
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION - DO NOT DISTRIBUTE. DOI 10.1109/LRA.2022.3231831

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022 1

Landing a UAV in harsh winds and turbulent open
waters

Parakh M. Gupta, Èric Pairet, Member, IEEE, Tiago Nascimento, Senior Member, IEEE, and Martin Saska,
Member, IEEE

Abstract—Landing an unmanned aerial vehicle (UAV) on top
of an unmanned surface vehicle (USV) in harsh open waters
is a challenging problem, owing to forces that can damage
the UAV due to a severe roll and/or pitch angle of the USV
during touchdown. To tackle this, we propose a novel model
predictive control (MPC) approach enabling a UAV to land
autonomously on a USV in these harsh conditions. The MPC
employs a novel objective function and an online decomposition
of the oscillatory motion of the vessel to predict, attempt, and
accomplish the landing during near-zero tilt of the landing
platform. The nonlinear prediction of the motion of the vessel is
performed using visual data from an onboard camera. Therefore,
the system does not require any communication with the USV or a
control station. The proposed method was analyzed in numerous
robotics simulations in harsh and extreme conditions and further
validated in various real-world scenarios.

Index Terms—Aerial Systems: Mechanics and Control, UAV,
MPC, Optimization and Optimal Control, Multi-Robot Systems,
Dynamics

I. INTRODUCTION

HETEROGENEOUS robot teams that are composed of
UAVs and USVs are aimed to provide higher efficiency

and decrease the high risk posed to human life in marine ap-
plications. An example of such an application is the process of
cleaning oceans to rid them of oil spills and non-biodegradable
waste [1]. While the UAVs can act as the eyes in the sky for
surveying, identifying, and localizing the clean-up targets, the
USVs are much better suited to the actual clean-up as this task
requires heavy equipment and lifting capabilities close to the
water surface.

These clean-up missions can be performed autonomously by
UAVs and can be conducted several dozen kilometers away
from a harbor or shore. Although UAVs have short battery
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Fig. 1. UAV landing on USV in real-world experiments.

lives to be able to fly long distances, their strength lies in
their agility and their ability to perform short-duration hover
missions [2]. We can compensate for this short battery life by
making a UAV and USV behave as a team, where-in the UAV
can charge quickly during the mission for rapid redeployment.
However, the precipitous and violent nature of the sea poses
daunting challenges for landing on the USV deck, especially
due to the precision required for recharging operations.

When landing on a USV, the first challenge is estimating
and predicting the movement of the deck of the USV before
landing. A fast-moving deck can damage the UAV during
landing through high impulse impacts, while a tilted deck
can result in the UAV rolling or falling off the deck before
the landing is complete. Additionally, a tilted deck can cause
an erroneous response from the controller of the UAV during
landing, which would jeopardize the landing position since
multi-rotors are under-actuated vehicles with coupled angular
and linear acceleration vectors. The second challenge that we
focus on is attempting a landing without active communication
between the UAV and the USV. Relying on a required com-
munication channel with a high frame rate and low latency
would introduce a significant source of failure in real open-
water applications.To increase reliability and applicability, we
attempt to build a decentralized solution that does not rely
on communication between the agents. Thus, we aim to study
various aspects of the dynamics of UAVs and USVs to develop
a framework for predicting and landing on the USV with high
precision and reliability in demanding conditions including
wind and waves, often seen in harsh environments. Finally,
in this work, we can define harsh environments as those that
contain open water with waves with a height of up to 4 meters,
and a wind velocity of up to 12m/s, which corresponds to
a Beaufort scale of 6. For intended applications, this would
produce a tilt in the range of [-0.5,0.5] radians for the USV.
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II. RELATED WORKS

Riola et al. [3] show that the behavior of a ship can be
predicted based on its past motion up to short prediction
horizons if corrected by measured ship motion. Unsurprisingly,
the topic of wave predictions is highly relevant to the shipping
industry as it is needed to prevent cables from slacking while
trying to offload cargo from ships using port-side cranes. Both
Küchler et al. [4] and Neupert et al. [5] describe an active
heave compensation for port-side cranes using a periodic
oscillation model that proves to be effective.

Building on a similar model, Marconi et al. [6] and Lee et
al. [7] present sophisticated approaches for fixed-wing UAVs
landing on vessels. Both works adapt the model using a
Kalman filter and use this heave motion of the ship to predict
the altitude of the landing pad. However, these works do not
focus on a rolling and pitching deck. Meng et al. [8] take a
different approach and use an auto-regressive-model on the
fixed-wing UAV to observe and predict the ship motion by
breaking it into sinusoidal components. In addition, Ngo and
Sultan [9] predict the quiescent periods for landing a helicopter
on a ship based on the model of the vessel, but they do not
tackle the problem of predictions of the motion for landing on
an untilted deck. This leads to short opportunistic windows
that have to be adhered to, even if the conditions change
rapidly. All of the above-mentioned works present results only
in simulation environments that are not harsh or extreme.

The research on solutions for multi-rotor aerial vehicles
landing on marine vessels is recent. One of the first works
by Polvara et al. [10] uses a fiducial marker located on the
platform and an extended Kalman filter (EKF) that estimates
the position of the USV. In contrast, the approach presented
by Abujoub et al. [11] relies on a LiDAR onboard the UAV
to find the pose of the landing pad to learn the behavior of
the platform by hovering above it. However, they classify the
window of landing into go or no-go intervals. Both preliminary
works were validated in lenient simulation conditions.

More recently, researchers have begun testing their ap-
proaches through real-world experiments. For example, Xu et
al. [12] use a fiducial marker for a decentralized approach, so
as to follow the USV and use a PD controller for landing once
the USV is discovered. For the second challenge of achieving
decentralization, Lee et al. [13] present an interesting solution
to finding a ship and its pose using classical vision algorithms.
Zhang et al. [14] take a different approach and present a
learning-based linear controller that receives inputs from a
fiducial marker to land the UAV on a USV that is subject to
the waves of a lake. Furthermore, some works also present the
application of an MPC controller that enables a flexible-blade
helicopter to land on a marine vessel [15], [16]. These works
use a non-linear MPC to achieve near-perfect performance but
do so using a numerical benchmark that doesn’t run in real-
time or in a real-world experiment. Our work differs from
these by using simplifications and a new approach that fills
these gaps of real-time computing and applicability without
a significant drop in landing performance. We use these for
comparison in our experimental section to demonstrate the
same. The most advanced research presented with real-world

flight data is the work by Persson et al. [17], which presents
an MPC for a UAV autonomous landing on a moving boat.

For the purpose of our work, we assume that the USV
can be found by the UAV by ascending to a given altitude
during the mission without the need for conducting a planned
search which is beyond the scope of this paper. We also
assume that the motion of the USV perpendicular to the water
surface is minimal (the USV is waiting for the UAV to land
while controlling its global positioning on the water in order
to remain stationary, rather than drifting with the waves).
Furthermore, we assume that the USV is under the influence
of waves, which results in periodic oscillations of the USV
deck in each axis of a coordinated system with an origin at
the USV center of mass. For hardware, we assume that the
UAV is equipped with a 2MP downward facing camera, an
onboard computer for image processing and computing the
MPC, and that the USV is equipped with a landing pattern to
recognize relative pose.

The main difference between our proposed approach and
[17] is that our controller uses the non-linear model of the
USV for landing on a rapidly tilting deck and does not
employ any communication between the UAV and the USV,
as motivated by real-world applicability. To the best of the
authors’ knowledge, it is the first approach using USV motion
prediction in control feedback of a decentralized controller. In
summary, our contributions are: (1) we present a novel ob-
jective function for finding an optimum landing trajectory that
utilizes an MPC algorithm to predict the future of the UAV and
USV, without communication; (2) we propose a decentralized
vision-based method for observing and predicting the motion
of a USV through the use of an online observer that adapts
the USV motion model using observations from a downward-
facing camera; (3) our proposed approach enables landing
on a highly undulating platform with no prior knowledge of
the dimensions of the USV; and (4) we propose a prediction
algorithm that is designed to prevent a velocity overshoot at
the set point for landing with minimal impulse transfer from
the surface upon touchdown. The relevant media from this
work has been made available as supplementary material on
http://mrs.felk.cvut.cz/ral-landing-on-usv.

III. PROPOSED NON-LINEAR ESTIMATOR-BASED MPC

In this section, we present our proposed approach which
consists of a UAV prediction model and a simplified USV
prediction model. Our proposed controller must satisfy two
hard constraints imposed by real-world conditions, which are:
1) The controller must perform its computation under a time
constraint of 50 ms (20 Hz); and 2) There is no communication
between the UAV and the USV and so, the only method for
estimating the state of the USV motion is by visual pose esti-
mation enabled by the AprilTag on the landing platform. Thus,
for the sake of clarity, we will call our approach MPC-NE
(Model Predictive Controler - Non-linear Estimator). Figure 2
presents the control pipeline used in this work; the contribution
is encapsulated in Figure 2. For the UAV prediction model, a
discrete linear time-invariant system is used, while the USV
model uses a more complex linearised model to be described

https://doi.org/10.1109/LRA.2022.3231831
http://mrs.felk.cvut.cz/ral-landing-on-usv


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION - DO NOT DISTRIBUTE. DOI 10.1109/LRA.2022.3231831

GUPTA et al.: LANDING A UAV IN HARSH WINDS AND TURBULENT OPEN-WATERS 3

MPC Solver

Fast Fourrier
Transform

KF wave
Prediction

Setpoint
Generator

UAV Model

Reference
Tracker

Position/Attitude
Controller

Vision-based
Detector

Attitude rate
Controller

IMU

UAV
Actuators

Onboard
Sensors

State
Estimator

Odometry &
Localisation

x̂

rd, ηd

FFT
accuracy

fj,i,
Aj,i,
φj,i

[b4,n, b5,n]

n = 1..Mp
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Fig. 2. The MPC landing controller (yellow block) is integrated into the MRS system (grey blocks) and supplies the desired reference (velocity ṙd =[
ẋ ẏ ż

]T and heading rate η̇d). In the MRS system, the first layer containing a Reference tracker processes the desired reference and gives a full-state
reference χ to the attitude controller. The feedback Position/Attitude controller produces the desired thrust and angular velocities (Td, ωd) for the Pixhawk
flight controller (Attitude rate controller). The State estimator fuses data from Odometry & localization methods to create an estimate of the UAV translation
and rotation (x, R). Finally, the Vision-based Detector obtains the visual data from the camera and sends the pose information b of the USV to the MPC.

subsequently. The 6-degrees of freedom (DOF) USV pose
b =

[
b1 b2 b3 b4 b5 b6

]T
is estimated in the world

frame through the detection of the fiducial tag in the center of
the landing pad from the on-board camera of the UAV. The
pose of the UAV is fused and accounted for to estimate the
correct world frame pose of the USV. This pose information
is fed to a fast Fourier transform (FFT) node (based on [18])
which identifies the frequencies, amplitudes, and phases of the
N periodic oscillations that make up the USV motion in pitch
and roll axes. These identified modes are used to initialize a
linear Kalman observer node that corrects the observed state
and predicts future motion. These predictions are sent to the
MPC controller, which uses them to estimate the feasibility
of landing in the near future, i.e., if a sufficiently low tilt
of the USV can be found inside the predefined prediction
horizon. In turn, it generates the desired linear velocities for
x, y, and z axes, as well as the desired angular velocity in
heading η. The MPC also receives the estimated UAV state
vector x =

[
x ẋ ẍ y ẏ ÿ z ż z̈ η η̇ η̈

]T
us-

ing onboard state estimation proposed by our team in [19].
A finite-state automaton-based approach is used to direct our

mission. Based on this, a setpoint generator node commands
the aircraft to increase its altitude until the vision marker
can be found. Once it is found, the reference of the MPC
is changed by the setpoint generator, such that it can hover
at a preset altitude above the identified marker. Subsequently,
the UAV waits for enough data to be gathered so that the FFT
accuracy threshold requirement can be met. Once it is met, the
setpoint generator sets the global reference for landing. Then,
the MPC begins to use the future motion predictions of the
wave to determine a suitable time for landing.

A. USV Prediction Model

USV models can be classified into two different types:
Maneuvering Theory and Seakeeping Theory [20].

Owing to the assumptions made in Section II, we choose
to focus on the Seakeeping theory since it concerns near-
stationary vessels. In addition, the use of a decentralized
approach brings challenges in estimating the true odometry
of the USV, as converging to reliable estimates of linear
and angular velocities of the USV is infeasible. Therefore,
we leverage the pose estimate from the camera efficiently by
focusing only on the kinematics of the USV.

Our USV prediction model is composed of three parts: a fast
Fourier transform, a Kalman observer, and a wave prediction
model. First, the FFT performs a decomposition on the pose
data obtained from the vision pipeline. The identified modes
of these oscillations are used to initialize a Kalman observer
that adapts the amplitude and the phase of the wave using
the observed values online. Finally, the amplitudes and phases
from the Kalman observer are sent to the wave prediction
model to enable future wave predictions.

1) FFT-based Modelling: We assume that the motion of the
USV is composed of Nj periodic waves and a non-periodic
term that accounts for random noise in tracking the various
components for each jth axis. Thus, let the state vector b be
represented by the linear pose bj for j ∈ {1, 2, 3} for x, y,
z axes, respectively, and the angular pose be represented by
j ∈ {4, 5, 6} about these axes in the same order.

Note here that, a sufficiently large ship/boat (intended appli-
cation) would exhibit sufficiently low amplitude oscillations in
Z-axis such that they can be handled by changing the reference
at every camera frame (as shown here). Thus, the periodic
motion of the USV in an axis can be represented as a function
of time such that:

bj(t) = bj,off +

Nj∑
i=1

Aj,i sin (2πfj,it+ φj,i)︸ ︷︷ ︸
Φj,i

, (1)
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with fj,i denoting the frequency, Aj,i the amplitude, and φj,i
the phase. Additionally, bj,off is the non-periodic term ac-
counting for random noise. For the initial condition, Φj,i(t) is
equal to Φj,i(tFFT ), which is the phase obtained as the output
of FFT at the time of identification tFFT . In sea conditions,
these frequency components can change frequently due to
changing winds. Therefore, the pose is sampled continuously
and an FFT is run every ∆TFFT seconds. For each axis, we
discard the modes that are below a certain threshold amplitude
Aj,threshold, where

Aj,threshold = Agate ·max{Aj,0, Aj,1, . . . , Aj,Nj}. (2)

For reliable performance, and upon tuning on real-world
data, we assume Agate(= 0.02) to be a suitable cutoff.
This prevents us from identifying noise components as low-
amplitude periodic oscillations without losing more than 2%
of the accuracy. These erroneous components cause a loss of
performance in the Kalman observer, which is explained in
the next section.

2) Kalman Observer: The Kalman observer uses a linear
model to refine the estimate of identified amplitude and phase
of each mode. The observer is necessary because, while the
FFT accurately identifies the frequency components, the am-
plitude and phase outputs are averages for the entire ∆TFFT

sampling interval. Therefore, the observer receives new param-
eters for all identified modes every ∆TFFT seconds. In order
to allow sufficient time for the observer parameters to converge
to true values, we do not reinitialize the pre-identified modes
with the new parameters. Instead, only the newly identified
modes are initialized, while discarding the old modes that no
longer exist.

To assemble the model, we first write the ordinary differ-
ential equation (ODE) for each mode for a given axis at any
time t. We use vj,i to denote the ith mode of the USV state
vector component bj in the jth axis. Thus, the derivative of
the mode (∀j, j ∈ 1 . . . 6) is

v̇j,i =

[
0 1

−(2πfj,i)
2 0

]
︸ ︷︷ ︸

B(tFFT )

vj,i, (3)

and the mode at time t is

vj,i =

[
Aj,i sin (Φj,i(t))

2πAj,ifj,i cos (Φj,i(t))

]
. (4)

Next, we derive the observer model by adding the ODEs of
each mode. Thus,

v̇j(t) =


Bj,1 0 . . . 0 0
0 Bj,2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Bj,N 0
0 0 · · · 0 0


︸ ︷︷ ︸

Bj


vj,1

vj,2

...
vj,Nj

vj,off


︸ ︷︷ ︸

vj(t)

. (5)

Hence, the output for each axis is

bj(t) =
[
Cj,1 Cj,2 · · · Cj,N Cj,off

]︸ ︷︷ ︸
Cj

vj(t).
(6)

Note, that each component of the output vector of the mode
can be found as

bj,i =
[
1 0

]︸ ︷︷ ︸
Cj,i

vj,i. (7)

Now, for the brevity of explanation and the readability of the
equations, we write the following relation for only one axial
DOF of the USV in discrete-time. In addition, we clarify that
it can be applied to all 6 of the DOF. Furthermore, notice that
a time instance t = k∆T + tFFT , wherein ∆T is the discrete
sampling time for new pose observations. Thus, we have a
straightforward change in notation such that, for example,
vj(t) ≡ v

(k)
j . Thus, by using the integral approximation

method, we have that

v
(k+1)
j = exp(Bj∆T )︸ ︷︷ ︸

Ψj

v
(k)
j , and b

(k)
j = Cj v

(k)
j .

(8)

Then, we continuously estimate the amplitude Aj,i and
phase φj,i of each mode every ∆T using the Kalman Filter.
First, Q is initialised using a diagonal matrix QI = λI, such
that

Q =
1

2
(ΨQIΨ

T + QI)∆T, (9)

where λ is the gain parameter for the process noise observed
in the model.

Meanwhile, the observation noise matrix R is set to the
mean amplitude of the observed noise in the system. There-
after, we apply the filter equations as follows:

v̂
(k)
j = Ψjv

(k−1)
j ,

P̂(k) = ΨjP
(k−1)ΨT

j + Q,

b̂
(k)
j = Cj v̂

(k)
j ,

L(k) = P̂(k)C
T
j (CjP̂

(k)C
T
j + R)−1,

v
(k)
j = v̂

(k)
j + L(k)(bj,m − b̂(k)

j ),

P(k) = (I− L(k)Cj)P̂
(k),

(10)

where ˆ shows the predicted value of the vector/matrix, I is
an identity matrix, bj,m is the measured value of bj , L ∈
R2(N+1) is the Kalman gain matrix of the system, P and
Q ∈ R2(N+1)×2(N+1) are the process co-variance and system
noise matrices, respectively, and R ∈ R is observation noise.

At every identification, the relevant elements corresponding
to both of the modes that are no longer present, as well as the
newly identified modes of the Ψ matrix, are re-initialized. The
corresponding co-variance terms for these modes are reset to
maintain a consistent prediction without large deviations.

3) Wave prediction: Let us now define tobs as the time
instant where the last observation was performed, since the
prediction algorithm is not run when there are no new ob-
servations. Thus, by running the Kalman observer at tobs we
find the new amplitude Aj,i(tobs) and phase Φj,i(tobs). At the
same instant in time tobs, we can extract the corresponding
vj,i and use (4) to acquire:

Φj,i(tobs) = arctan

(
2πfj,i[vj,i]

1,1

[vj,i]2,1

)
,

and

Aj,i(tobs) =
[vj,i]

1,1

sin (Φj,i(tobs))
,

(11)

where [vj,i]
m,n represents the element corresponding to the

mth row and nth column of the vector.
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This enables us to predict the wave behavior at a future time
t > tobs as

bj(t) =

Nj∑
i=1

Aj,i(tobs) sin [2πfj,i(t− tobs) + Φj,i(tobs)]

+ [vj,off ]1,1. (12)

B. UAV Prediction Model
The UAV prediction model used in the proposed MPC is

based on the Euler approximation of a set of single particle
kinematics equations. Here, we employ the following discrete
linear time-invariant system:

x(k+1) = Dx(k) +Eu(k), with u(k) =
[
˙̈x ˙̈y ˙̈z ˙̈η

]T
. (13)

In the model represented by (13), the state matrix D and the
input matrix E can be found through the Kronecker product
(⊗), such that:

D
12×12

= I
4×4
⊗ D′

3×3
, with D′ =

1 ∆tpred
∆t2pred

2
0 1 ∆tpred
0 0 1

 , (14)

E
12×4

= I
4×4
⊗ E′

3×1
, with E′ =


∆t3pred

6
∆t2pred

2
∆tpred

 , (15)

where I is an identity matrix, with a prediction made every
∆tpred = 0.01 seconds.

Hence, the state vector represents the states of the system
and their derivatives up to acceleration in each axis, and the
control input is the jerk experienced in those axes.

C. MPC Objective Function
Once we have defined a prediction model of the UAV

and the USV, we can formulate an objective function to
enable both way-point navigation and landing. For the sake
of simplification, we will omit the superscript (.)(k), which
represents a discrete instant in time. Therefore, we can define
the objective function J as:

min
u1,...,uMc

J(x,u) =

Mp∑
m=1

x̃T
mSx̃m + hT

mThm︸ ︷︷ ︸
J1

+

Mp∑
m=1

αL × g(z̃m, b4,m, b5,m)︸ ︷︷ ︸
J2

,

subject to :

x̃m = xm −
∗
xm,

z̃m = zm −
∗
zm,

hm = um − um−1,

xm+1 = Dxm + Eum ∀ m ≤Mc,

xm+1 = Dxm + EuMc ∀ m > Mc,

umin ≤ um ≤ umax,

x0 = xinitial,

u0 = uinitial,

∀ {m : m ∈ N, 1 ≤ m ≤Mp},

(16)

where
∗
xm is the desired state, x̃m is the error vector, z̃m is the

error in zm position, hm is the rate of control input change to
ensure smooth input to the UAV, Mp(= 100) is the prediction
horizon, and Mc(= 40) is the control horizon. S and T are the
corresponding penalty matrices with configurable weights for
performance tuning, while αL(= 1200) is a weight chosen
for the tuning of the objective function g(.). Additionally,
b4,m, b5,m are the pitch and roll angles in discrete time of
the USV about its x and y axes, according to (12).

We emphasize that
∗
xm (including

∗
z) can either be a series

of points (trajectory) or a single point (step input). This would
enable the UAV to keep up with a drifting USV if the XY-
position state of the usv is estimated independently. However,
a slowly drifting USV is within the dynamic limits of the UAV
so as to be compensated by the single-point reference that can
be updated after every observation (depending on the camera
frame rate). We demonstrate and test this in this linked video.
While we do not constrain the output of the MPC, we apply
soft constraints to the velocity and acceleration states of the
model, such that v ≥ vmax and a ≥ amax incur a high penalty
in the objective function.

Herein, we have introduced a novel objective function J2

(described in the next section) which can account for the
predicted motion of the USV, producing a smooth control
input to change the altitude of the UAV without any abrupt
maneuvers. Using this function, we are able to incorporate
the finite state automaton approach using a sigmoid activation
function without explicitly describing the possible landing
condition. The UAV is able to follow the descend trajectory
generated by the MPC by autonomously adjusting its hover
distance above the USV. Additionally, it enables us to tune
the parameters to control the variance of the resulting landing
angles about the mean value of zero-tilt. It is important to
mention that the term J1 in our cost function, is a classical
quadratic objective function largely used in robotics and well
documented for its feasibility and stability. On the other hand,
the J2 term is different from usual works in the literature
because it tackles the terminal cost of the optimization step as
a potential barrier.

We employ a non-linear optimization library (NLOPT [21]
[22]) which provides the near-optimum solution for the objec-
tive function. In order to exercise velocity-based control, the
first input from the series of optimum control inputs calculated
by the solver is then used to calculate the next state using (13).
The velocities for this predicted next state are then passed to
the system as the velocity references for the UAV to track (as
seen in Figure 2).

Since the term J1 primarily contributes to the position
control and J2 contributes to the landing approach, the term J2

remains disabled until the conditions for the landing approach
are satisfied.

D. Landing approach
We define the function for landing cost as a combination of

sigmoids, such that:

g(z̃m, b4,m, b5,m) = f(z̃m) · ((b4,m)2 + (b5,m)2), (17)

where f(z̃m) is such that
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Fig. 3. An example illustration of the effective cost function values obtained
during the landing approach.

f(z̃m) =


(
1.0 + exp

(
−
z̃m − hd

−0.15

))−1

, if z̃m ≥ 0.16(
1.0 + exp

(
z̃m − 0.1

−0.01

))−1

, otherwise,
(18)

where hd controls the waiting region (see Figure 3) during
a landing attempt. Empirically, hd = 1.1 was chosen for our
experiments. For the scope of this paper, we assume that the
USV has relatively negligible motion in its x and y axes, which
is a fair assumption for the problem of landing. The propulsion
of the USV may easily compensate for the drift generated by
the water currents in order to facilitate landing. It is also safe to
assume that z̃ ≥ 0, as the UAV cannot approach from beneath
the USV. In order to activate J2 to start the landing phase,
two conditions must be met. First, FFT accuracy is higher
than a given threshold to detect slow oscillations. Second,
The position errors in x and y are below a predefined
threshold (i.e., x̃, ỹ ≈ 0) and horizontal velocities vx, vy
are also minimal.

To demonstrate the interaction of J2 with J1 during the
landing approach, we present a highly-simplified plot of the
objective function (see Figure 3) using one mode each for pitch
and roll axes. When J2 is activated, we acquire a combined
plot governed by both the equation (17) and the residual error
z̃ in J1. In Figure 3, the value of the objective function
encounters a peak that continuously evolves as a function of
time. This peak acts as a potential barrier. The higher cost
associated with the peak holds the aircraft in the waiting region
(as marked in the plot). Meanwhile the USV model generates
predictions for the future of the USV motion during every
iteration of the MPC. The USV sometimes gets close enough
to a zero tilt wherein a feasible solution appears, as shown by
the zero-tilt points in the plot. The UAV is then able to insert
itself into the time-varying trajectory of these special feasible
points by reducing its altitude and approaching in such a way
that the cost continues to decrease along the locus of these
points. Therefore, the UAV is able to follow the zero-tilt points
and finish at the optimum landing point, where touchdown is
confirmed by the system based on thrust and other information
from onboard sensors.

IV. SIMULATION EXPERIMENTS

We demonstrate our simulation results in two scenarios:
with a numerical simulation, and with a realistic ROS-based
Gazebo simulator [19]. The SHMPC presented in [15] is
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Fig. 4. Comparison between the predictions made by the system using the
onboard IMU data (left) and using the vision data (right).

shown to work numerically. Thus, we use a similar numerical
implementation of our work (MPC-NE) to allow us to perform
a fair comparison with the state-of-the-art. In this comparison,
the non-linear optimization problem is solved by [22] for a
landing maneuver of 3 meters and assumes true knowledge
of the future motion of the USV. The second comparison is
performed using real-time flight with our proposed MPC-NE
inside the Gazebo simulator. For this comparison, we use a
standard MPC [19] designed for waypoint navigation. For
this standard approach, the UAV attempts to locate the target,
and lands after a programmed, uniformly randomly distributed
delay between 0 and 100 seconds. We select this duration
owing to the periodicity of the tilt angle of the USV. We use
a T650 quadrotor frame weighing 3.6 kg carrying a Garmin
LiDAR for laser-ranging of altitude and an Intel Realsense
D435 camera for live in-simulation video. The video output
of the Realsense camera is sent to our system to enable
processing on the vision node. (Sec. III). The 3D model
of the USV is similar to our real-world experiments and is
affixed with an AprilTag [23] marker for pose estimation. We
note that in both the comparisons, we push the boundary of
performance and test our work in rough sea states, and drive
our USV model using a wave generator with 4-5 components
of oscillation in both pitch and roll axes, and tilt angles up to
30◦(0.5 radians). The frequency components are set such that
brief windows for feasible landing exist. Wind disturbances
are not considered in this environment since it is tackled by
body disturbances estimated by the low-level control feedback
pipeline (see Figure 2).

A. Prediction results

First, we demonstrate the ability of our system to predict
the wave motion up to 1 second into the future based on the
observed frequency components and our model of the system.
The performance of the system is tested in two scenarios: a
100 Hz odometry output from the simulated USV IMU (used
as ground truth), and a 30 Hz stream from the AprilTag.

As we see in Figure 4, the high-frequency IMU-based
predictions are able to match the observed wave reliably
without introducing noise. The observer is able to adapt the
observed frequency, amplitude, and phase of the modes of the
oscillations and converge reliably. As opposed to that, we see
slight deviations in the vision-based predictions compared to
the IMU results. This deviation in performance can be ex-
plained by two factors. First, the linearisation of the model in
the time-domain causes inaccuracies that grow as the sampling

https://doi.org/10.1109/LRA.2022.3231831


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION - DO NOT DISTRIBUTE. DOI 10.1109/LRA.2022.3231831

GUPTA et al.: LANDING A UAV IN HARSH WINDS AND TURBULENT OPEN-WATERS 7

0 ∘ - 5 ∘ 5 ∘ - 10 ∘ 10 ∘ - 15 ∘ 15 ∘ - 20 ∘ 20 ∘ - 25 ∘ 25 ∘ - 30 ∘ 30 ∘ - 35 ∘

Relative tilt angle upon landing ( ∘ )

0

10

20

30

40

50
Pe

rc
en

ta
ge

 o
f t

he
 la

nd
in

gs
 (%

)
SHMPC (Numerical)
MPC-NE (Numerical)
MPC-NE (Realistic Sim)
Standard MPC (Realistic Sim)

Fig. 5. Histogram comparison between the proposed approach and the
standard approach during the touchdown of the UAV on the USV deck.

time increases. Due to this, the three-fold sampling rate of the
IMU leads to faster and more accurate convergence. Second,
the output rate of the AprilTag identification node fluctuates
around 30 Hz, depending on the computational load of the
onboard computer of the UAV (or simulation computer, in
this case). This leads to the misidentification of modes, as the
FFT algorithm requires a fixed sample rate for observations.
However, this sufficiently proves the ability of the proposed
system to reliably predict wave behavior, which will be used
for the USV landing further down the pipeline.

B. Landing results

To continue, we present the ability of our system to land on
a platform while tilt angles are sufficiently close to zero. Thus,
we present Figure 5 that shows the results of the numerical
comparison between our MPC-NE and the state-of-the-art
SHMPC. Note here that the MPC-NE lands ≈ 94% within 10◦

of tilt, while the SHMPC lands ≈ 71% of the same tilt interval.
In this same comparison, the solution time per iteration of our
MPC-NE was 9 times lower at 102 ms compared to 917 ms
for SH-MPC.

Furthermore, the same figure presents the results of the
realistic simulations using Gazebo. It is important to highlight
the difference between a numerical simulation result and a
realistic simulation result. This is explained by the existing
constraints of processing time that demand the algorithms to
be processed in real-time. Note here that the MPC-NE is
able to conduct 72% of its landings within 15◦(0.26 rad)
of tilt compared to 23% of landings using the standard
MPC approach. In addition, the proposed approach reduces
the 80th percentile result by 9◦(0.16 rad) in comparison to
the standard approach. For this comparison, we classify a
landing conducted at a tilt angle of less than 20◦(0.35 rad)
as successful. Therefore, even in challenging tilts of up to

0.5 radians, the proposed approach had only three failures,
while the standard approach fails approximately 50% of the
landings. Finally, we also highlight that, even in an unrealistic
and challenging scenario, our system is able to conduct 70%
of the landings within 50 seconds of reaching its FFT accuracy
threshold.

V. REAL-WORLD EXPERIMENTS

To test the contributions and proposed algorithms in the
real world, we performed landings on an oscillating target at
an open water reservoir.

For the purpose of this experiment, we employed a 4.5 kg
T650 quadrotor equipped with vertical pontoons [24] for safety
over water (see Figure 1). In addition, the sensor stack included
a Garmin LiDAR for laser-ranging of altitude, a Basler camera
for the live video feed, and an Intel NUC for onboard real-
time processing of the algorithms, data, and video. The target
is a special custom-made USV [25] equipped with a 2m×2m
landing zone, affixed with an AprilTag [23] for 6-DOF pose-
estimation. The experimental conditions subjected the UAV to
a wind of 7m/s and a USV oscillating with an amplitude of
0.3 radians.

A. Prediction results

Here we demonstrate our prediction pipeline in two scenar-
ios: a 30 Hz stream from AprilTag, and a 100 Hz stream from
the IMU. The prediction results for the real-world experiments
are presented in Figure 6 and discussed below.

For predictions based on vision-based pose estimation, as
seen in Figure 6(a), the near-term future correlates well with
the observed motion. However, Figure 6(b) indicates that the
predictions for the long-term future can suffer in accuracy.
This correlates well with the simulation results as shown in
Figure 4 and can be attributed to the higher sampling time-
step and its higher variability. Occasionally, it also exhibits
convergence and consecutive divergence as more data is fed
into the pipeline. For ground truth, we use Figure 6(c) to
demonstrate the effectiveness of the pipeline in robustly pre-
dicting the future of the USV. However, since MPC exhibits a
higher reliance on the predictions that are temporally proximal,
the predictions for 0.25 and 0.50 seconds into the future offer
robust support for preventing a landing during an infeasible
window. The chosen angle for landing is also sufficiently low
in order to demonstrate the prediction capabilities and the
selection of a feasible landing window.
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Fig. 6. Comparison between the predictions made using vision (a-b) and using the onboard IMU of the USV (c).
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B. Landing results

We demonstrate the real-world landing process through
Figure 7. In these experiments, the UAV was able to land
within 50 seconds of acquiring the required FFT accuracy.
This coincides with our findings in simulation experiments.
Additionally, the tilt angles upon touchdown were less than
5◦(0.09 rad).

VI. CONCLUSION

In this paper, we proposed an MPC that enables a UAV
to land autonomously on a tilting USV. The MPC employs
a novel objective function and an online decomposition of
the motion of the vessel in order to attempt and complete
the landing during a near-zero tilt of the landing platform.
We successfully demonstrated that we are able to model and
predict the behaviour of the UAV and USV without active
communication between them. Further, we establish a novel
approach for landing on the USV using these predictions,
which autonomously adjusts the relative altitude for the UAV
to ensure that the landing occurs as close to the zero-tilt state
of the landing deck as possible, increasing safeness of the
landing phase and reducing impact forces on the landing UAV.
In comparison to state-of-the-art approaches, we achieved
significant improvement in the case of landing in demanding
conditions with high waves and high winds without knowing
the dimensions of the USV.
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