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Abstract—Quantifying uncertainty is a key stage in active
simultaneous localization and mapping (SLAM), as it allows
to identify the most informative actions to execute. However,
dealing with full covariance or even Fisher information matrices
(FIMs) is computationally heavy and easily becomes intractable
for online systems. In this work, we study the paradigm of active
graph-SLAM formulated over SE(n), and propose a general
relationship between the FIM of the system and the Laplacian
matrix of the underlying pose-graph. This link makes possible to
use graph connectivity indices as utility functions with optimality
guarantees, since they approximate the well-known optimality
criteria that stem from optimal design theory. Experimental
validation demonstrates that the proposed method leads to
equivalent decisions for active SLAM in a fraction of the time.

Index Terms—Active SLAM, optimality criteria, robotic explo-
ration, topology, graph connectivity.

I. INTRODUCTION

AUTONOMOUS exploration of unknown environments
has long attracted the attention of the robotics community

and despite being essential for achieving high-level autonomy
in numerous applications (e.g., search and rescue), it still
remains an open problem. Mainly, it involves planning and
navigating under uncertainty, thus making necessary to have a
model of the surrounding environment.

Simultaneous Localization and Mapping (SLAM) passively
deals with the base problem of incrementally building a map of
the environment while at the same time locating the robot on it.
Many approaches have been developed to solve it, although the
interest of this paper particularly lies on (pose) graph-SLAM
methods, that intuitively formulate the problem using a graph
representation where nodes encode the robot poses, and edges
encode the constraints between them. This SLAM variant is
built on the idea that the map representation can be retrieved
once the robot states have been properly estimated [1]. After
solving the data association problem and building the graph, it
all comes down to finding the optimal nodal configuration via
maximum likelihood (ML), i.e., finding the set of robot poses
that minimizes a cost function of the observations. See [1],
[2], [3] and the references there in.

Active SLAM expands the previous problem so as to include
the selection of the actions the robot should execute to build
the best model of the environment possible. This new decision-
making problem, erected on active perception [4], can be
formally defined as the control of a robot that is performing
SLAM with the objective of reducing the uncertainty of its
location and of the map representation. Given the probabilistic
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nature of SLAM, the above involves reasoning over proba-
bilistic states (i.e., beliefs) under uncertainty, a problem also
referred to in the literature as belief space planning (BSP) [5].
Traditional active SLAM approaches are generally divided in
three phases for the ease of its resolution [6]:

i) the identification of possible locations to explore,
ii) the evaluation of the utility associated to the actions that

would take the robot from its current position to each of
those locations, and

iii) the selection and execution of the optimal set of actions.

In the first stage, ideally, actions to reach all possible
locations should be evaluated, although easily proves to be
intractable due to the dimensionality of the state and action
spaces. In practice, the most common approach is the identifi-
cation of the points which lie between the known and unknown
regions of the map, i.e., frontiers. During the second step,
the utility of each set of actions is estimated by quantifying
the expected uncertainty in the two target random variables:
the robot location and the map. Uncertainty quantification
can be based either on theory of optimal experimental design
(TOED) [7] or information theory (IT) [8], although it is the
former on which this letter focuses. Either way, these utility
functions must find the equilibrium between exploring new
areas and exploiting those previously seen (i.e., the so called
exploration-exploitation dilemma). Finally, third phase consists
in executing the set of actions with highest utility.

TOED-based utility functions, or optimality criteria, quan-
tify uncertainty in the task space, directly mapping the ex-
pected covariance matrices to the real scalar space through
their eigenvalues. However, the use (i.e., propagation, store and
analysis) of these dense matrices quickly becomes intractable
in online active SLAM. For example, approaches that require
computing the determinant of the a posteriori covariance
matrix are O(n3) complex in general, with n the dimension
of the full state. In an effort to lessen the computational load,
most works resort to the sparser Fisher information matrices
(FIMs) [9] or use sparsified representations [10], [11]. Even so,
the use of TOED metrics is costly and thus often disregarded
in the literature in favor of fast IT metrics, e.g., the entropy.

In this work, we demonstrate that the expensive evaluation
of TOED-based utility functions over the expected FIMs dur-
ing active graph-SLAM can be approximated by analyzing the
topology of the expected pose-graphs. This method requires
way less resources and eases the use of optimality criteria
in online methods. First, we propose a general relationship
between the FIM of a graph-SLAM system and the Laplacian
matrix of the underlying pose-graph. This allows to relate their
spectra under certain conditions and, therefore, to establish a
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link between optimality criteria and graph connectivity indices.
The rest of the paper is organized as follows. Section II

discusses related work and the contributions of this paper,
Section III presents preliminary contents, Section IV details
the theoretical contributions of this paper, and Section V
contains the experimental results. The manuscript is concluded
in Section VI, where future work is also outlined.

II. RELATED WORK

The idea of the topology of a graph being closely related
to its optimality was already noticed four decades ago, when
Cheng [12] realized that a graph with the maximum number
of spanning trees is generally optimal, and thus related two
problems (from graph theory and TOED) that had always
been viewed differently. More recently, Khosoussi et al. [13]
observed that certain classical optimality criteria in active
graph-SLAM are closely related to the connectivity of the
underlying pose-graph. In particular, they show the existing
relationship between the number of spanning trees of the
graph and the determinant of the covariance matrix of the
SLAM system (traditionally known as D-optimality), and
that between its algebraic connectivity and the covariance’s
maximum eigenvalue; for 2D and assuming constant and
isotropic variance through measurements. In [14], the authors
extend the above relationships to the case in which uncertainty
evolves as the trajectory does. Given block-isotropic Gaussian
noise in the measurements, they relate the determinant of the
covariance to the determinants of the Laplacians of two pose-
graphs, each weighted by the decoupled rotational/translational
inverse variance. Chen et al. [15] study graph-SLAM as the
synchronization problem over Rn × SO(n). They propose an
approximation relationship for the FIM’s trace (T-optimality)
and two bounds on the FIM’s determinant that, once again,
depend on the Laplacians of two weighted pose-graphs. In
contrast to [14], they assume isotropic Langevin noise for
orientation and block-isotropic Guassian noise for translation.

Fast exploitation of the graph structure was also recently
transferred to the domain of information-theoretic BSP. Ki-
tanov and Indelman [16] prove that the number of spanning
trees is also a good approximation of the posterior entropy —a
reasonable fact since it ultimately depends on the covariance
determinant as classical D-optimality. They also present a
relationship between the graph’s node degree and the Von
Neumann entropy. Despite being faster, it fails to select the
optimal actions in some cases (just as T-optimality would).

Following all the above relationships, instead of maximizing
optimality criteria of the FIM, the optimal set of actions in
active SLAM can be found more efficiently through maxi-
mizing graph connectivity indices. Chen et al. [7] build a 2D
multi-robot active SLAM algorithm that achieves uncertainty
minimization and information sharing between agents thanks
to the fast evaluation of the underlying pose-graphs topology.

All the aforementioned works, however, have isolatedly re-
lated specific classic optimality criteria to certain connectivity
indices; also for specific/restrictive SLAM configurations. In
this letter, on the basis of graph theory, differential mod-
els, [13] and [17], we derive a general theoretical relationship

between the FIM of a graph-SLAM problem formulated over
the Lie group SE(n), and the Laplacian matrix of the under-
lying pose-graph. On top of that, we establish a strong link
between the spectrum of both matrices and relate optimality
criteria of the FIM to graph connectivity indices. Contrarily
to previous works, measurement noises are not restricted to
be (block-) isotropic nor constant, formulation is done over
SE(n), and modern optimality criteria are used. Note that these
differences are key for active SLAM applications, since: (i)
covariance is usually non-isotropic (i.e., variances may not
be the same in all directions for rotation/translation and may
be cross-correlated) and varies along exploration, (ii) only
differential representations maintain the monotonicity of the
decision making criteria (see [18]), and (iii) the use of tradi-
tional criteria is not suitable for active SLAM1. We validate
the proposed relationships and analyze time complexity in
several 2D and 3D SLAM datasets. On average, our method
requires just 10% of the time traditional computations would,
and error is only 2%. Besides, graph-based approximations
always maintain same the trend of optimality criteria over
time, which makes their use appropriate for active SLAM.

III. PRELIMINARIES

A. Graph-based SLAM

Graph-SLAM methods employ a graph representation to
solve the SLAM estimation problem. Nodes in the graph
represent the poses of the variables of interest (i.e., the robot
location and the map points), while edges represent the sensor
measurements. The process of generating constraints between
nodes from the observations is known as data association and
is usually bounded to the most likely topology to restrain
complexity. Thus, under the assumption of observations af-
fected by Gaussian noise, an edge will encode the relative
pose between two nodes and the associated covariance matrix
(or FIM, equivalently). Such constraints may be related to
a sensor measurement (e.g., odometry) or to a loop closure.
The work in this manuscript is particularly focused on pose-
graphs, which flatten the above representation encoding only
robot poses in vertices. These sparser representations can be
achieved by marginalizing the map points in landmark-based
representations, or by building a discretized metric map via
scan matching and updating it after a loop closure occurs.

In any case, once the graph is built and the data association
problem solved, the goal of the graph-SLAM algorithm is
to compute the (Gaussian-approximated) posteriors over the
robot poses. That is, to find the nodal configuration that
maximizes the likelihood of the observations [1]. The follow-
ing optimization problem may be solved using, e.g., Gauss-
Newton or Levenberg-Marquardt techniques:

x∗ = argmin
x

F (x) (1)

s.t. F (x) =
1

2

m∑
j=1

F j(x) =
1

2

m∑
j=1

eTj (x)Σ
−1
j ej(x)

1The best known example is the possibility of a single element driving
classical D-optimality to zero. Also, the size of the FIM grows over time, so
comparison of raw determinants of matrices with different sizes is unfair [19].
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where x are the variables of interest (i.e., the robot poses), F
the cost function of the m observations, and ej and Σj the
error to be minimized and covariance for each measurement.

B. Modern Optimality Criteria in Active SLAM

While performing active SLAM, decision making comes
down to computing the utility that executing a certain set
of actions would lead to, i.e., to quantifying their expected
uncertainty. Kiefer [20], on the basis of TOED, shows that
there is a family of mappings that quantify uncertainty, i.e.,
∥Σ∥ → R, which are dependent of just one parameter (p):

∥Σ∥p ≜

(
1

ℓ
trace(Σp)

) 1
p

(2)

where ℓ is the dimension of the state vector and Σ ∈ Rℓ×ℓ

the covariance matrix which measures its uncertainty. The
preferred set of actions will be that with lowest ∥Σ∥p.

Kiefer’s information function may be expressed in terms
of the eigenvalues of Σ, (λ1, . . . , λℓ), and particularized for
the different values of p; yielding four modern optimality
criteria [21]:

• T-optimality criterion (p = 1): captures the average vari-
ance. Its computation is fast, although a single element
may drive the whole metric and thus it may perform
similar to just evaluating the highest eigenvalue [22].

T -opt ≜
1

ℓ

ℓ∑
k=1

λk (3)

• D-optimality criterion (p = 0): captures the volume of the
covariance hyper ellipsoid. Only D-opt captures global
uncertainty and holds the monotonicity property under
both absolute and differential representations [18].

D-opt ≜ exp

(
1

ℓ

ℓ∑
k=1

log(λk)

)
(4)

• A-optimality criterion (p = −1): captures the harmonic
mean variance, being thus sensitive to smallest eigenval-
ues —in contrast to T -opt which just neglects them—
and insensitive to extremely large ones.

A-opt ≜
(
1

ℓ

ℓ∑
k=1

λ−1
k

)−1

(5)

• E-optimality criterion (p → ±∞): approximates the
uncertainty using a single eigenvalue. Despite its com-
putation is fast, this criterion tends to be too optimistic
by underestimating the covariance (for the case of the
minimum eigenvalue).

E-opt ≜ min(λk : k = 1, ..., ℓ) (6)

Ẽ-opt ≜ max(λk : k = 1, ..., ℓ) (7)

C. Graph Theory

A strict undirected graph is defined by the ordered pair of
sets G ≜ (V, E), where V = {v0, ...,vn} is the set of vertices
and E = {e1, ..., em} ⊂ { {vi,vk} | vi,vk ∈ V,vi ̸= vk} the
set of edges. Their dimensions will be |V| = n and |E| = m.

The adjacency matrix of the graph, A ∈ {0, 1}n×n, indicate
whether pairs of vertices are connected or not. Each element
ai,k will be 1 if the pair (vi,vk) is connected and 0 otherwise.
Note that the diagonal will be zero. The incidence matrix, Q,
shows the connections between vertices and edges and can be
defined as a concatenation of m column vectors, each of them
associated to an edge:

Q = [q1, q2, . . . , qm] ∈ {−1, 0, 1}n×m (8)

The column block associated to the edge ei,k ≡ ej , that
connects vi and vk, will be denoted as qj . All elements
of qj will be zero except those associated to the vertices
incident upon ej (i.e., the i-th and k-th) which will be
[qj ]i = −[qj ]k = 1. The Laplacian matrix of G is a matrix
representation of the whole graph, and may be read as a
particular case of the discrete Laplace operator. It can be
expressed in terms of Q as:

L ≜ QQT = q1q
T
1 + q2q

T
2 + ...+ qmqT

m ∈ Zn×n (9)

Or, more compactly, as :

L ≜
m∑
j=1

Ej =
m∑
j=1

qjq
T
j (10)

where each generator Ej ∈ {−1, 0, 1}n×n represents the
connection between the pair (vi,vk) through the edge ej . An
element of the matrix diagonal will be 1 if it is associated
to the vertices, i.e., [Ej ]i,i and [Ej ]k,k; and 0 otherwise. Off-
diagonal elements will be −1 if the nodes are related, i.e.,
[Ej ]i,k and [Ej ]k,i; and 0 otherwise.

For a weighted graph Gγ in which ẽj ≜ (vi,vk, γi,k)
with γj ≡ γi,k ∈ R, generalization is straight-forward. The
weighted Laplacian will be now given by:

Lγ ≜
m∑
j=1

Ej γj =


−γi,k if i ̸= k, ai,k = 1
0 if i ̸= k, ai,k = 0∑n

q=1 γi,q if i = k
(11)

Note that (11) yields to (10) when γj = 1 ∀j. Also, Lγ is
positive semi-definite and singular, since Lγ1

T = 0T .

D. Spectral Graph Theory
Most important graph connectivity indices come from the

analysis of the Laplacian spectrum, since it reflects how
a graph is connected. Consider µ = (µ1, µ2, . . . , µn) the
ordered set of eigenvalues of L and µ̃ = (µ̃1, µ̃2, . . . , µ̃n)
that of Lγ ; both ranked in increasing order. In connected
graphs, the Laplacian matrix has one zero eigenvalue with
unit eigenvector, i.e., µ1 = µ̃1 = 0.

The simplest metric broadly studied in the literature is the
sum of the Laplacian eigenvalues [23], [24]. The sum of all
non-zero eigenvalues is known to be given by:

S =
n∑

k=2

µk = tr(L) =
∑

k lkk = 2m (12)

being lkk the diagonal elements of L. Since the traces of L and
Lγ are proportional, as shown hereafter, the previous metric
can be easily generalized for a weighted graph.

tr(Lγ) =
n∑

j=1

n∑
k=1

γj lkk = 1
n

n∑
j=1

γj
n∑

k=1

lkk ∝ tr(L) (13)
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A second important index is the number of spanning trees,
t(G), i.e., the number of sub-graphs that are also trees with
minimum number of edges and which set of vertices equals
that of the original graph. This index provides a measure
for the global reliability of a network. Following Kirchhoff’s
matrix-tree theorem (MTT), it is given by the determinant
of the reduced Laplacian matrix (after anchoring an arbitrary
vertex), which equals to any cofactor of L:

t(G) ≜ det(Lreduced) = cof(L) =
1

n

n∏
k=2

µk (14)

The weighted MTT allows to compute the weighted number
of spanning trees as:

t(Gγ) ≜ cof(Lγ) =
1

n

n∏
k=2

µ̃k (15)

The second smallest eigenvalue of the Laplacian is also a
crucial index of a graph, since its value reflects whether it is
disconnected [25]. It is known as the algebraic connectivity
and is greater than zero only for connected graphs:

α(G) ≜ min(µk : k = 2, . . . , n) = µ2 (16)

Its generalization for weighted graphs is straight-forward.
Finally, the Kirchhoff index, K(G), measures the resistance

between each pair of vertices under the assumption that edges
are unit resistors, and is defined by [26]:

K(G) ≜ n
n∑

k=2

µ−1
k (17)

IV. LINKING THE FISHER INFORMATION MATRIX AND THE
GRAPH LAPLACIAN

Consider a typical SLAM pose-graph in which nodes en-
code robot poses and edges the relative transformation between
node pairs and its uncertainty, usually in the form of a FIM.
The robot pose and its uncertainty can be defined with Lie
groups using the special Euclidean group SE(n′). As in
differential representations, the real location of the robot w.r.t.
a global frame (w), denoted as Twi, will be defined by a large
noise-free value which contains the estimated location, and a
small perturbation that encodes the estimation error. That is,

Twi = T̄wi exp
(
di

∧) (18)

where T̄wi ∈ SE(n′) is a large mean transformation, and di ∈
Rℓ is a random vector normally distributed and defined by its
mean d̄i = E[di] and covariance Σi = E[(di−d̄i)(di−d̄i)

T ];
expressed in its own frame. The hat operator (·)∧ defines the
mapping from the real vector space to that of the Lie alge-
bra [27]. Alternatively, the perturbation may be expressed in
the global frame, just like in differential representations [28],
in which case the exponential map will precede the estimate:

Twi = exp
(
dwi

∧) T̄wi (19)

As mentioned previously, the j-th edge in the pose-graph
will encode a single measurement that represents the relative
pose change between the pair (vi,vk). This transformation
can be simply expressed as:

T ik = T−1
wi Twk = exp

(
dik

∧)T̄ ik (20)

assuming that measurements are Gaussian on SE(n′), i.e.,
dik ∼ N (0,Σ′

ik) with Σ′
j ≡ Σ′

ik ∈ Rℓ×ℓ the measurement
covariance matrix. Note that dik will be referenced to the i-th
frame, as the mean transformation is perturbed on the left.

The error term of each measurement can be defined
from (20) as the difference between that single measurement,
T̄ ik, and the optimal estimate, T ik:

ej(x) ≡ eik(x) = ln
(
T−1

wi TwkT̄
−1
ik

)∨
(21)

with x = (Tw1, . . . ,Twn) the variables of interest, and (·)∨
the inverse of the hat operator. Inserting (19) into the above,

ej(x) = ln
(
T̄

−1
wi exp

(
−dwi

∧) exp (dwk
∧) T̄wkT̄

−1
ik

)∨
(22)

and using now the adjoint (see, e.g., [27]) to transform vectors
from the tangent space around one element to that of another,
and the following definition: exp (AdAB) ≜ A exp (B)A−1,
the term inside the logarithm in (22) becomes:

exp
(
−AdT−1

wi
dwi

∧
)
exp

(
AdT−1

wi
dwk

∧
)
exp (ej(x̄)

∧)

(23)

with ej(x̄) = ln(T̄
−1
wi T̄wkT̄

−1
ik )∨ and (T̄

−1
wi T̄wkT̄

−1
ik ) small.

Finally, using the first-order approximation [29] of the
Baker-Campbell-Haussdorf formula for the product of expo-
nential maps, the linearized error can be expressed as:

ej(x) ≈ AdT−1
wi
(dwk − dwi) + ej(x̄) (24)

Or, equivalently, in matrix form,

ej(x) ≈ ej(x̄)−AdT−1
wi

[
IIIℓ −IIIℓ

]
δxj (25)

where δxj = [dwi dwk]
T and IIIℓ the identity matrix of size ℓ.

Inserting the error function into (1) and generalizing δxj to
δx = [dw1 . . . dwn]

T to account for all measurements, the
ML (quadratic) cost function will be:

F (x) ≈ F (x̄)−∑j ej(x̄)
TΣ′

j
−1

AdT−1
wi
Ijδx

+
1

2

∑
j δx

TIj
TAdT

T−1
wi

Σ′
j
−1

AdT−1
wi
Ijδx (26)

= F (x̄)−Zδx+
1

2
δxTY δx (27)

with Ij the 1-by-n selection block matrix, populated with zero
blocks everywhere but in the i-th and k-th columns, where
[Ij ]1,i = −[Ij ]1,k = IIIℓ.

The Fisher information matrix —or Hessian— of the entire
system can be directly extracted from (26) and expressed as:

Y =
m∑
j=1

Y j =
m∑
j=1

Ij
TΣj

−1Ij (28)

with m the number of edges in the pose-graph, and Σj
−1 =

AdT
T−1

wi

Σ′
j
−1

AdT−1
wi

the inverse covariance matrix of the rela-
tive movement, expressed in the global frame. Since we kept
the perturbations δx in the global frame from (25) on, the need
arises to express their covariance in that frame as well. This
formulation over Lie groups is analogous to the differential
one (see, e.g., [1]), but embedding the equivalent measurement
Jacobian in the covariance rather than in the selection matrix.
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(b) Y 1 (odometry edge).
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(c) Y 10 (loop closure).
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(d) Full FIM, Y .
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(e) Graph Laplacian, L.

Fig. 1: Example of two of the generators Y j , and Y for an example 2D pose-graph with n = m = 10 that contains one loop
closure. Also, the graph Laplacian. Non-zero matrix elements are depicted with black dots.

At this point, we can leverage graph theory and write the
selection matrix as Ij = qT

j ⊗ IIIℓ, where ⊗ denotes the
Kronecker product and qj is the column vector that identifies
the vertices incident upon the j-th edge (see Section III-C).
Then, using the transpose and mixed-product properties of the
Kronecker product, the full FIM can be expressed in terms of
the pose-graph topology,

∴ Y =
m∑
j=1

Y j =
m∑
j=1

Ej ⊗Σ−1
j (29)

where the generator Y j ∈ Rnℓ×nℓ is the information matrix of
the entire system associated to the j-th edge; and Ej = qjq

T
j

are the Laplacian generators, see (10).
The left- and right-multiplication of the covariance matrices

of the measurements by Ij confers Y a very special block-
sparsity pattern that, in fact, conveys that of the Laplacian
of the underlying pose-graph. Figure 1 contains a pose-graph
toy example, for which the information matrix, two of their
generators and its Laplacian are shown. Sub-figures 1d and 1e
illustrate the similarity between the block-sparsity patterns of
Y and the Laplacian matrix, L.

Two special cases of equality (29) arise, in which it is
possible to directly link the full information matrix to the
(weighted) Laplacian rather than to its generators. The first one
corresponds to the situation of constant uncertainty through
measurements (i.e., a constant covariance matrix or FIM, Φ̄,
for all j); a common assumption in related literature [13],
although unrealistic except for some exploratory trajectories.
Under this hypothesis, by leveraging the associative property
of the Kronecker product, (29) becomes:

Y =
m∑
j=1

Ej ⊗ Φ̄ = L⊗ Φ̄ if Φj = Φ̄ ∀j (30)

The second case considers variable uncertainty along
exploration. Since any positive semi-definite matrix can be
considered trivially upper-bounded by a diagonal matrix with
its largest eigenvalue as diagonal terms, it holds:

Σj ⪰ λj
1 IIIℓ ⇔ Φj ⪯ ρjℓ IIIℓ = (λj

1)
−1 IIIℓ (31)

with (λj
1, . . . , λ

j
ℓ) the ordered set of eigenvalues of Σj and

(ρj1, . . . , ρ
j
ℓ) that of the FIM Φj = Σj

−1; ranked in increasing
order. Using the previous bound, (7) and the associative
property of the Kronecker product, (29) now becomes:

Y ⪯
m∑
j=1

(∥Φj∥∞ Ej)⊗ IIIℓ

= Lγ ⊗ IIIℓ if Φj ⪯ ∥Φj∥∞ IIIℓ ∀j (32)

where Lγ is the Laplacian of the pose-graph in which each
edge is weighted with γj = ∥Φj∥∞. As with the weighted
Laplacian, (32) yields to (30) for the case that γj = 1 ∀j.

A. On the Spectra

Consider now (ρ̄1, . . . , ρ̄ℓ) to be the ordered set of eigen-
values of Φ̄, and (0 = µ1, µ2, . . . , µn) that of the Laplacian
matrix L, again ranked in increasing order. According to the
spectral properties of the Kronecker product:

eig
(
L⊗ Φ̄

)
= µk ρ̄b,

k = 1, . . . , n
b = 1, . . . , ℓ

(33)

Thus, under the assumption of constant uncertainty, op-
timality criteria applied to Y can be obtained by applying it
separately to the reduced Laplacian (i.e., after removing its
zero eigenvalue) and Φ̄. For the different p-values, it will be:

∥Y ∥p =

{
∥L∥p ∥Φ̄∥p if 0 < |p| < ∞
∥L∥p ∥Φ̄∥p ∥Φ̄∥−

1
n

p if p = 0
(34)

Leading to the following proportionality relationship,

∴ ∥Y ∥p ∝ ∥L∥p ∀p (35)

The above equation allows to shift the traditional approach
of applying optimality criteria to Y , to a new strategy where
they are applied to L. Given that new optimality criteria will be
functionals of the reduced Laplacian eigenvalues, the spectral
graph theory presented in Section III-D can be leveraged.
Hence, under the assumption that every measurement has
the same covariance, optimality criteria of Y (or Σ) can be
expressed in terms of the pose-graph structure as:

T -opt(Y ) = A-opt(Σ)−1 ∝ T -opt(L) = d̄ (36)

D-opt(Y ) = D-opt(Σ)−1∝ D-opt(L) = (n t(G)) 1
n (37)

A-opt(Y ) = T -opt(Σ)−1 ∝ A-opt(L) = n2 K(G)−1 (38)

E-opt(Y ) = Ẽ-opt(Σ)−1∝ E-opt(L) = α(G) (39)

where n is the number of nodes and d̄ ≜ 2m/n the average
degree of the pose-graph. Note that (37) is consistent with [13]
for the particular case they studied in which ℓ = {2, 3} and
D-opt is defined in a traditional way [30].

On the other hand, using Weyl’s monotonicity theorem [31],
the following inequality is satisfied for the case of variable
uncertainty, as expressed in (32):

∴ ∥Y ∥p ≤ ∥Lγ∥p if γj = ∥Φj∥∞ ∀p (40)
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Therefore, we are first weighting the graph edges with Ẽ-opt
individually and then computing the desired optimality criteria
of the entire graph. The bound in (31) and the fact that
Ẽ-opt ≥ T -opt ≥ D-opt ≥ A-opt ≥ E-opt makes (40) hold
for all p. If we consider isotropic noise, the bound in (31) turns
into equality and so does (40). However, for non-isotropic (nor
diagonal) covariance matrices, (40) represents an extremely
conservative bound for criteria other than the one used as
weight. Interestingly, for p = ∞ the bound particularizes to
Ẽ-opt(Y ) ≲ Ẽ-opt(Lγ) because (i) the highest eigenvalue
is weakly affected by off-diagonal elements and (ii) absolute
values of the off-diagonal terms in SLAM FIMs are generally
smaller than those on the main diagonal.

Instead of the loose upper-bound that (40) offers in general,
an approximation relationship can be obtained by following
the strategy of weighting the pose-graph with the same opti-
mality criterion to be estimated:

∴ ∥Y ∥p ≈ ∥Lγ∥p if γj = ∥Φj∥p ∀p (41)

The goodness of approximation, in general, will depend on:
(i) the number of off-diagonal elements in both Φj (cross-
correlations) and Y (loop closures); (ii) the values of the off-
diagonal terms in Φj , relative to those in the main diagonal;
and (iii) how every criterion accounts for them. Regarding the
latter, equality will emerge for T -opt since it neglects off-
diagonal terms, and E-opt(Lγ) will represent a lower-bound,
unlike Ẽ-opt(Lγ), although more affected by off-diagonal
terms. Finally, particularizing (41) for the different p-values,

Ẽ-opt(Y ) ≲ Ẽ-opt(Lγ) (42)
T -opt(Y ) = T -opt(Lγ) = d̄ γ̄ (43)

D-opt(Y ) ≈ D-opt(Lγ) = (n t(Gγ))
1
n (44)

E-opt(Y ) ≳ E-opt(Lγ) = α(Gγ) (45)

where Gγ now denotes the pose-graph weighted with the
same criterion to be computed, γ̄ its average weight and Lγ

its weighted Laplacian. A-opt was not presented since the
complexity to compute the weighted Kirchhoff index makes its
use worthless. Also, computation of the Laplacian determinant
to evaluate the number of spanning trees quickly becomes
intractable for large graphs, as well as it generates low
precision for small values. The logarithmic determinant avoids
under and overflow and allows to compute (44) efficiently via:

D-opt(Y ) ≈ n
1
n exp {log(t(Gγ))/n} (46)

V. EXPERIMENTAL VALIDATION

In this section, we conduct several experiments to prove
the theoretical relationships in (36)-(39) and (42)-(45) hold.
Pose-graph datasets from [32] and [33], which are publicly
available2, have been used for 2D and 3D experiments, respec-
tively. To compare traditional and graph-based approaches, we
simulate the construction of the pose-graph as if the robot
were performing active SLAM. That is, at each time step, a
new node and its corresponding constraints are added to the
graph and optimality criteria is computed using both Y and L.
Experiments have been performed on an Intel Core i9 CPU.

2https://lucacarlone.mit.edu/datasets/
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Fig. 2: Optimality criteria of the full FIM (blue) and the
Laplacian (red), and the time required per step to compute
them in the reduced FRH sequence with constant uncertainty.

A. Constant Uncertainty Case

First, we used a reduced trajectory of the FRH 2D dataset
that contains the path before the first loop closure occurs
(purely exploratory). We assigned to every edge the same
following FIM, which is non-isotropic and in which the
translational variances are correlated:

Φj = Φ̄ =

(
11.11 −3 0
−3 6.25 0
0 0 250

)
∀j (47)

Figure 2a shows the computed T -, D-, A- and E-opt using
the estimation-theoretic (blue) and graphical (red) facets of
the problem. All curves overlap, proving that the relation-
ships in (36)-(39) hold and, moreover, that the proportionality
constants derived in (34) are consistent —although they are
not necessary for active SLAM. Time consumed per step by
both approaches appears in Figure 2b, clearly showing the
advantage of computing ∥L∥p∥Φ̄∥p (red) over ∥Y ∥p (blue)
as the size of the pose-graph grows. Studying computational
complexity, optimality criteria on L requires O(n3) + O(ℓ3)
while on Y requires O(ℓ3n3), omitting lower order terms and
being O(·) a lower-bound. Also, as the FIM dimension grows,
building Y requires way far more resources than creating G.

B. Variable Uncertainty Case

Consider now the case in which edges’ FIMs are no longer
constant. According to (40), one first needs to construct a
graph weighted with γj = ∥Φj∥∞. In this case, the whole
trajectory and the original FIMs contained in FRH dataset
have been used (which sparsity structure is similar to (47)).
Figure 3a contains the resulting Ẽ-, T -, D- and E-opt for the
full information matrix (blue) and the weighted Laplacian
(red). The selected bound indeed limits ∥Y ∥p ∀p, though
it is an extremely conservative one for p other than ∞, for
which (42) holds during the entire sequence.

Figure 3b shows the results in the same dataset using the
approximation in (41) instead. Blue and red curves are now
much closer to each other; overlapping for T-opt, and also
during certain parts of the trajectory for the other criteria.
Besides, the trend of the two curves is the same (i.e., ei-
ther both increase or decrease); a property that holds in all
studied datasets and key for active SLAM —otherwise we
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(c) MIT, γj = ∥Φj∥p.
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Fig. 3: Optimality criteria of the full FIM (blue) and the Laplacian (red) weighted with ∥Φj∥∞ (a), and ∥Φj∥p (b-d).
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Fig. 4: Optimality criteria of the full FIM (blue) and the
Laplacian (red) in the Garage dataset. Also, the time required
per step to compute them.

could be wrongly detecting an information gain/loss. Further
experiments have been carried out using the MIT, Intel, and
3D Garage datasets; to prove the proposed relationships hold
and that are not dependent on the dimension of the estimation
vector. Analogous results to those seen in FRH dataset have
been obtained, and they are presented in Figures 3c, 3d and 4a,
respectively. Figure 4b shows the time difference in the 3D
dataset. Behavior is equivalent to Figure 2b, although now
appears in a log-linear plot and the difference grows up to
102s in the end of the sequence.

Since it is hard to visually capture the exact difference
between the curves presented given their similarity, Table I
contains the median percentage errors when using our approx-
imations instead of the expensive computations over Y . It con-
tains the results for all the previously mentioned datasets, but
also for FR079 and CSAIL (2D). Furthermore, we analyzed
some EuRoC sequences [34], extracting their pose-graphs with
ORB-SLAM3 [35]. Quantitative results denote that differences
between computing ∥Lγ∥p and ∥Y ∥p following (41) are
indeed very low, and even indistinguishable in some cases.
T -opt was perfectly computed in all cases, showing numerical
errors only and proving equality in (43) holds. Error in the case
of Ẽ-opt is akin (0.3% on average and being nearly zero in
most datasets) since it is insensitive to elements outside the
main diagonal when they are lower than those on it. However,
for MIT, FR079 and CSAIL the error is not negligible. We
attribute it to certain isolated measurements in these datasets
with FIMs several orders of magnitude larger than the rest,
and with extremely high off-diagonal elements (also orders
of magnitude); perhaps due to incorrect behaviors of the

SLAM algorithm. In any case, when these measurements are
corrected, or when we use a modern SLAM system as in
the EuRoC sequences, the errors drop to zero. Besides, the
upper-bound in (42) is satisfied whenever the error is non-
zero. Unlike the above two, the smallest eigenvalue is much
more sensitive to off-diagonal terms (both cross-correlations
and loop closures), even when they are small. The estimation
error of E-opt is the highest (3.4%), also due to the numerical
complexity of precisely computing the smallest eigenvalue
of high-dimensional matrices. D-opt subtly inherits the same
behavior since it takes into account all eigenvalues, showing
an average approximation error of 2.4%. Nevertheless, in most
cases it remained below 0.8%. A deeper analysis on the
eigenvalue variation demonstrates that ∆Ẽ-opt, ∆D-opt and
∆E-opt increase slightly as the amount of loop closures does.
When the edge FIMs become denser and their off-diagonal
terms dominate, particularly ∆E-opt is strongly affected.

Also, Table I contains the total time required to compute
modern optimality criteria with both approaches and the
reduction achieved using the Laplacian. These computations
require, in one case: building the full FIM and computing its
optimality criteria; and in the other case: building 4 different
weighted graphs (one for each criterion), analyzing their con-
nectivity and computing optimality criteria equivalences. To
make a fair comparison, both methods are evaluated under the
same conditions, and eigenvalues are computed leveraging fast
decomposition techniques. On average, computing optimality
criteria of the weighted Laplacian required just 10% of the
time that traditional calculations over the FIM did.

VI. CONCLUSIONS

In this paper, we have shown that quantifying uncertainty in
active graph-SLAM formulated over the Lie group SE(n) can
be efficiently done by analyzing the topology of the underlying
pose-graph. We have proposed and validated relationships
between modern optimality criteria and graph connectivity
indices; showing that equivalent results can be obtained in a
fraction of the time. On average, approximations with 2% error
can be computed in just 10% of the time. Regardless of the
estimation error, the same trend is always maintained, which
proves that minimum uncertainty (i.e., optimal) actions can be
chosen by exploiting the graphical structure of the problem.

As future work, we aim to use the proposed method to
perform online (multi-robot) active visual SLAM. Also, the
use of full graphs instead of only pose-graphs is to be studied.
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Dataset Approximation Error Time (min)
n m d ∆Ẽ-opt ∆T-opt ∆D-opt ∆E-opt t(∥Y ∥p) t(∥Lγ∥p) ∆t

MIT 807 827 2.1 2.76% ∼0% 0.16% 3.53% 13.75 1.96 85.7%
FR079 989 1217 2.4 0.43% ∼0% 7.15% 5.33% 26.50 3.07 88.4%
CSAIL 1045 1171 2.2 0.11% ∼0% 1.68% 1.05% 33.90 2.73 91.9%
INTEL 1227 1481 2.4 ∼0% ∼0% 5.85% 7.19% 63.29 7.46 88.2%
FRH 1316 1485 2.2 ∼0% ∼0% 0.76% 0.49% 121.77 5.42 95.6%

MH01 (monocular) 376 544 2.9 ∼0% ∼0% 0.74% 1.49% 4.22 0.56 86.6%
V101 (monocular) 264 415 3.1 ∼0% ∼0% 0.13% 3.27% 1.01 0.14 84.9%
V101-103 (stereo-multi) 322 369 2.3 ∼0% ∼0% 0.40% 3.65% 2.21 0.30 86.1%
V201 (stereo-inertial) 337 598 3.5 ∼0% ∼0% 0.79% 0.05% 2.65 0.16 94.0%
Garage 1661 2615 3.1 0.01% ∼0% 6.21% 7.55% 1549.9 11.70 99.2%

Mean - - - 0.34% ∼0% 2.38% 3.36% - - 90.1%

TABLE I: Percentage error (median) in estimation of optimality criteria using the graph Laplacian instead of the full FIM.
Also, the accumulated time required to compute both approaches (in minutes) and the time reduction achieved.
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