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GraffMatch: Global Matching of 3D Lines and
Planes for Wide Baseline LiDAR Registration

Parker C. Lusk1, Devarth Parikh2, Jonathan P. How1

Abstract—Using geometric landmarks like lines and planes
can increase navigation accuracy and decrease map storage
requirements compared to commonly-used LiDAR point cloud
maps. However, landmark-based registration for applications like
loop closure detection is challenging because a reliable initial
guess is not available. Global landmark matching has been
investigated in the literature, but these methods typically use
ad hoc representations of 3D line and plane landmarks that are
not invariant to large viewpoint changes, resulting in incorrect
matches and high registration error. To address this issue, we
adopt the affine Grassmannian manifold to represent 3D lines
and planes and prove that the distance between two landmarks
is invariant to rotation and translation if a shift operation
is performed before applying the Grassmannian metric. This
invariance property enables the use of our graph-based data
association framework for identifying landmark matches that can
subsequently be used for registration in the least-squares sense.
Evaluated on a challenging landmark matching and registration
task using publicly-available LiDAR datasets, our approach yields
a 1.7x and 3.5x improvement in successful registrations compared
to methods that use viewpoint-dependent centroid and “closest
point” representations, respectively.

Index Terms—Localization; Mapping; Recognition

I. INTRODUCTION

ESTIMATING the rigid-body transformation between two
sensors is a fundamental component of many mobile

robotic systems. Wide-baseline registration is particularly chal-
lenging since an odometry signal may not be accurate, or
even available, to use as an initial guess. This situation arises
in core tasks such as loop closure generation, multi-robot
map merging, extrinsic calibration, and global (re)localization.
In these cases, the relative rotation and translation between
sensors can instead be accurately estimated by matching co-
visible features and optimizing for the best feature alignment.

In visual settings, appearance-based descriptors are com-
monly used for image retrieval or place recognition [1]–[3].
However, appearance-based techniques are often limited due
to their sensitivity to illumination, weather, and viewpoint
changes. Working with 3D sensors can alleviate these issues
because of the geometric nature of the data [4], [5], but
this requires storing and processing large point clouds, which
can hinder online operation. In the context of LiDAR-based
navigation, using geometric landmarks such as lines and
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Fig. 1. Successful matching and alignment of line and plane landmarks from
two LiDAR scans 180 deg and 14 m apart, without an initial guess. Sensor
origins are denoted by the coordinate axes on top of the cars and scans are
offset in the z direction for visualization. Poles and planar patches extracted
from each LiDAR scan are represented as 3D affine Grassmannian elements.
Using the associated Riemannian metric allows for the evaluation of geometric
consistency between landmark pairs. Correspondences (shown with green lines
connecting landmark centroids) are identified using our GraffMatch algorithm
and then used to estimate the rotation and translation between the two sensors,
yielding an alignment error of 0.8 deg and 12 cm.

planes has resulted in storage-efficient maps [6]–[8], better
scene understanding [9], [10], and low-drift odometry and
mapping [11]–[14]. However, existing geometric landmark
matching techniques tend to assume 2D motion only [8], [9],
use local association strategies given an initial guess from
odometry [14], [15], or use a series of heuristic checks [16]–
[18] that lead to low matching success rate. SegMatch [19]
uses point clusters as landmarks, but the repeatability of
cluster segmentation may strongly depend on viewing angle,
especially in the presence of partial occlusion or object motion.

Recent successes in graph-based data association [20], [21]
have significantly increased the robustness of the correspon-
dence selection process in spatial perception problems by
leveraging the notion of pairwise consistency. By matching
constellations of objects that have consistent pairwise distances
across two views, good correspondences can be identified even
in the presence of many bad ones. Global data association
techniques do not require an initial registration guess, but rely
on a correctly defined pairwise distance that is invariant to
transformation; for example, the Euclidean distance between
two rigidly-attached points does not change even as those
points are rotated and translated. Existing works frequently
use Euclidean distance between line or plane pairs, using
representations such as the centroid [8], which is not well-
defined for infinite lines and planes, or the “closest point” (CP)
parameterization [13], which lacks the necessary translation
invariance because of its dependence on sensor origin.

Instead, we represent line and plane landmarks naturally
as elements of a Grassmannian manifold, which is the space
of all linear subspaces. In particular, we utilize the affine
Grassmannian manifold, which allows for the representation of
affine subspaces (i.e., linear subspaces not necessarily contain-
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ing the origin). Thus, invariant distances between geometric
primitives can easily be defined in a principled manner using
the Grassmannian metric, enabling the use of our robust,
global data association framework [20]. Then, the rigid trans-
formation between a pair of candidate loop closure scans can
be estimated by solving a line and plane registration problem
with known correspondences in the least-squares sense.

This letter presents an evolution of our previous work [22]
by providing further validation on additional datasets, an in-
depth experimental analysis, and new applications of our
method in automatic extrinsic sensor calibration. In summary,
our main contributions are:
• the introduction of the affine Grassmannian for global

data association of lines and planes, leading to 3D regis-
tration without requiring an initial guess;

• a least squares estimator for rigid transformation using
line and plane representations directly, leading to accurate
rotation and translation estimation;

• experimental evaluation in the context of loop closure,
using challenging scan pairs of LiDAR datasets, showing
superior recall and accuracy over the state-of-the-art.

We emphasize that this is the first work using the affine
Grassmannian manifold for data association, which provides
a unifying and principled framework for associating points,
lines, planes (or higher dimensional linear objects) in spatial
and geometric perception problems encountered in robotics.

II. RELATED WORK

Geometric registration algorithms are either local or global,
depending on if an initial guess is required. Local methods
are often used in scan matching (e.g., ICP [23]), where
consecutive scans typically have small displacement between
them. In contrast, global methods do not need an initial
guess to succeed and are often preferred in settings like loop
closure detection because no good initial guess exists. In point-
based registration, global methods first generate candidate
point correspondences, typically based on local descriptors [5],
[24], [25]. The set of putative correspondences are likely to
contain incorrect matches, called outliers, and so robust iter-
ative estimation techniques like RANSAC [26] or graduated
non-convexity [27], [28] can be used to select a subset of
correspondences that best support the model. Recently, non-
iterative robust approaches based on graph theory [20], [21]
have been introduced that significantly improve the perfor-
mance of estimation in the presence of outliers. In this work,
we apply our CLIPPER algorithm [20] to the domain of global
matching of 3D lines and planes.

Poles/lines and planes commonly exist in man-made envi-
ronments and have recently been used as landmarks in Li-
DAR navigation. The benefits of using higher-order geometric
primitives include lower storage and processing requirements
since there are fewer pole and plane objects than points [6]–
[8], and more accurate odometry because it is infeasible to get
exact point-to-point correspondences from sparse LiDAR point
clouds [15]. Local methods for landmark-based registration
rely on identifying the closest landmarks between two scans,
given an initial alignment guess. Nearest neighbor search
requires calculating distances between landmarks, which is

dependent on the landmark representation. The most common
representations include vector form for lines, Hesse normal
form for planes, and the CP vector for lines/planes [29].
The CP representation compactly encodes position and vector
orientation in a 3-vector, and the Euclidean distance is often
used to find similar landmarks [13], [15]. For lines in vector
form or planes in Hesse normal form, both the angle between
vectors and the distance between points is used [12]. If
points are retained in one of the scans, then the point-to-
landmark RMSE can also be used [14]. Other methods [6],
[7], [30] project the centroids of the detected landmark onto
the ground plane, creating 2D points. However, these methods
assume the landmark (infinite line or plane) has a well-defined
centroid, the ground plane is known, and that 2D registration
is sufficient.

Since descriptors for 3D lines and planes have not been
thoroughly explored, most global methods rely on a series of
geometric tests to assign correspondences [16]. LiPMatch [18]
adopts an interpretation tree for plane matching [17] in loop
closure detection, using unary and binary constraints between
candidate plane matches to determine the largest set of consis-
tent matches. However, some of these constraints are sensitive
to viewpoint change (e.g., centroid, area). ClusterMatch [8],
[9] matches poles/lines and planes by iteratively searching for
landmark pairs with similar pairwise centroid distance until a
large number of matches supports the resulting transformation.
A critical drawback of these methods is that, although global
methods, the heuristic geometric tests that are used are often
heavily view dependent. In contrast, our method performs
global registration by searching for a set of correspondences
that have consistent intrascan pairwise distances, using a
distance definition based on their natural representation as
elements of Grassmannian manifolds.

The Grassmannian has been used extensively in subspace
learning [31], especially in face recognition [32] and appear-
ance tracking [33] tasks in computer vision. Calinon [34]
outlines the use of Riemannian manifolds in robotics and notes
the under-representation of the Grassmannian manifold.

A. Preliminaries
We briefly introduce the Grassmannian manifold, but a

more comprehensive introduction is provided in [35]. The
Grassmannian is the space of k-dimensional subspaces of Rn,
denoted Gr(k, n). For example, Gr(1, 3) represent 3D lines
containing the origin. An element A ∈ Gr(k, n) is represented
by an orthonormal matrix A ∈ Rn×k whose columns form
an orthonormal basis of A. Note that the choice of A is
not unique. The geodesic distance between two subspaces
A1 ∈ Gr(k1, n) and A2 ∈ Gr(k2, n) is

dGr(A1,A2) =

min(k1,k2)∑
i=1

θ2
i

1/2

(1)

where θi are known as the principal angles [36]. These angles
can be computed via the singular value decomposition (SVD)
of the corresponding orthonormal matrices of A1 and A2,

A>1 A2 = U diag(cos θ1, . . . , cos θmin(k1,k2))V
>. (2)
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Fig. 2. (a) Example of points in Graff(0, 1) being embedded as lines in
Gr(1, 2). The principal angle between these two linear subspaces is θ1. (b)
When applied directly, dGraff is not invariant to global translation s.

We are specifically interested in affine subspaces of R3,
e.g., lines and planes that may be at some distance away from
the origin. In analogy to Gr(k, n), the set of k-dimensional
affine subspaces constitute a smooth manifold called the affine
Grassmannian and denoted Graff(k, n) [37]. We write an
element of this manifold as Y = A + b ∈ Graff(k, n) with
affine coordinates [A, b] ∈ Rn×(k+1), where A ∈ Rn×k is an
orthonormal matrix and b ∈ Rn is the displacement of A from
the origin. We emphasize that Graff(k, n) 6= Gr(k, n) × Rn.
Instead, an element Y ∈ Graff(k, n) is treated as a higher-
order subspace via the embedding

j : Graff(k, n) ↪→ Gr(k + 1, n+ 1),

A + b 7→ span(A ∪ {b+ en+1}), (3)

where en+1 = (0, . . . , 0, 1)> ∈ Rn+1 (see [37, Theorem 1]).
Fig. 2a shows an example of two points Y1 and Y2 in R being
embedded as different lines j(Y1) and j(Y2) in R2.

The Stiefel coordinates of Y ∈ Graff(k, n),

Y =

[
A b0/

√
1 + ‖b0‖2

0 1/
√

1 + ‖b0‖2

]
∈ R(n+1)×(k+1), (4)

allow for the computation of distances between two affine
subspaces using the Grassmannian metric,

dGraff(Y1,Y2) = dGr(j(Y1), j(Y2)), (5)

with principal angles computed via the SVD of Y >1 Y2. The
vector b0 ∈ Rn is the orthogonal displacement of A, which is
the projection of b onto the left nullspace of A s.t. A>b0 = 0.

For convenience, the line Y` ∈ Graff(1, 3) may also be
represented in vector form as ` = [A; b] ∈ R6, and a plane
Yπ ∈ Graff(2, 3) may be represented in Hesse normal form
as π = [n; d] ∈ R4 where n = kerA> and d = ‖b0‖. Under a
rigid transformation T = (R, t) ∈ SE(3), the transformation
law of lines and planes can be written

`′ = f`(`, R, t) :=
[
RA Rb+ t

]>
(6)

π′ = fπ(π,R, t) := T−>π. (7)

III. METHOD

Given a set Si = {Y`1, . . . ,Y`li ,Y
π
1 , . . . ,Yπpi} with li lines

and pi planes, we refer to the a-th landmark as si,a ∈ Si. Our
method is comprised of the following steps: (i) constructing a
consistency graph based on pairwise landmark distances, (ii)
identifying landmark correspondences via the densest com-
plete subgraph in the consistency graph, and (iii) estimating a
rigid transformation based on the identified correspondences.

u1

u1 : Y`a ↔ Y`b
u2 : Yπa ↔ YπbGraff(2, 3)

Graff(1, 3)
u2

Yπa Yπb

Y`bY`a

f(cu1,u2 )

(8)

Fig. 3. Construction of a consistency graph. Using dGraff , the distance
between a line and a plane in set Si ( ) is compared to the distance between
the two corresponding landmarks in set Sj ( ). The consistency of these two
distances is evaluated using (8) and the edge (u1, u2) is so weighted.

A. Consistency Graph Construction
A consistency graph for two sets Si, Sj is an undirected

weighted graph G = (V, E , w). Each vertex u ∈ V represents a
potential correspondence between landmarks of the same type,
denoted si,a ↔ sj,b. An edge (up, uq) ∈ E between vertices
up, uq ∈ V exists if the correspondence pair is consistent; the
edge-weighting function w : E → [0, 1] indicates the level of
consistency. The correspondence pair up, uq is consistent if
the distance between the underlying landmarks satisfies

cup,uq
def
= |d(si,uip , si,uiq )− d(sj,ujp , sj,ujq )| < ε, (8)

where d is some distance function and, by some abuse of nota-
tion, uip denotes the a-th landmark of Si involved in the corre-
spondence up. Note that the two distances in (8) are between
landmarks internal to sets Si and Sj , respectively. If a pair
of correspondences are deemed consistent, the corresponding
edge is attributed the weight w(up, uq)

def
= f(cup,uq ), for some

choice of f : R+ → [0, 1] that scores very consistent pairs
close to 1. In this paper, we choose f(c)

def
= exp(−c2/2σ2)

for simplicity, although other appropriate functions could be
used. Given a consistency graph, correspondences are selected
that maximize consistency, further explained in Section III-B.

The distance function d must be carefully chosen to en-
sure accuracy of graph-based data association. In particular,
we desire (8) to hold when sj,ub1 , sj,ub2 are the transformed
versions of si,ua1 , si,ua2 , respectively. This invariance property
leads to subgraphs of the consistency graph that indicate a set
of landmark matches.

Definition 1. A distance d : X × X → R is invariant if
d(x1, x2) = d(x′1, x

′
2), where x′1, x

′
2 ∈ X are the transforma-

tion of x1, x2 ∈ X under T ∈ SE(3), respectively.

We establish the invariance of the metric dGraff to rotation
and, under careful application, translation.

Proposition 1. For elements Y1 ∈ Graff(k1, 3), Y2 ∈
Graff(k2, 3) with affine coordinates [A1, b1] and [A2, b2], the
affine Grassmannian metric dGraff is invariant if the affine
components are first shifted to the origin, i.e., if both b1 and
b2 are first translated by −b1.

Proof. See Appendix A.

The intuition of Proposition 1 can be understood from
Fig. 2. As Y1 and Y2 are together translated further from the
origin, the principal angle between j(Y1) and j(Y2) decreases
to zero in the limit. However, the distance between the affine
components of Y1 and Y2 remains the same, no matter the
translation. By first shifting the affine components, we remove
the dependence of the absolute translation in the computation
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of the principal angle, while maintaining the dependence on
the relative translation between Y1 and Y2.

A remaining challenge is to address the insensitivity of
dGraff to the Euclidean distance between landmarks’ affine
components. The yellow curve (s = 0) in Fig. 2b represents
the principal angle between Y1,Y2 ∈ Graff(0, 1) after shifting
them as per Proposition 1, as a function of the relative
translation between Y1 and Y2. Observe that after a distance
of approximately 2 m, the curve quickly asymptotes towards
π
2 . This nonlinearity leads to poor discrimination between
pairs of correspondences whose internal landmarks are far
apart in the Euclidean sense. To combat this when calculating
pairwise affine Grassmannian distances, we first scale the
affine component of each Yi by a constant parameter ρ so that
the affine coordinates of Yi become [Ai, bi/ρ]. The choice of ρ
depends on the average Euclidean distance between landmarks
in the environment and its effect is to bring principal angles
into the linear regime. The selection of ρ is discussed further
in Section IV-B.

With Proposition 1 and the scaling parameter ρ in hand,
a consistency graph between landmarks in Si and Sj can
be constructed. We establish initial correspondences between
each landmark in Si with each landmark of Sj so long as
the landmarks are of the same dimensions k (i.e., we do
not allow lines to be associated to planes). Given additional
information such as color, scan intensity, planar patch area, or
pole radius, this initial set of correspondences could be refined,
but would rely on accurately segmenting lines and planes
across potentially wide baselines. While we restrict landmark
correspondences to be of the same dimension, the machinery
we have developed allows for computing the consistency of
two correspondences whose internal pair of objects have dif-
fering dimension, thereby aiding in subgraph selection. Fig. 3
illustrates evaluating the consistency of a correspondence pair
using the affine Grassmannian.

B. Graph-based Global Data Association
Given a consistency graph, the task of matching objects

from two scans is reduced to identifying the densest clique of
consistent correspondences, formalized as the problem

maximize
u∈{0,1}m

u>M u

u>u
subject to ui uj = 0 if M(i, j) = 0, ∀i, j,

(9)

where M ∈ [0, 1]m×m is the weighted adjacency matrix
(i.e., from w as defined in Section III-A) with ones on
the diagonal, and u ∈ {0, 1}m indicates a consistent set of
correspondences. Note that we choose to maximize the density
of correspondences rather than the cardinality (i.e., maximum
clique) as our previous work has found this objective to
produce more accurate results [20]. Problem (9) is NP-hard,
therefore we solve a particular relaxation which yields high
accuracy solutions via our efficient CLIPPER algorithm (see
[20] for more details).

C. Transformation Estimation
Given pairwise correspondences between landmarks in Si

and Sj , consider finding the best rigid transformation to

simultaneously align matched lines and planes by solving the
optimization problem

min
R∈SO(3),

t∈R3

p∑
i=1

‖π′i − fπ(πi, R, t)‖2 +

l∑
i=1

‖`′i − f`(`i, R, t)‖2.

(10)
This problem can be solved in closed-form by first solving for
the rotation via SVD, then solving for the translation via least
squares, similar to Arun’s method for point cloud registra-
tion [38]. Note that in the case of only parallel planes or only
collinear lines, (10) will be degenerate (i.e., the correlation
matrix used in SVD will be rank deficient). These cases can
be numerically detected via the condition number κ of the
correlation matrix. The benefit of using the line and plane
geometry directly, as opposed to a point parameterization,
is twofold. First, it allows the use of the full information
present in the infinite plane or line, i.e., distance from origin
as well as orientation. Second, it does not require assumptions
about where the “centroid” of the plane or line is, which is
undefined for infinite planes and lines and requires consistent
segmentation of landmarks from point clouds. Together, these
benefits lead to a more accurate rigid transformation estimate
when aligning line and plane landmarks.

IV. EXPERIMENTS

We evaluate our method, called GraffMatch, using LiDAR
scans from three datasets: KITTI [39] sequences 00, 02, 05,
08; KITTI-360 [40] sequences 00, 04, 06, 09; NCLT [41]
sessions 2012-04-29, 2012-05-11, 2012-12-01. We include
comparisons with CPMatch [15], BruteForceRMSE [14],
ClusterMatch [8], and LiPMatch [18], all of which are
used for geometric landmark registration in state-of-the-art
pipelines. CPMatch uses nearest neighbor search on CP vec-
tors and BruteForceRMSE exhaustively calculates the point-
to-line/plane RMSE between each potential landmark match,
followed by the selection of correspondences with low RMSE.
ClusterMatch creates putative correspondences using pairwise
landmark centroid distances followed by inlier validation, and
LiPMatch uses an interpretation tree to find plane correspon-
dences with similar geometric properties. We also include
comparisons using our CLIPPER algorithm, using Euclidean
distance of centroids and CP vectors to score consistency, both
of which lack the required invariance for lines and planes. The
algorithms are implemented using Python and C++ and exe-
cuted on an i9-7920X CPU with 64 GB RAM. The parameters
used for GraffMatch (see (8)) are ε = 0.2 and σ = 0.05. In our
comparisons, we show that GraffMatch successfully matches
more landmarks, leading to more successful registrations.

A. Dataset Preparation
Motivated by place recognition and loop closure detec-

tion applications, we sample poses along the ground-truth
trajectory of each dataset sequence with a stride of 2 m to
create places (i.e., a pose with the LiDAR scan at that pose),
following [4]. For each place p, true revisits are found by
identifying any previously visited place p′ such that the path
length between p and p′ is greater than 50 m and the Euclidean
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Fig. 4. Statistics of the 20k loop closures in the test dataset, divided into three
cases according to each loop closure’s input inlier ratio. The distance between
sensor scans and input inlier ratio are correlated, with the most difficult case
(Case 3) having longer sensor baselines. On average, there are more correct
plane landmark matches than correct line landmark matches.

distance between the places is less than 16 m. Ground-truth
landmark matches between revisited places are generated by
aligning the landmarks using ground truth and solving a linear-
sum assignment problem based on dGraff distances. Valid place
pairs are selected as loop closures from revisits having more
than 4 true landmark matches with registration conditioning
κ < 1e3 and having registration error less than 5 deg and 1 m
using the true landmark matches. This setup provides a scene
matching dataset similar to 3DMatch [5], but having line and
plane landmarks instead of point features.

Lines are detected in point clouds by first selecting pole-
like points found by clustering the LiDAR range image, as
in [42]. For KITTI, pole-like points are selected using semantic
information from SemanticKITTI [43]. These points are clus-
tered using DBSCAN [44] implemented in Open3D [45] and
PCA is used to estimate lines from pole-like clusters. Planar
patches are extracted from the LiDAR scan using our own
implementation1 of [46]. Because planar patches are bounded,
there may be multiple planar patches that correspond to the
same infinite plane, so we merge planes that are similar.
The statistics of correct line and plane landmark matches in
the dataset are shown in Fig. 4, separated into three cases
according to input inlier ratio (IIR), which is defined as the
number of correct matches out of the number of possible
matches and indicates the difficulty of each place pair. Cases
1, 2, and 3 consist of place pairs with IIRs of 0.05+, 0.03 to
0.05, and 0 to 0.03, respectively. These IIR ranges are chosen
to expose the relationship between IIR and sensor baseline
distance and to ensure enough place pairs exist in each case.

B. Selection of Scaling Parameter
The scaling parameter ρ (see Section III-A) is chosen so that

the pairwise affine Grassmannian distance lies in the linear
regime and is therefore more sensitive when scoring consis-
tencies. The Velodyne HDL-64E used in KITTI has a range
up to 120 m, with an average point range in the KITTI dataset
of approximately 80 m. Additionally, the average Euclidean
distance between landmark centroids in KITTI is 26± 16 m,
as shown in Fig. 5. Therefore, we select ρ = 40 so that
relative Euclidean distances of 80 m will be scaled to 2 m,
which is at the end of the linear regime (see Fig. 2b). However,
GraffMatch is not extremely sensitive to this choice and yields
similar matching results for a range of ρ values while holding
other parameters constant, as shown in Fig. 5.

1https://github.com/plusk01/pointcloud-plane-segmentation

0 20 40 60 80
Landmark Centroid Pairwise Distances [m]

0.0 0.2 0.4 0.6 0.8 1.0
Landmark Match Recall, AUC

20
30
40
50
60

ρ

Fig. 5. (left) Pairwise distances of landmark centroids in KITTI. The mean
is 26± 16 m. Using this data, we choose the scaling parameter as ρ = 40.
(right) GraffMatch is not extremely sensitive to this choice of scaling. Other
values of ρ yield similar matching results in KITTI, indicated by the AUC.

C. Evaluation Metrics
We evaluate both landmark matching ability and registra-

tion quality. Correctness of landmark matching is evaluated
via landmark-match recall (LMR) [25], which measures the
percentage of place pairs that can be registered with high
confidence given landmark matches. LMR is defined as

LMR =
1

N

N∑
s=1

1

 1

|Cs|
∑

(i,j)∈Cs

1 (dij < τd)

 > τOIR

 , (11)

where N is the number of place pairs, Cs is a set of land-
mark correspondences between place pair s, and dij is the
dGraff distance between landmark matches after registering
landmarks using ground truth. The inlier distance threshold τd
controls how close two landmarks must be (after registering
the landmarks using the ground truth) to be considered an
inlier correspondence. The output inlier ratio (OIR) measures
the precision of an algorithm’s correspondence set Cs and the
threshold τOIR is used to examine the percentage of place
pairs an algorithm can recover with at least the specified OIR.
Point-based registration works have evaluated performance
with an OIR threshold as low as 0.05 [25], arguing that
RANSAC can be effective even with only a 5% inlier ratio,
even though many iterations would be required. In contrast,
we set τOIR = 0.8 � 0.05 to emphasize the robustness of
GraffMatch and we do not use RANSAC for inlier refinement.
The area under the LMR curve (AUC) generated by sweeping
τOIR ∈ [0, 1] and holding τd = 6 deg is used as a summary
measure, with an AUC of 1 being ideal.

Registration quality is evaluated via rotation, transla-
tion error and registration recall. Error is calculated with
respect to the ground truth transformation (R?, t?) as
arccos((Tr(R̂>R?)−1)/2) and ‖t̂−t?‖. Registration recall is
the percentage of successfully registered place pairs (i.e., loop
closures). A successful registration has an estimation error
within 5 deg and 1 m to the ground truth transformation.

D. Landmark Matching and Registration Results
Data association is attempted on each place pair, after which

the landmark matches are used to estimate the relative rotation
and translation. Fig. 6 plots algorithms’ LMR curves for the
NCLT dataset. GraffMatch is able to match approximately
80% of place pairs with an OIR of 0.8 or more, while other
methods are only able to match less than 40% of place pairs
for the same inlier regime. For correspondence sets having
such a high inlier ratio, additional methods like RANSAC
could be used to further refine the correspondence set if
desired. However, we show that even without this extra step,
GraffMatch is able to successfully select the most correct
correspondences. Fig. 6 also includes line-only and plane-only
variants of GraffMatch to highlight the value of creating a

https://github.com/plusk01/pointcloud-plane-segmentation
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TABLE I. Results for each dataset, divided into three cases based on the feature inlier ratio. We compare each algorithm on recall rate and landmark-match
recall AUC and the highest for each dataset case is bolded. The average rotation and translation errors of the successful registrations are also listed.

CPMatch [15] BruteForceRMSE [14] ClusterMatch [8] LiPMatch [18] CLIPPER-Rn CLIPPER-CP GraffMatch

N Recall
[%]

LMR
AUC
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te
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LMR
AUC
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te
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[%]

LMR
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[%]

LMR
AUC
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te
[cm]
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[%]

LMR
AUC

Re
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te
[cm]

Recall
[%]

LMR
AUC

Re
[deg]

te
[cm]

Recall
[%]

LMR
AUC

Re
[deg]

te
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K
IT

T
I Case 1 1392 24 0.47 1.1 21 9 0.33 1.2 62 35 0.34 1.7 18 16 0.30 1.1 19 62 0.70 1.5 24 42 0.56 1.3 21 81 0.91 1.1 20

Case 2 4560 19 0.53 1.2 23 3 0.34 1.3 69 16 0.18 1.5 17 15 0.32 1.2 22 46 0.55 1.5 27 22 0.38 1.4 25 52 0.78 1.1 19
Case 3 2329 7 0.42 1.5 29 <1 0.23 2.1 66 6 0.10 1.5 21 6 0.23 1.7 30 20 0.30 1.7 31 7 0.17 1.7 33 21 0.59 1.2 24

K
IT

T
I-

36
0 Case 1 182 17 0.51 1.6 29 3 0.34 1.5 28 21 0.28 1.4 26 8 0.23 1.8 35 16 0.32 1.5 26 10 0.35 1.7 32 53 0.85 1.6 32

Case 2 1555 10 0.43 1.6 27 1 0.26 2.4 20 8 0.14 1.3 25 5 0.19 1.7 32 12 0.26 2.0 31 6 0.28 1.7 30 41 0.74 1.8 36
Case 3 7143 4 0.27 1.8 28 <1 0.14 2.6 20 2 0.06 1.7 31 2 0.11 2.0 36 6 0.14 2.2 36 1 0.14 2.1 34 21 0.55 1.9 42

N
C

LT

Case 1 1854 6 0.33 2.0 30 1 0.23 2.6 81 21 0.36 2.9 30 4 0.16 2.5 41 25 0.42 2.7 35 14 0.39 2.7 35 60 0.91 2.7 35
Case 2 676 5 0.38 2.0 25 1 0.20 2.8 89 7 0.17 2.9 34 1 0.09 1.9 44 20 0.36 2.9 39 9 0.32 2.8 36 43 0.78 2.8 38
Case 3 150 4 0.32 2.5 29 <1 0.14 2.6 76 2 0.15 3.2 19 0 0.07 – – 12 0.31 3.2 43 2 0.23 2.4 42 16 0.62 2.9 36

consistency graph utilizing both landmark types. In the NCLT
dataset, there are fewer detected poles than planes, leading to
a gap between the line-only and plane-only variants; however,
using both landmarks results in a greater number of place
pairs having a higher OIR. Additionally, a version denoted
GraffMatch-Naive is included that does not first shift landmark
pairs (as in Proposition 1), and so does not use a distance
that is transformation invariant. The gap between GraffMatch
and GraffMatch-Naive highlights the importance of using an
invariant distance function when scoring landmark association
consistency. In the right of Fig. 6, we see how the LMR
curve changes with the inlier distance threshold τd. By using
dGraff for these geometric landmarks, GraffMatch is able to
achieve an LMR curve most similar to the ground truth. Due
to space limitations, the LMR curves for each dataset are not
shown, but the AUC for each dataset and case is listed in
Table I. In all datasets and cases, GraffMatch successfully
matches more landmarks and has higher registration recall than
other methods. As expected, the local methods CPMatch and
BruteForceRMSE perform worse than global methods because
of wide sensor baselines present in the datasets. However,
with the exception of GraffMatch, the global methods leverage
landmark properties that are view dependent. ClusterMatch
and CLIPPER-Rn use landmark centroids, which are not well-
defined for infinite geometries and may shift depending on
the detection. Likewise, LiPMatch uses centroids as well as
properties such as the area and the extent of planar patches.
CLIPPER-CP uses CP vectors, which are not invariant to
translation and cannot be shifted as in Proposition 1 because
the CP vector is undefined for landmarks at the origin. These
results underscore the importance of using view-independent
geometric representations for lines and planes, e.g., the affine
Grassmannian mainfold used in the GraffMatch framework.

Fig. 7 shows the alignment error of all attempted place
pair registrations from KITTI as a grid of density heatmaps,
where columns correspond to algorithms and rows (from

top to bottom) correspond to Cases 1, 2, and 3. The first
column shows the alignment error using ground truth landmark
matches with respect to ground truth alignment, indicating the
best achievable landmark-based registration without a point-
based refinement step (e.g., using ICP). GraffMatch is the only
data association method that consistently scores in the low-
translation, low-rotation error regime.

Runtime statistics are shown in Fig. 8. Compared to
CLIPPER-Rn, GraffMatch incurs an additional 50 ms on
average due to the calculation of dGraff , but is still capable
of real-time at 10 Hz LiDAR rate. GraffMatch runtime could
be reduced by encoding prior knowledge in the putative
associations, e.g., ground planes should be matched, or large
planar patches are not likely to be matched to small patches.

Although storing and processing raw points can be resource
intensive, directly operating on point clouds is a typical means
of registration and loop closure constraint generation. Thus, we
compare GraffMatch with existing point-based methods, with
results in Table II. As a baseline, we use FPFH [24] local
descriptors (downsampled to 0.35 m) with RANSAC (max
100,000 iters.) implemented in Open3D. Scan context [4],
which is nominally used for place recognition, is also included.
Different from other point cloud place recognition methods, it
provides an initial guess for yaw that can be used to initialize
an ICP-based registration step. For a fair comparison, Table II
also reports GraffMatch solutions refined by ICP, but only
using points of matched landmarks, thereby reducing storage
and processing requirements. Because scan context is only
rotation invariant, it achieves relatively low recall since ground
truth place pairs can have up to 16 m of translation. Performing
ICP increases the success rate, but only marginally when
compared to GraffMatch without ICP refinement (see Table I).
These results on this dataset indicate the translation sensitivity
of scan context, which limits it to small-baseline settings. Sim-
ilarly performing ICP on GraffMatch solutions leads to high
success and accuracy, indicating that the landmark matches
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Fig. 7. Alignment error for place pairs, visualized as likelihood-normalized density plots. Columns correspond to algorithms. The first column shows the
best alignment error achievable when registering landmarks using the true landmark matches. From top to bottom, each row corresponds to Cases 1, 2, and
3, with Case 1 being easiest and Case 3 being hardest. In each case, GraffMatch produces the greatest number of registrations with low alignment error.
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Fig. 8. Runtime statistics. GraffMatch is capable of running in real-time at
the typical 10 Hz LiDAR rate. The runtime of GraffMatch could be reduced
using landmark descriptors to decrease the number of putative associations.

TABLE II. Point-based registration methods are computationally demanding
and do not necessarily lead to higher accuracy or success in wide-baseline set-
tings. Refining GraffMatch with ICP (only using points underlying landmarks)
leverages the positive aspects of landmark and point-based registration.

GraffMatch+ICP FPFH+RANSAC ScanContext [4] ScanContext+ICP
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T
I Case 1 93 0.5 13 119 16 1.7 46 1029 8 0.9 54 25 29 0.5 21 142

Case 2 76 0.4 7 125 12 1.8 44 807 4 0.9 59 25 31 0.5 25 138
Case 3 49 0.3 8 156 5 2.2 51 660 <1 1.0 52 37 14 0.6 32 140

are of high quality (i.e., high LMR AUC in Table I), but
there may be cases where the landmark-only least squares
registration was ill-conditioned. The FPFH baseline performs
poorly due to non-uniform LiDAR sampling and low point
cloud overlap, and its high computational cost highlights the
potential difficulties of processing point clouds directly.

E. Automatic LiDAR-LiDAR and Camera-Depth Calibration

High-quality extrinsic calibration is a crucial prerequisite
for many autonomous systems. Calibration methods typically
require data correspondence across sensors and state-of-the-
art multimodal calibration often achieve this by requiring
fiducial markers on calibration targets [47]. Instead, unlabeled
geometric landmarks extracted from each modality can be
matched and then registered using GraffMatch. Fig. 9 shows
two instances of extrinsic calibration using GraffMatch to
globally match planes. In Fig 9a, many chess boards are held
in the field-of-view of the LiDARs and planes are extracted
from the two point clouds (red and blue). GraffMatch correctly
matches 10 planes in 75 ms with calibration error of 1.1 deg
and 8 cm. In Fig 9b, an example of multi-modal calibration
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Fig. 9. Automatic extrinsic calibration using GraffMatch. (a) 3D planes are
extracted from two Ouster LiDAR scans, illustrated with red and blue point
clouds. Plane-to-plane correspondences are identified, allowing the sensors to
be calibrated without an initial guess. (b) 3D plane detections of calibration
targets are extracted from depth sensor and from intrinsically-calibrated RGB
sensor using PnP. RGB and depth data collected from Intel D435i are
arbitrarily transformed to simulate uncalibrated sensors.

using is presented, where 3D planes are extracted from chess
boards in the image frame and matched to planes extracted
from the depth sensor. GraffMatch correctly matches 7 planes
in 23 ms resulting in a calibration error of 0.9 deg and 5 cm.

V. CONCLUSION

We presented GraffMatch, a global method for matching
and registering 3D lines and planes from two landmark sets
without an initial alignment guess. Our main contribution is
the representation and data association of lines and planes as
elements of the affine Grassmannian manifold. By naturally
representing these geometric landmarks as affine subspaces,
we leverage the Grassmannian metric to calculate the distance
between two landmarks. We prove that affine Grassmannian
distance is invariant to rotation and translation provided a shift



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

operation is first applied. This invariance property enables the
use of efficient and robust graph-theoretic data association.

Future research includes reducing runtime and avoiding
symmetries by developing landmark descriptors for generating
putative matches (i.e., instead of an all-to-all hypothesis), and
estimating lines and planes directly via subspace tracking
methods and using manifold-based optimization techniques
to perform online bundle adjustment of affine Grassmannian
landmarks within a SLAM framework.

APPENDIX

A. Proof of Invariance
Proof. Suppose Y1,Y2 are shifted by −b1 such that b1 = 0.
This implies that the orthogonal displacement of Y1 is b01 = 0
and the inner product of the Stiefel coordinates of Y1,Y2 is

Y >1 Y2 =

[
A>

1 A2
1
η2
A>

1 b02
1
η2
b>01A2

1
η1η2

(b>01b02+1)

]
=

[
A>

1 A2
1
η2
A>

1 b02

0 1
η1η2

]
,

with ηi
def
=
√
‖b0i‖2 + 1. Recall that computing dGraff(Y1,Y2)

uses the SVD of Y >1 Y2. Given T = (R, t) ∈ SE(3), let Ȳ1, Ȳ2

be the transformations of Y1,Y2, with affine coordinates

Yi : [Ai, bi]
T−−−−→ Ȳi : [RAi, Rbi + t].

Shifting Ȳ1, Ȳ2 by −b̄1
def
= −(Rb1 + t) leads to the affine

coordinates Ȳ1 : [RA1, 0] and Ȳ2 : [RA2, Rb2] so that

Ȳ >1 Ȳ2 =

[
A>

1 A2
1
η2
A>

1 b02

0
1

η1η2

]
= Y >1 Y 2,

implying that dGraff(Y1,Y2) is invariant to (R, t).
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