention Estimator

Intents’ probability p

Intents label k

Cross-entropy loss L

Phase B: Policy learning in simulation

Simulation

State st

Gripper pose

Depth image

Reward rtotal

PPO

Value Network

Policy Network
Action

State st+1 Intention Estimator

Intrinsic reward r
′

Task reward rtask

+

Phase C: Deploy to real robot

Depth image

Gripper pose Policy Network Action

Fig. 2: System Overview. A: We generate a set of simulated grasps to learn an intention estimator. The state s in a grasp includes the depth image and
gripper pose. They are processed separately using a Conv encoder for the former and an MLP encoder for the latter. Then, the concatenation of two vectors is
fed through the subsequent FC layers to predict probabilities. B: We train our policy with PPO. The RL agent receives the observed state st and predicts the
action at time step t. The robot executes and switches to the next state t+ 1. The intention estimator discerns the intent of the given state t+ 1, and the RL
agent then receives a task reward from the simulation and an intrinsic reward from the intention estimator. C: To transfer to the real world, the policy network
alone is used to control the robot. The wrist-mounted camera provides the depth image, and the gripper pose is from the robot’s proprioception.

the output is a family of probability distributions indicating
how likely the current state is to be divided into each intent.

Intent Segmentation and Data Collection: Considering
a grasp demonstration S = (s1, s2, . . . , sl) represented by
a sequence of states s = (I, h), where I is the camera
observation of the environment, and h is the gripper pose.
The state s ∈ S in a grasp demo can be naturally segmented
into n intents, denoted as K = (k0, k1, . . . , kn), according
to the timing order and similarity. The index of k indicates
the timing order of intents, and an intent kt+1 can only be
reached after completing former intent kt. The h consists of
(x, y, z, α, β, γ, ψ), where (x, y, z, α, β, γ) ∈ SE(3) is the 6D
gripper pose, and ψ is one hot vector representing the opening
and closing of the gripper.

We now give a formal definition of the k-intent segmentation
problem. If k = l, each gripper pose corresponds to a segment.
Otherwise, despite the fact that humans can manually label
segments, the following segmentation algorithm can be used
to reduce labor costs. Let T = (T0, T1, . . .) denote the set
of all possible ways of segmentation for a sequence S. The
sequence S of length l contains n non-overlapping contiguous
sub-sequences, denoted as Ti = (τ1, τ2, ..., τn). Each state s in

segment τi belongs to the intent ki. We denote the dissimilarity
in a segment τi as ei, then the error of segmentation Ti is
calculated as Ep =

∑n
i=0 ei. Thus, we define the optimal

segmentation as to find the minimize Ep in T :

Topt(S, n) = arg min
Ti∈T

Ep(S, Ti). (1)

The Topt(S, n) can be found by the dynamic-programming
(DP) algorithm [25], and the main recurrence of the DP is

Ep (Topt (S[1 . . . l], n)) = {Ep (Topt(S[1 . . . j], n− 1))

+Ep (Topt(S[j + 1, . . . , l], 1))} ,
(2)

where S[1, . . . , j] denotes the sub-sequence of S that contains
states in positions from 1 to j. The function of the recurrence
is to divide the segmentation problem into subproblems and
combine their solutions to form the final segmentation. The
dissimilarity ei in a segment is the sum of the dissimilarities
Λ between states, calculated by the following formula:

ei =
∑

sv,sw∈

 s ∈ τi
2


|Λsv,sw |, (3)
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(a)

(b)
Fig. 3: Data collection for learning the intention estimator. (a) Three
demonstrated grasps; (b) Examples of grasps augmented based on the three
demos in (a). Left: changes in object positions. Middle: changes in the object
orientations. Right: changes in object sizes.

|Λsv,sw | = (|xv − xw|+ |yv − yw|+ |zv − zw|)
+ (|αv − αw|+ |βv − βw|+ |γv − γw|)
+ µ(|ψv − ψw|),

(4)

where λ and µ are the hyper-parameters to adjust the influence
of the gripper orientation and finger condition (i.e., open/close)
change. The distance of the orientation is the relative difference
of Euler angle changes and is normalized. After segmentation,
each state s in a demo is assigned to an intent ki = (1, 2, . . . , n)
as supervision signals.

To learn an intention estimator, a set of grasp demonstrations
needs to be collected and segmented using the above algorithm.
We generate grasps in simulation by augmenting three human-
encoded grasps (see Fig. 2(a)), using invariant and equivariant
principles. Consider an encoded grasp S for an object o with
a pose op. A new grasp S′ can be augmented by the following
procedures. First, we apply a set of transformations to the object
pose op, including changing object positions and orientations.
Then the new grasp S′ is transferred from S via homogeneous
transformation by calculating the SE(3) matrix between op
and o′p, as shown in Fig. 2(b). We also randomize the aspect
ratio of objects at each new grasp generation. Although such
augmentation of grasps leads to some imperfect grasps, these
imperfect demos do not affect policy learning. We further
analyze the influence of imperfect grasp demonstrations in Sec.
III-D and Fig. 4(c).

Intention Estimator Learning: The goal of the intent
estimator is to map the similarity between the given state
and each intent. Operationally, we form it as a classification
problem and use a neural network p = f(s) to learn this
mapping, where the given state s contains a depth image I of
the environment and gripper pose h. The network processes
grasp pose and visual observation in separate channels, and
the output features are combined to feed into a feed-forward
pipeline to calculate probabilities that the given state belongs to
different intents. More precisely, the depth image I and gripper
pose h are processed with a convolutional (Conv) encoder and
a multilayer perceptron (MLP) encoder, respectively. Then the
features are combined using concatenation operation and fed
into three subsequent fully connected (FC) layers with 256,
256, and 128 neurons. The Conv encoder consists of one 1x1

convolutional layer followed by a global average pooling. The
MLP encoder consists of one FC layer. We use the following
cross-entropy loss to train the network, as shown in Eq. 5:

L =
1

N

∑
i

Li = − 1

N

∑
i

n∑
c=1

{ki = c} log (pic) , (5)

where c = (1, 2, 3, . . . , n) is the class index of intents and ki
is the intent class label of the given state.

B. Policy Learning with Intention Estimator

After we train an intention estimator that can discern the
intent of the given state, we distill an intrinsic reward from
its prediction. The intrinsic reward allows the robot to follow
the intent during policy learning in RL and is detailed below.

Problem Formulation: We formulate the picking problem
as a Markov Decision Process (MDP). The MDP is defined
by a state-space S, action space A, a function of reward
R(st, st+1), and the transition probability P (st+1|st, at). At
time step t, a robot agent to pick objects observes the state
st and predicts an action at based on current policy π(at|st).
The rewards from the environment and intention estimator are
provided to the agent afterward and then transition to a new
state st+1. RL aims to learn an optimal policy π that selects
actions that maximize its cumulative reward.

Rewards with Intents: The output probabilities from the
intention estimator are used to design a reward function r′ as
follows:

r′t = p{(ki = t)|(st+1)}, (6)

where st+1 is the state at time step t+1 and p{(ki = t)|(st+1)}
is a predicted probability between 0 and 1 representing the
similarity between the current state and the tth intention kt.
The ki = t represents that we bundle time step t with intent
index ki to encourage the agent to follow the intents during
training. Note the proposed method does not strictly limit
agents to follow intents. In order to grasp in finite steps, the
episode length is fixed to the number of intents.

Meanwhile, a task reward rtask is given at the end of an
episode, 10 for grasping one object successfully and 0 for
otherwise. Thus the full reward function is defined as rtotal =
rtask + r′. When the RL agent meets scenes that are never
encountered in demonstrations, though the intrinsic reward r′

from the intention estimator is almost zero, the agent can still
explore on its own and obtain the task reward rtask to learn
the grasping policy in novel scenes.

Policy Architecture: The policy is trained with Proximal
Policy Optimization (PPO) in simulation. PPO requires training
a value network that forecasts the discounted sum of future
rewards from the current state and a policy network that maps
a current state to actions. The policy and value networks share
the same state input, as shown in Fig. 3. The state is defined
as st := (It, ht), where It is a depth image with a resolution
of 120×120 from the camera, and ht is the gripper pose at
time step t including the position, orientation, and closure
status of the gripper. The policy and value networks share
the same front-end network. It is sequentially processed by
three convolutional layers with kernel sizes of 8 × 8, 4 × 4,



ZHAO et al.: LEARN VIA INTENTION DISCOVERY 5

and 3 × 3, and ht is processed by one FC layer with eight
neurons. Then, the concatenation of two extracted features is
fed through the subsequent two FC layers with 64 neurons and
split into two output layers: one for predicting the action and
another for estimating the value. As a wrist-mounted camera
on a real robot might capture things outside the workspace
after acting at, to reduce the sim-to-real gap, we only update
ht and always use the initial depth observation I0 as the part
of state st instead of updating the depth observation over time.

Actions: In our environment, each policy action at includes
a gripper pose displacement and a vector to control the
gripper closure. The gripper pose displacement is the difference
between the initial pose and the desired one, encoded as
(x′t, y

′
t, z
′
t, α
′
t, β
′
t, γ
′
t), where (x′t, y

′
t, z
′
t) is the relative displace-

ment and (α′t, β
′
t, γ
′
t) are the rotations of the gripper about its

x-, y- and z-axes. The one-hot vector to control the gripper
closure is denoted as ψ′t. We discretize each action’s coordinate
according to the workspace. In addition, the episode will be
terminated if ψt is true. If terminated, the robot returns to its
initial pose, receives new observations, and executes the next
grasp, which provides a certain degree of ability for handling
uncertainty and imperfect executions. For example, if objects
slip from the hand during the last grasp trail, the robot can
try again when it receives new observations after resetting to
its initial pose.

C. Training Details

We train the policy in the Pybullet simulator[26]. The
training process consists of two stages. First, we learn the
intention estimator from grasp demos, and then the RL agent
explores and learns the grasping policy with the aid of the
intrinsic reward constructed by the intention estimator. To
train the intention estimator, we generate 10000 grasps in the
simulation for each provided grasp type using the method
described in Sec. III-A. Each encoded grasps have four poses.
We use n = 3 as the number of intents. Intuitively, when the
gripper closes, it often represents a shift of intention, and thus
we use µ = 5 to increase the influence of such activities in the
dissimilarity calculation. A total of 30000 grasps were used to
train the intention network with cross-entropy loss. The Adam
optimizer was employed, starting with a learning rate of 0.001.
One hundred epochs are performed, and the learning rate is
halved every ten epochs during training.

During the RL policy learning phase, a pool of 64 robots
generates training episodes by downloading the current policy
parameters every 10 epochs from the optimizer. In each
environment, random objects were placed in the workspace
with random poses. Only cuboids, cylinders, and their variants
with different aspect ratios are used during training, as shown in
Fig. 4(a). The robot then collects the episodes in the simulation,
during which the simulator automatically determines the task
reward, and the estimator provides the intrinsic reward. If the
workspace is empty or an object is dropped, the environment
will be reset, at which point objects with random poses will fall
into the workspace again. Finally, the resulting episodes are
sent back to the optimizer. The Adam optimizer with a learning
rate of 10−4 is used. We also deploy domain randomization
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BC 83.5% 23.1% 53.3%
BC-perfect demo 88.7% 26.8% 57.8%
Ours 98.3% 91.2% 94.8%
Ours-perfect demo 98.7% 91.5% 95.1%
Ours-w/o intent 61.2% 86.6% 73.9%

Fig. 4: (a): Examples of environments. The first three rows are similar
environments to the demo, the clutter of the last row is not in the demo
(b): Success rate curve of our policy training. (c): Simulation results with
different element choices of our method (Ours) and behavior cloning (BC).

to make the learned policy robust to a range of real-world
conditions. Fig. 4(b) shows the learning curve for the final
model training.

D. Simulation Results

After training, the policy network alone is deployed to the
robot in both simulation and the real world. In simulation
experiments, we set up the following environments: a) Scenes
in demonstrations (Similar Scene): environment constructed
with a single object but in new configurations, including object
friction and mass. b) Scenes not in demonstrations (Unseen
Scene): a cluttered scene with multiple objects, where grasping
policies can be found by self-exploration. Fig. 4(c) summarizes
the result tested on similar and unseen scenes in simulation.
The learned policy from the final model (denoted as Ours)
is able to grasp the object with success rates of 98.3% in the
similar scene and 91.2% in the unseen scene (row 3 in Fig.
4(c)). In contrast, removing the intent estimator from RL policy
learning (denoted as Ours-w/o intent), the success rates are
considerably lower (row 5 vs. row 3 in Fig. 4(c) because
pure RL exploration cannot find a successful grasping policy
for thin objects such as cards. Meanwhile, the policy directly
learned by behavior cloning (denoted as BC) using the same
demonstrations performs better than Ours-w/o intent but
lower than Ours. This validates our hypothesis that learning
from intent (row3 in Fig. 4(c)) can help the agent learn complex
and better policies while retaining its ability to explore unseen
scenarios beyond directly cloning policies (row 1 in Fig. 4(c))
or exploring entirely on its own (row 5 in Fig. 4(c)). Moreover,
the method of behavior cloning achieves poor performance in
the unseen scene. In comparison, our model generalizes well
to the novel scene.

We also investigate the impact of demonstration quality on
policy learning. A total of 12.3% of demos for training intent
estimators fail. We remove these imperfect demonstrations
and use the remaining perfect demos to learn the policy using
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behavior cloning and our method (row 2 and row 4 in Fig. 4(c)).
We observe that by using perfect demonstrations, the success
rate of behavior cloning increases by more than 5% compared
to using imperfect demonstrations (row 2 vs. row 1 in Fig.
4(c)). In contrast, our method does not rely on the quality of the
demonstration. It achieves comparable performance with the
one learned with perfect demonstrations (row 3 vs. row 4 in Fig.
4(c)). Because when the intent estimator’s guidance is biased
due to imperfect demonstrations, the RL agent can revise the
policy through self-exploration, illustrating the superiority of
learning from intents rather than direct cloning atomic actions.
Such ability also helps agents to learn in unseen scenes that the
agent seamlessly switches to self-exploration when meeting
novel scenes, allowing agents to obtain policies in scenes
that are not demonstrated. Real-world experiment results are
presented in Sec. IV.

IV. REAL-WORLD EXPERIMENTS

We executed a set of experiments to evaluate our system in
the real world. The code of the presented work is available
https://robotll.github.io/LearnfromIntents/

A. Hardware Setting

Depth camera

Our gripper

Table

Conveyor

Test objects
Fig. 5: Our hardware setting for real-world experiments.

As shown in Fig. 5, we deployed the learned policy on
an off-the-shelf robotic grasping platform, including a 6-DOF
robot arm equipped with a robotiq140 parallel gripper and an
Intel L515 depth camera.

B. Real Robot Experiment

In this section, we quantitatively evaluated our picking
system and other state-of-the-art methods with two protocols.
In the first protocol, which we refer to as “isolated object
grasping”, the robot attempted to grasp a single object lying
in the workspace. We also used a second protocol where the
robot cleaned a pile of mixed objects randomly dumped into
the workspace. This test was more challenging as the robot
had to avoid collisions with other objects while grasping. We
used two metrics for evaluation: successful picks per attempt
(Success Rate) and picks per hour (PPH). A successful grasp
is grasping only one object and not pushing any other objects

out of the workspace. Tab. I summarizes the results of the
learned policy in the real world.

We first examined the performance of our policy with the
first protocol (col. 1-8 in Tab. I) on the table environment.
Our method (Ours) obtained success rates of over 90% for
dominos, tubes, cans, and cosmetics. For the most challenging
objects, including cards, user manuals, protractors, and Go
stones, our method achieved success rates of over 80% for
cards and over 60% for the other objects. In contrast, the
state-of-the-art 6-DoF grasp synthesis method (VPN) [13] and
the learning-based planar grasping method (Planar) [14] could
not successfully grasp cards, user manuals, and protractors.
Notably, when testing dominos, tubes, and Go stones using
the VPN baseline, we manually select top-down grasp poses;
otherwise, the VPN method cannot detect a feasible grasp for
these objects. Meanwhile, the behavior cloning (BC) method
performed worse with all test objects.

We then evaluated our learned policy on the cluttered table
populated by multiple objects (column 9 in Tab. I). Our method
stably obtained a success rate of 82% in the challenging dense
clutter. This level of performance is beyond other baselines.
Also, the success rates of behavior cloning dropped below
15% on mixed objects due to the inherent compounding error
and distribution shift. From Tab. I, the protractor and the Go
stone are the most challenging to grasp among test objects.
We hypothesize that this happened because protractors and Go
stone have complex geometries and dynamics different from
the training objects, increasing the difficulty of generalization.
The other methods also perform less effectively.

At last, to emphasize the generalization ability of our learned
policy and the value of using an off-the-shelf parallel gripper
alone to grasp objects in broad categories, we also focused
on comparing the presented approach with other methods in
a conveyor environment common in industry (see Fig. 6A).
The belt on the conveyor has higher friction than the table
environment and is elastic. In addition, the significant variation
of material properties over the surface adds extra noise to the
depth camera. Overall, our method reported in the third row
still achieved a higher grasp success rate (except for the tube)
and PPH in all conditions. The tube has a lower success rate
as it has a different non-centrosymmetric shape, making it
easier to grasp from the head rather than the object’s center.
In contrast, all training objects are centrosymmetric and do
not have such a characteristic.

The learned policy manifests a dexterous behavior, as shown
in Fig. 6. The robot approaches the protractor and continues
interacting to reach a state that is feasible to grasp (see Fig.
6C). This distinguishes the presented approach from other
exploration-based methods, which confine the policy to a
format of approaching the object with a certain pose, closing
the finger, and avoiding interaction with objects (see Fig. 6D
and 6E). We can also observe that the behavior cloning method
performs poorly due to the distribution shift issue, further
showing the significance of learning from intentions. Note
also that the policy learned by our method is more robust
and not tied to particular objects. Fig. 6B shows the learned
policy responding to different poses of the same object. The

https://robotll.github.io/LearnfromIntents/
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TABLE I: Results of experiments in the real world.

ENV Method

Credit Card User manual Protractor Domino Tube Go Stone Soda Can Cosmetic Jars Dense Clutter

SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH

Table VPN [13] 0% - 0% - 0% - 98% 101 98% 101 22% 23 80% 82 84% 87 38% 39

Planar [14] 0% - 0% - 0% - 96% 346 92% 331 64% 230 90% 324 82% 295 66% 238

BC 50% 178 46% 163 18% 64 90% 320 84% 298 52% 185 96% 341 86% 305 12% 43

Ours 82% 291 76% 270 64% 227 98% 348 94% 334 68% 241 96% 341 92% 327 82% 291

VPN [13] 0% - 0% - 0% - 98% 101 98% 101 22% 23 84% 87 82% 84 52% 54

BC 38% 135 34% 121 12% 43 90% 320 84% 298 40% 142 92% 327 86% 305 10% 36

Ours 80% 284 68% 241 60% 213 98% 348 92% 327 64% 227 98% 348 90% 320 78% 277
* SR stands for Success rate. ∗∗ Dense Clutter: Mixed objects on the cluttered table or the conveyor belt.

Conveyor

A: Conveyor
Ours

B: Table
Ours

C: Table
Ours

D: Table
Planar [14]

E: Table
VPN [13]

Fig. 6: A: our method (Ours) grasps from a cluttered conveyor; Successful grasp. B: our method (Ours) responds to a soda can with different poses; Successful
grasps with robust grasping behavior. C: our method (Ours) grasps a protractor; Successfully grasp. D: top-down grasp (Planar [14]) cannot pick the credit
card. The card slips out of the fingertip. E: 6-DoF grasp synthesis method (VPN [13]) fails to grasp the user manual due to the collision.

TABLE II: Analysis of generalization

Method Use extra objects? Protractor Go stone Tube
Phase A* Phase B** Sim Real Sim Real Sim Real

Ours No No 67% 64% 72% 68% 95% 94%
Ours-extra No Yes 97% 84% 98% 88% 98% 98%

Ours-w/o intent −∗∗∗ Yes 0% 0% 93% 84% 98% 98%
* Intention estimator learning stage. ∗∗ Policy learning stage. ∗∗∗ Phase A excluded.

policy identifies purely from observations and adopts different
strategies. Such behavior is not specified during training in
any way and is discovered by itself. Our training environment
features only simple rigid objects, with no complex geometry or
compliance, such as protractors and user manuals. Nevertheless,
the learned policy successfully meets the diversity of real-world
conditions encountered at deployment.

C. Further analysis of generalization

In this section, we investigate 1) the effect on the success
rate of adding novel objects, which perform relatively poorly
during real-world testing, into the policy training phase; 2)
how well the intention estimator, trained on only cube and
cylinder, generalizes to different objects. For the first question,
we add models of the protractor, Go stone, and tube to the
policy learning phase (i.e., Phase B in Fig. 3) and train with

our proposed method (denoted as Ours-extra). Qualitative
real-world and simulation results (row 2 vs. row 1) show
that the success rates of these objects can be improved by
adding their models to training. For the second question, we
learn the policy with extra objects and without using the
intention estimator, denoted as Ours-w/o intent in Tab. II, and
compare its performance with Ours-extra. The results (row
3 vs. row 2) show that the intention estimator successfully
generalizes to objects that differ from those used in the
intention estimator training phase. Ours-extra achieves an
over 90% success rate for grasping the protractor, while
Ours-w/o intent, which only purely relies on self-exploration,
cannot grasp the protractor successfully. Meanwhile, Ours-
extra achieves higher performance for the Go stone than Ours-
w/o intent. Both results show the successful generalization of
the intention estimator to different novel objects. The results
also show that without the guidance of the intention estimator,
RL agents’ self-exploration cannot discover a successful policy
to grasp challenging thin objects (e.g., protractor).
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V. DISCUSSION AND FUTURE WORK

Unlike other state-of-the-art methods, our approach mimics
the human learning process, which abstracts and learns intent
from demonstrated grasps, and then develops grasping policies
through self-exploration. Despite the challenging objects, our
method achieves up to 82% success in the dense clutter. While
a set of demoed grasps need to be collected, all grasps are
collected automatically in the simulation based on three human-
encoded grasps. This minimizes the workload on humans. On
the other hand, our approach leverages the intent as a reward
during RL policy training without imitating detailed motion.
Hence, it can learn to react to environments and scene settings
not included in the demos.

We see several limitations and opportunities for future
research. First, our result describes a far wider range of
objects, which achieves substantial improvements over other
approaches. Future research could extend the present work
to include grasping deformable objects. Another hint is that
we hypothesize that diverse environments and demos could
extend the presented work to long-horizon tasks since the
proposed methodology is generic concerning the tasks. Finally,
the presented work relies on human-encoded grasps to learn
complex policies that self-exploration cannot discover. This
is a significant advantage in that some grasping policies are
hard to discover with pure exploration. Nevertheless, humans
can easily learn behavior from videos or descriptions in books
instead of human-encoded movement. A major opportunity for
future studies will be to extend the proposed work to develop
a method that can directly learn grasping policies from video
or language descriptions.
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